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Abstract. Making use of a modified Hadamard product, or convolution, of analytic
functions with negative coefficients, combined with an integral operator, we study when a
given analytic function is in a given class. Following an idea of U. Bednarz and J. Sokó l,
we define the order of convolution consistence of three classes of functions and determine a
given analytic function for certain classes of analytic functions with negative coefficients.
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1. Introduction and preliminaries

Let A be the class of analytic functions in the unit disc U = {z : |z| < 1} normal-

ized by f(0) = f ′(0)− 1 = 0 and let N = {0, 1, 2, . . .}.

Definition 1 ([4]). We define the operator Dn : A → A, n ∈ N for z ∈ U by:

a) D0f(z) = f(z),

b) D1f(z) = Df(z) = zf ′(z),

c) Dnf(z) = D(Dn−1f(z)).

Definition 2 ([4]). Let α ∈ [0, 1) and let n ∈ N. We define the class Sn(α) of

n-starlike functions of order α by

(1.1) Sn(α) =
{

f ∈ A : Re
Dn+1f(z)

Dnf(z)
> α, z ∈ U

}

.

Denote by Sn the class Sn(0). We note that S0 = ST is the class of starlike

functions and S1 = CV is the class of convex functions.
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The convolution, or the Hadamard product, of two functions f and g in A of the

form

f(z) = z +

∞
∑

j=2

ajz
j and g(z) = z +

∞
∑

j=2

bjz
j

is the function (f ∗ g) defined as

(f ∗ g)(z) = z +
∞
∑

j=2

ajbjz
j.

Let us consider the integral operator (see [2], [1], [4]) Is : A → A, s ∈ R, such that

(1.2) Isf(z) = Is

(

z +

∞
∑

j=2

ajz
j

)

= z +

∞
∑

j=2

aj
js

zj.

Definition 3 ([2]). Let X ,Y and Z be subsets of A. We say that the triple

(X ,Y,Z) is S-closed under the convolution if there exists a number S (X ,Y,Z)

such that

(1.3) S(X ,Y,Z) = min{s ∈ R : Is(f ∗ g) ∈ Z, f ∈ X , g ∈ Y}.

The number S(X ,Y,Z) is called the order of convolution consistence of the triple

(X ,Y,Z).

Bednarz and Sokò l in [2] obtained the order of convolution consistence for certain

classes of univalent functions (starlike, convex, uniform-starlike or uniform-convex

functions). For example they proved the following statement.

Theorem 1 ([2]). We have the following orders of convolution consistence:

(i) S(ST ,ST ,ST ) = 1,

(ii) S(CV, CV,ST ) = −1,

(iii) S(CV,ST ,ST ) = 0,

(iv) S(ST ,ST , CV) = 2,

(v) S(CV, CV, CV) = 0,

(vi) S(CV,ST , CV) = 1.

Let N denote the subclass of A consisting of analytic functions of the form

(1.4) f(z) = z −
∞
∑

j=2

ajz
j , aj > 0, j ∈ {2, 3, 4, . . .}.
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Then Tn(α) = Sn(α)∩N is the class of n-starlike functions of order α with negative

coefficients. In particular, T0(α) and T1(α) are the class of starlike functions of

order α with negative coefficients and the class of convex functions of order α with

negative coefficients, respectively, introduced by Silverman [8]. We denote Tn(0)

by Tn.

The modified Hadamard product, or ⊛-convolution, of two functions f and g in N

of the form

(1.5) f(z) = z −
∞
∑

j=2

ajz
j and g(z) = z −

∞
∑

j=2

bjz
j, aj , bj > 0,

is the function (f ⊛ g) defined as (see [7])

(f ⊛ g)(z) = z −
∞
∑

j=2

ajbjz
j .

As in Definition 3, we define the order of ⊛-convolution consistence of the triple

(X ,Y,Z), where X ,Y and Z are subsets of N , denoted S⊛ by

(1.6) S⊛(X ,Y,Z) = min{s ∈ R : Is(f ⊛ g) ∈ Z, f ∈ X , g ∈ Y}.

In this paper we obtain similar results as in Theorem 1 but for the class Tn and

for ⊛-convolution.

We need the following characterization of the class Tn.

Theorem 2. Let n ∈ N and let f ∈ N be a function of the form (1.4). Then f

belongs to Tn if and only if
∞
∑

j=2

jn+1aj 6 1.

The result is sharp and the extremal functions are

(1.7) fj(z) = z −
1

jn+1
zj, j ∈ {2, 3, . . .}.

A proof of this theorem in the particular cases n = 0 and n = 1 is given by

Silverman in [8] and by Gupta and Jain in [3]. In a more general form (for Tn(α)) it

is given in [5] and [6].
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2. Main results

Theorem 3. If f ∈ Tn+p and g ∈ Tn+q, then Is(f⊛g) ∈ Tn+r, where p, q, r, n ∈ N

and when

(2.1) s = r − p− q − n− 1.

The result is sharp.

P r o o f. Since f ∈ Tn+p and g ∈ Tn+q, if f and g have the form (1.5), then from

Theorem 1 we have

∞
∑

j=2

jn+p+1aj 6 1 and

∞
∑

j=2

jn+q+1bj 6 1

and by the Cauchy-Schwarz inequality we deduce

(2.2)
∞
∑

j=2

jn+(p+q)/2+1
√

ajbj 6 1.

We need to find conditions on s, r, p, q, n such that

∞
∑

j=2

jn+r+1−sajbj 6 1.

Thus it is sufficient to show that

jn+r+1−sajbj 6 jn+(p+q)/2+1
√

ajbj,

that is, that
√

ajbj 6 js−r+(p+q)/2, j ∈ {2, 3, . . .}.

But from (2.2) we know that

√

ajbj 6 j−n−(p+q)/2−1, j ∈ {2, 3, . . .}.

Consequently, it is sufficient to show that

j−n−(p+q)/2−1 6 js−r+(p+q)/2, j ∈ {2, 3, . . .},

or, equivalently, that

(2.3) jr−s−n−p−q−1
6 1, j ∈ {2, 3, . . .},

but the inequalities (2.3) hold for s, r, p, q, n satisfying (2.1).
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Finally, by using the extremal functions (see (1.7)) f2(z) = z − z2/2n+p+1 ∈ Tn+p

and g2(z) = z − z2/2n+q+1 ∈ Tn+q we can see that

Is(f2 ⊛ g2) = z −
z2

22n+s+p+q+2
.

But from (2.1) we deduce

(2.4) Is(f2 ⊛ g2) = z −
z2

2n+r+1
∈ Tn+r,

and this shows that the result in Theorem 3 is sharp. �

Theorem 4. Let p, q, r, n ∈ N and let s be given by (2.1). Then the order of

⊛-convolution consistence

(2.5) S⊛(Tn+p, Tn+q, Tn+r) = s = r − p− q − n− 1.

P r o o f. Theorem 3 shows that S⊛(Tn+p, Tn+q, Tn+r) 6 s and from (2.4) we

have S⊛(Tn+p, Tn+q, Tn+r) > s. �

Corollary 1. We have the following orders of ⊛-convolution consistence:

(a) S⊛(T0, T0, T0) = −1,

(b) S⊛(T0, T0, T1) = 0,

(c) S⊛(T1, T0, T0) = −2,

(d) S⊛(T1, T1, T0) = −3,

(e) S⊛(T1, T0, T1) = −1,

(f) S⊛(T1, T1, T1) = −2.

We note that T0 = ST ∩N and T1 = CV ∩N and it is easy to compare the results

of Theorem 1 to those of Corollary 1.
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“Babeş-Bolyai”, 1984, pp. 181–184.
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