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Resolvability in c.c.c. generic extensions

Lajos Soukup, Adrienne Stanley

Abstract. Every crowded space X is ω-resolvable in the c.c.c. generic extension
V Fn(|X|,2) of the ground model.

We investigate what we can say about λ-resolvability in c.c.c. generic exten-
sions for λ > ω.

A topological space is monotonically ω1-resolvable if there is a function f :
X → ω1 such that

{x ∈ X : f(x) ≥ α} ⊂dense X

for each α < ω1.
We show that given a T1 space X the following statements are equivalent:
(1) X is ω1-resolvable in some c.c.c. generic extension;
(2) X is monotonically ω1-resolvable;

(3) X is ω1-resolvable in the Cohen-generic extension V Fn(ω1,2).
We investigate which spaces are monotonically ω1-resolvable. We show that

if a topological space X is c.c.c., and ω1 ≤ ∆(X) ≤ |X| < ωω , where ∆(X) =
min{|G| : G 6= ∅ open}, then X is monotonically ω1-resolvable.

On the other hand, it is also consistent, modulo the existence of a measur-
able cardinal, that there is a space Y with |Y | = ∆(Y ) = ℵω which is not
monotonically ω1-resolvable.

The characterization of ω1-resolvability in c.c.c. generic extension raises the
following question: is it true that crowded spaces from the ground model are
ω-resolvable in V Fn(ω,2)?

We show that (i) if V = L then every crowded c.c.c. space X is ω-resolvable

in V Fn(ω,2), (ii) if there are no weakly inaccessible cardinals, then every crowded

space X is ω-resolvable in V Fn(ω1,2).
Moreover, it is also consistent, modulo a measurable cardinal, that there is a

crowded space X with |X| = ∆(X) = ω1 such that X remains irresolvable after
adding a single Cohen real.

Keywords: resolvable; monotonically ω1-resolvable; measurable cardinal

Classification: 54A35, 03E35, 54A25

1. Introduction

Notion of resolvability was introduced and studied first by E. Hewitt [4], in
1943. A topological space X is κ-resolvable if it can be partitioned into κ many
dense subspaces. X is resolvable iff it is 2-resolvable, and irresolvable otherwise.
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Irresolvable spaces with many interesting extra properties were constructed, but
there are no “absolute” examples for crowded irresolvable spaces, because if X is
a crowded space, then clearly

V Fn(|X|,2) |= X is ω-resolvable.

In this paper we investigate what we can say about λ-resolvability in c.c.c.
generic extensions for λ > ω.

To characterize spaces which are ω1-resolvable in some c.c.c. generic extension
we introduce the notion of monotone κ-resolvability.

Definition 1.1. Let κ be an infinite cardinal. A topological space X is monoto-
nically κ-resolvable† if there is a function f : X → κ such that

{x ∈ X : f(x) ≥ α} ⊂dense X

for each α < κ. We will say that f witnesses that X is monotonically κ-resolvable.

Clearly a space X is monotonically κ-resolvable iff X has a partition {Xζ : ζ <
κ} of X such that

int
(

⋃

{Xζ : ζ < ξ}
)

= ∅

for all ξ < κ.

Theorem 1.2. Let X be a T1 topological space. The following statements are

equivalent:

(1) X is ω1-resolvable in some c.c.c. generic extension,

(2) X is monotonically ω1-resolvable,

(3) X is ω1-resolvable in the Cohen generic extension V Fn(ω1,2).

Which spaces are monotonically ω1-resolvable?

Theorem 1.3. If a topological space X is c.c.c., and ω1 ≤ ∆(X) ≤ |X | < ωω,

then X is monotonically ω1-resolvable.

Theorem 1.4. If κ is a measurable cardinal, then there is a space X with

|X | = ∆(X) = κ which is not monotonically ω1-resolvable.

What about spaces of cardinality ωω?

Theorem 1.5. It is consistent, modulo the existence of a measurable cardinal,

that there is a space X with |X | = ∆(X) = ωω which is not monotonically

ω1-resolvable.

Do we really need to add |X |-many Cohen reals to make X resolvable?

†In [13] a “monotonically ω-resolvable” space is called “almost-ω-resolvable”. However, in
[12] a space X is almost-κ-resolvable if it contains a family of κ dense sets with pairwise nowhere
dense intersections.
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Theorem 1.6. (1) It is consistent, modulo a measurable cardinal, that there is

a crowded space X with |X | = ∆(X) = ω1 (so X is monotonically ω1-resolvable)
such that

V Fn(ω,2) |= “X is irresolvable.”

(2) If V = L, then every crowded space with |X | = ∆(X) = cf(|X |) is monotoni-

cally ω-resolvable, and so it is ω-resolvable in V Fn(ω,2).

(3) If the cardinality of a crowded c.c.c. space X is less than the first weakly

inaccessible cardinal, then X is ω-resolvable in V Fn(ω1,2)§.

The almost resolvability of c.c.c. spaces was investigated by Pavlov in [11]:
on page 53 Pavlov writes that mimicking Malykhin’s method, by using Ulam
matrices, he showed that every crowded c.c.c. space of cardinality ω1 is almost
resolvable. In [3, Theorem 2.22] a stronger result was proved: a crowded c.c.c.
space is almost resolvable if its cardinality is less than the first weakly inaccessible
cardinal. Theorem 1.6(2) is a further improvement of this result because monotone
ω-resolvability implies almost resolvability.

In [1, 3.12 Problem (2)] the authors ask if every space with countable cellularity
and cardinality less than the first inaccessible non-countable cardinal is almost-ω-
resolvable. As we will see Theorem 1.6(3) gives a positive answer to a weakening
of this question.

2. Characterization of ω1-resolvability in c.c.c. extensions

Instead of Theorem 1.2 we prove the following stronger result. We say that
a function g : X → κ witnesses that X is κ-resolvable if

{x ∈ X : g(x) = α} ⊂dense X

for each α < κ.

Theorem 2.1. Assume that X is a crowded topological space and κ is an infinite

cardinal. If κ = cf([κ]ω,⊂) then the following statements are equivalent:

(1) X is κ-resolvable in some c.c.c. generic extension;

(2) there is a function h : X → [κ]ω such that
⋃

h′′U = κ for each non-empty

open U ⊂ X ;

(3) X is κ-resolvable in the Cohen-generic extension V Fn(κ,2).

Proof: First we show that (1) → (2). Assume that P is a c.c.c. poset such that
there is a function g ∈ V P witnessing the κ-resolvability of X .

For each x ∈ X define

h(x) = {α < κ : ∃px
α ∈ P(px

α  ġ(x̌) = α̌)}.

Since the conditions {px
α : α ∈ h(x)} are pairwise incomparable and P is c.c.c.,

the set h(x) is countable.

§ω1 is not a misprint here.
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We now show that the function h defined above satisfies (2). Fix α < κ and U
an open subset of X . We need to show that there exists x ∈ U such that α ∈ h(x).
Since

V P |= g−1({α}) ⊂dense X

it follows that there is x ∈ U such that

V P |= g(x) = α.

Thus, there exists p ∈ P such that

p  “ġ(x̌) = α̌.”

Then α ∈ h(x).
Next we show that (2) → (3). Let A be a cofinal subset of [κ]ω with |A| = κ.
Let {Aα : α < κ} be an enumeration of A, and for each x ∈ X pick

h∗(x) ∈ A such that h∗(x) ⊃
⋃

α∈h(x)

Aα.

Then for all non-empty open U

(+) {h∗(x) : x ∈ U} is cofinal in [κ]ω.

Next we note that forcing with Fn(κ, 2) is the same as forcing with Fn(κ, ω).
Further, Fn(κ, ω) is isomorphic to

P = {p ∈ Fn(A, κ) : ∀A ∈ dom(p) p(A) ∈ A}.

Indeed, for each A ∈ A fix a bijection ρA : ω → A, and then for q ∈ Fn(κ, ω)
define ϕ(q) ∈ P as follows:

(i) dom(ϕ(q)) = {Aα : α ∈ dom(q)}, and
(ii) ϕ(q)(Aα) = ρAα

(q(α)) for Aα ∈ dom(ϕ(q)).

Then ϕ is clearly an isomorphism between Fn(κ, ω) and P.
We will proceed using P.
Let G be a P-generic filter, and let g =

⋃

G. Then g ∈ V P and g : A → κ is
such that g(A) ∈ A.

We claim that f = g ◦ h∗ witnesses that X is κ-resolvable.
Fix α < κ and an open U ⊂ X .
Let q ∈ P be arbitrary. Then, by (+), there is x ∈ U such that

{α} ∪
⋃

dom(q) ( h∗(x).

Then h∗(x) /∈ dom(q), and α ∈ h∗(x), so

p = q ∪ {〈h∗(x), α〉} ∈ P1,
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and

p  (g ◦ h∗)(x̌) = α̌.

Thus, by genericity, there is p ∈ G and x ∈ U such that

p  ( ˙g ◦ h∗(x̌) = α̌).

Hence

V P |= X is κ-resolvable.

Finally (3) → (1) is trivial. �

Problem 2.2. Can we drop the assumption κ = cf([κ]ω,⊂) from Theorem 2.1?

3. On monotone ω1-resolvability of c.c.c. spaces

We start with an easy to prove observation.

Lemma 3.1. Let X be a topological space and B ⊂ P(X). If every B ∈ B is

monotonically κ-resolvable, then so is ∪B. So every space contains a subspace

which is the greatest monotonically κ-resolvable subspace (this subspace can be

empty, of course).

Corollary 3.2. Let X be a topological space. Let Z be a dense subset of X . If

Z is monotonically κ-resolvable, then X is also monotonically κ-resolvable.

Before proving Theorem 1.3 we prove the following “stepping-down” theorem.
The proof uses ideas from [8].

Theorem 3.3. If X is a κ-c.c., monotonically κ+-resolvable space, then X is

monotonically κ-resolvable as well.

Proof: Since an open subspace of a κ-c.c., monotonically κ+-resolvable space is
also κ-c.c. and monotonically κ+-resolvable, by Lemma 3.1 it is enough to show
that

(∗) every κ-c.c., monotonically κ+-resolvable space X has a monotonically
κ-resolvable non-empty open subset.

Ulam [14] proved that there is a “matrix”

〈

Mα,ζ : α < κ+, ζ < κ
〉

⊂ P(κ+)

such that

(i) Mα,ξ ∩ Mβ,ξ = ∅ for {α, β} ∈ [κ+]2 and ξ ∈ κ,
(ii) Mα,ξ ∩ Mα,ζ = ∅ for α ∈ κ+ and {ξ, ζ} ∈ [κ]2, and
(iii) |M−

α | ≤ κ, where M−
α = κ+ \

⋃

ζ<κ Mα,ζ for α < κ+.

Fix a partition {Yη : η < κ+} witnessing that X is monotonically κ+-resolvable.
Let

Zα,ζ =
⋃

{Yη : η ∈ Mα,ζ}
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for α < κ+ and ζ < κ, and let

Zα =
⋃

ζ<κ

Zα,ζ .

Since Zα =
⋃

{Yη : η ∈ κ+ \M−
α }, assumption (iii) implies that every Zα is dense

in X .

Case 1. There is α < κ+ such that for all ζ < κ

⋃

ζ≤ξ

Zα,ξ ⊂dense Zα.

Then (Zα,ζ)ζ<κ witnesses that Zα is monotonically κ-resolvable and so by
Corollary 3.2, X is also monotonically κ-resolvable.

Case 2. For all α < κ+ there is ζα < κ and there is a non-empty open set
Uα ∈ τX such that

(†)
⋃

ζα≤ξ

Zα,ξ ∩ Uα = ∅.

Then there is a set I ∈ [κ+]κ
+

and there is an ordinal ζ < κ such that ζα = ζ
for all α ∈ I.

Fix an arbitrary K ∈ [I]κ. By (iii) we can find ρ < κ+ such that

⋃

α∈K

M−
α ⊂ ρ.

Let Z =
⋃

ρ<η Yη. Then Z ⊂dense X and Z ⊂ Zα for all α ∈ K.

Claim. If L ∈ [K]κ then
⋂

α∈L

Uα ∩ Z = ∅.

Proof of the Claim: Assume on the contrary that z ∈
⋂

α∈L Uα ∩ Z. Then
z ∈ Yη for some ρ < η.

Let α ∈ L. Then η ∈ κ+ \ ρ ⊂
⋃

ξ<κ Mα,ξ. Pick ξα < κ with η ∈ Mα,ξα
. Then

Yη ⊂ Zα,ξα
, so Zα,ξα

∩ Uα 6= ∅, so ξα < ζα = ζ by (†).
Since ζ < κ = |L|, there are α 6= β ∈ [L]2 such that ξα = ξβ . Thus η ∈

Mα,ξα
∩ Mβ,ξβ

which contradicts (i) because ξα = ξβ . �

Fix an enumeration K = {χξ : ξ < κ}, and let Vζ =
⋃

ζ<ξ Uχξ
. Then the

sequence 〈Vζ : ζ < κ〉 is decreasing and

⋂

ζ<κ

Vζ ∩ Z = ∅
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by the Claim.
Since X is κ-c.c. there is ξ < κ such that Vζ = Vξ for all ξ < ζ < κ.
We can assume that ξ = 0. Let

Tζ =







V0 \ Z if ζ = 0,

((
⋂

ξ<ζ Vξ) \ Vζ) ∩ Z if ζ > 0.

Then
⋃

ξ<ζ

Tζ ⊃ Vξ ∩ Z ⊂dense V.

Thus the partition {Tζ : ζ < κ} witnesses that V is monotonically κ-resolvable.
�

Proof of Theorem 1.3: Let Y = {Y ∈ τX : |Y | = ∆(Y )}.
Then

⋃

Y is dense in X , and every open subset of every Y ∈ Y is also in Y.
Thus by Lemma 3.1 it is enough to prove that a c.c.c. space Y with ω1 ≤ |Y | =
∆(Y ) < ωω is monotonically ω1-resolvable.

Let Y ∈ Y such that ωn = |Y |. Clearly, Y is monotonically ωn-resolvable
because |Y | = ∆(Y ) = ωn. Since Y is c.c.c. then Y is ωn−1-c.c. By Theorem 3.3,
Y is monotonically ωn−1-resolvable. By repeating the application of Theorem 3.3
n − 2 times we conclude that Y is monotonically ω1-resolvable. �

Problem 3.4. Is it true that every crowded c.c.c. space with ∆(X) ≥ ω1 is

monotonically ω1-resolvable?

4. Spaces which are not monotonically ω1-resolvable

If X is a topological space, and D ⊂ P(X), we write

D = {D : D ∈ D}.

Lemma 4.1. Let X be a topological space. Assume that D is point-countable

for each point-countable family D ⊂ P(X). Then X does not contain any mono-

tonically ω1-resolvable subspace Y .

Proof: Assume that {Yζ : ζ < ω1} is a partition of Y . Let Dξ =
⋃

{Yζ : ξ < ζ}

for ξ < ω1. Then the family D = {Dξ : ξ < ω1} is point-countable. Hence D
is also point-countable. So Dξ is not dense in Y for all but countably many ξ.
Therefore the partition {Yζ : ζ < ω1} does not witness that Y is monotonically
ω1-resolvable. �

To prove Theorems 1.4 and 1.5 we recall some definitions and results from [6]
and [5].
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Definition 4.2 ([6, Definition 3.1]). Let κ be an infinite cardinal, and let F be
a filter on κ. Let T be the tree κ<ω. A topology τF is defined on T by

τF =
{

V ⊂ T : ∀t ∈ V {α ∈ κ : t⌢α ∈ V } ∈ F
}

,

and the space 〈T, τF〉 is denoted by X(F).

Proof of Theorem 1.4: Let U be a κ-complete non-principal ultrafilter on κ.
The space X = X(U) is monotonically normal by [6, Theorem 3.1].
An ultrafilter U is λ-descendingly complete if

⋂

{Uζ : ζ < λ} 6= ∅ for each
decreasing sequence {Uζ : ζ < λ} ⊂ U .

A σ-complete ultrafilter is clearly ω-descendingly-complete. In the proof of [6,

Theorem 3.5] the authors prove Lemma 3.6 which claims that D is point-countable
for each point-countable family D ⊂ P(X(F)) provided that F is a ω-descendingly

complete ultrafilter. So D is point-countable for each point-countable family D ⊂
P(X), and so X is not monotonically ω1-resolvable by Lemma 4.1. �

Instead of Theorem 1.5 we prove the following theorem which is a slight im-
provement of [5, Theorem 5].

Theorem 4.3. If it is consistent that there is a measurable cardinal, then it is

also consistent that there is an ω-resolvable monotonically normal space X with

|X | = ∆(X) = ωω such that if a family D ⊂ P(X) is point-countable, then the

family D = {D : D ∈ D} is also point countable. Hence X does not contain any

monotonically ω1-resolvable subspace.

Proof: In [5, p. 665] the authors write that “starting from one measurable,
Woodin ([15]) constructed a model in which ℵω carries an ω1-descendingly com-
plete uniform ultrafilter. Woodin’s model V1 can be embedded into a bigger ZFC
model V2 so that the pair of models (V1, V2) with κ = ℵω satisfies the two models
situation”, i.e.

(1) ωV1

1 = ωV2

1 ,
(2) there is a countable subset A of ωω in V2 such that no B ∈ V1 of cardinality

< ωω covers A,
(3) for the filter G on ωω defined in V2 by B ∈ G iff A \ B is finite, we have

G ∩ V1 ∈ V1.

(The “two model situation” is defined in [5, Theorem 4.5]).

Let F = G ∩ V1 and consider the space X = X(F). As it was observed in [6],
spaces obtained as X(H) from some filter H are monotonically normal and ω-
resolvable.

In [5, Theorem 4.1] Juhász and Magidor showed that the space X(F) is actually
hereditarily ω1-irresolvable. They proved the following lemma:

Lemma 4.2 ([5]). For any D ⊂ X(F ) and t∈D there is a finite sequence s of

members of A such that t⌢s∈D.
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Using this lemma we show that D is point-countable for each point-countable
family D ⊂ P(X), and so X is not monotonically ω1-resolvable by Lemma 4.1.

Indeed, let D ⊂ P(X) be an uncountable family such that t ∈
⋂

D∈D D. Then,
by [5, Lemma 4.3], for each D ∈ D we can pick a finite sequence sD of members
of A such that t⌢sD∈D. Since there are only countable many finite sequences of
elements of A there is s such that sD = s for uncountably many D ∈ D. Then
t⌢s is in uncountably many elements of D, so D is not point-countable.

We have thus proved that no subspace of X is monotonically ω1-resolvable. �

5. ω-resolvability after adding a single Cohen real

Before proving Theorem 1.6 we need some preparation.
The notion of almost resolvability was introduced by Bolstein [2] in 1973:

a topological space is almost-resolvable if it is a countable union of sets with empty
interiors. The notion of monotone ω-resolvability was first considered in [13] under
the name almost-ω-resolvability.

Clearly almost ω-resolvable (i.e. monotonically ω-resolvable) spaces are almost
resolvable.

Lemma 5.1. Let X be a crowded topological space.

(1) If X is monotonically ω-resolvable, then X is ω-resolvable in V Fn(ω,2).

(2) If X is resolvable in V Fn(ω,2), then X is almost-resolvable.

Proof: (1) Assume that the function f : X → ω witnesses the monotone ω-
resolvability of X .

If G is the V -generic filter in Fn(ω, ω), and g =
⋃

G, then the function h = g◦f
witnesses that X is ω-resolvable.

We need to show that {y ∈ X : (g ◦ f)(y) = n} is dense in X .
Indeed, let p ∈ Fn(ω, ω) and ∅ 6= U ∈ τX . Since f : X → ω witnesses the

monotone ω-resolvability of X there is y ∈ U such that

f(y) > maxdom(p).

Let

q = p ∪ {〈f(y), n〉}.

Then q ≤ p and

g  (g ◦ f)(y) = n.

So we proved that g◦f witnesses that X is ω-resolvable in the generic extension.

(2) Assume that

V Fn(ω,2) |= “X has a partition {D0, D1} into dense subsets.”

For all p ∈ Fn(ω, 2) and i < 2 let

Dp
i = {x ∈ X : p  x ∈ Ḋi}.
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Then X =
⋃

{Dp
i : p ∈ Fn(ω, 2), i < 2}, and we claim that intDp

i = ∅ for each
p ∈ Fn(ω, 2), and i < 2.

Indeed, fix p and i and let U be an arbitrary non-empty open subset. Then
p  U ∩ ˙D1−i 6= ∅, so there is q ≤ p and y ∈ U such that q  y ∈ ˙D1−i. Then

q  y /∈ Ḋi, hence p 6 y ∈ Ḋi, and so y /∈ Dp
i . Thus U 6⊂ Dp

i . Since U was
arbitrary, we proved intDp

i = ∅. �

After this preparation we can prove Theorem 1.6.

Proof of Theorem 1.6: (1) Kunen [7] proved that it is consistent, modulo a
measurable cardinal, that there is a maximal independent family A ⊂ P(ω1)
which is also σ-independent.

In [9, Theorems 3.1 and 3.2] the authors proved that if there is a maximal
independent family A ⊂ P(ω1) which is also σ-independent, then there is a Baire
space X with |X | = ∆(X) = ω1 such that every open subspace of X is irresolvable,
i.e. the space X is OHI .

It is well-known that a crowded OHI Baire space X is not almost resolvable:
if X =

⋃

n∈ω Xn, then intXn 6= ∅ for some n ∈ ω.
Indeed, if intXn = ∅, then X \Xn is dense, so Un = int(X \Xn) is dense in X

because every open subset of X is irresolvable. Thus
⋂

n∈ω Un 6= ∅ because X is
Baire. However

⋂

n∈ω

Un ⊂
⋂

n∈ω

(X \ Xn) = X \
⋃

n∈ω

Xn = ∅,

which is a contradiction.
Thus X is not almost resolvable, so it is not ω-resolvable in the model V Fn(ω,2)

by Lemma 5.1(2).

(2) In [10] the authors proved that if V = L, then there are no crowded Baire
irresolvable spaces. Hence, by [13], if V = L, then every crowded space X is
almost-ω-resolvable (i.e. monotonically ω-resolvable).

So these spaces are ω-resolvable in the model V Fn(ω,2) by Lemma 5.1(1).

(3) Let X be a crowded c.c.c. space.
We can assume that |X | = ∆(X).
By induction we define a strictly decreasing sequence of cardinals:

κ0, κ1, . . . , κn . . .

as follows.

(i) κ0 = ∆(X),
(ii) if κi is singular, then κi+1 = cf(κi),
(iii) if κi > ω is regular, then κi = λ+ (because |X | is below the first weakly

inaccessible cardinal,) and let κi+1 = λ,
(iv) if κi = ω or κi = ω1, then we stop.

Assume that the construction stopped in the nth step.
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Then we can prove, by finite induction, that X is monotonically κi-resolvable
for all i ≤ n by Theorem 3.3. Thus X is monotonically ω-resolvable or monotoni-
cally ω1-resolvable, and so either X is ω-resolvable in V Fn(ω,2) by Lemma 5.1(1),
or X is ω1-resolvable in V Fn(ω1,2) by Theorem 2.1. �

Problem 5.2 ([13, Questions 5.2.]). Are almost resolvability and almost-ω-

resolvability equivalent in the class of irresolvable spaces?

Problem 5.3. Is there, in ZFC, a crowded topological space X which is irresolv-

able in the Cohen generic extension V Fn(ω,2)?
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