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Abstract. Bounds on the spectrum of the Schur complements of subdomain stiffness
matrices with respect to the interior variables are key ingredients in the analysis of many
domain decomposition methods. Here we are interested in the analysis of floating clus-
ters, i.e. subdomains without prescribed Dirichlet conditions that are decomposed into still
smaller subdomains glued on primal level in some nodes and/or by some averages. We give
the estimates of the regular condition number of the Schur complements of the clusters
arising in the discretization of problems governed by 2D Laplacian. The estimates depend
on the decomposition and discretization parameters and gluing conditions. We also show
how to plug the results into the analysis of H-TFETI methods and compare the estimates
with numerical experiments. The results are useful for the analysis and implementation of
powerful massively parallel scalable algorithms for the solution of variational inequalities.

Keywords: two-level domain decomposition; hybrid FETI; Schur complement; bounds
on the spectrum
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1. Introduction

Variants of FETI (finite element tearing and interconnecting) methods introduced

by Farhat and Roux [7], [8] belong to the most powerful methods for massively

parallel solution of large discretized elliptic partial differential equations. The basic
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idea is to decompose the domain into subdomains which are joined by Lagrange

multipliers. After eliminating the primal variables, the original problem reduces

to a smaller global problem and a number of local problems that can be solved in

parallel. Moreover, if applied to any variational inequality, the duality transforms the

inequality constraints into bound constraints. The conditioning of the global problem

depends on the conditioning of Schur complements of local stiffness matrices with

respect to interior variables. The bounds on the spectra of local Schur complements

are well known (see e.g. Brenner [1] or Pechstein [13]) and are the essential ingredients

of the analysis of any FETI-type method (see e.g. Farhat, Mandel, and Roux [6] or

Tosseli and Widlund [14]).

Here we are interested in the estimates that are necessary for the analysis of

H-TFETI (hybrid total FETI, see e.g. [4]) without preconditioner. This method ex-

ploits the decomposition of domains into floating clusters, i.e. the subdomains with-

out Dirichlet conditions that are decomposed into still smaller subdomains glued

on the primal level in some nodes and/or averages. The two-level structure of the

stiffness matrices arising from applications of H-TFETI complies well with the hier-

archical organization of modern supercomputers—the clusters and their subdomains

can be naturally associated with the nodes and their cores, respectively. We give the

estimates in terms of the discretization and decomposition parameters of the regular

condition number of the Schur complements of clusters arising from the discretiza-

tion of problems governed by 2D Laplacian. We consider various gluing conditions,

plug the results into the analysis of H-TFETI methods, and compare the results with

numerical experiments.

Let us mention that the interest in the conditioning of FETI without precondi-

tioners is motivated by the possibility to work with bound or separable inequality

constraints. The preconditioning transforms these constraints into more general

constraints (see e.g. Dostál et al. [4]). Let us mention that H-TFETI has been suc-

cessfully applied to the solution of nonlinear elliptic problems discretized by some

hundred billions of nodal variables [4].

2. Domain decomposition, subdomains and clusters

Let us consider a problem governed by the Laplacian on the 2D unit square Ω

with the boundary Γ, such as the Poisson equation

(2.1) ∆u = f

with homogeneous Dirichlet, Neumann, or Signorini conditions. For the application

of TFETI, let us decompose Ω into square subdomains Ωi of equal side-length Hs

with the boundaries Γi as in Fig. 1, i = 1, . . . , ns, ns = 1/H2
s .

700



Figure 1. Decomposition of Ω into subdomains Ωi.

In each Ωi, we introduce a regular triangularization with the discretization pa-

rameter h and the pattern depicted in Fig. 2. We assume matching discretization

of subdomains, so the nodes should coincide on the interface. The total number of

nodes is denoted by n.

h

Hs

Figure 2. Subdomain Ωi and its triangularization.

For each subdomain Ωi, we introduce the standard finite element linear basis

functions ϕi
j(x) and set up local stiffness matrices Ki, local nodal displacement

vectors ui, and local load vectors f i,

K = diag(K1, . . . ,Kns), u =




u1

...

uns


 , f =




f1

...

fns


 , i = 1, . . . , ns.

The basis functions span the space Vh(Ωi) with the elements

ui
h(x) =

∑

j

ui
jϕ

i
j(x), x ∈ Ωi.

Notice that each local stiffness matrix Ki is symmetric positive semidefinite (SPS)

with the kernel spanned by the vector

ei = [1, . . . , 1]T.
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The solution of the discretized problem (2.1) can be obtained by the solution of

a constrained quadratic programming problem

(2.2) min(12x
TKx− fTx) subject to BEx = o and BIx 6 o,

whereBE represents gluing of the subdomains and the Dirichlet boundary conditions,

BI enforces the Signorini conditions, and o denotes zero vector. For example, the

continuity of the solution in the corners of interior subdomains is enforced by three

rows of B with nonzero entries placed in four columns corresponding to the global

indices of the corner variables,




. . . 1 . . . −1 . . . 0 . . . 0 . . .

. . . 0 . . . 0 . . . 1 . . . −1 . . .

. . . 1 . . . 1 . . . −1 . . . −1 . . .



 .

Matrices BE and BI can be considered as submatrices of matrix B with the column

blocks complying with the block structure of K, i.e.

B =

[
BE

BI

]
= [B1, . . . , Bns

].

Both, original FETI algorithm (also referred to as FETI1) [7] and TFETI [3],

were proposed for linear problems. The idea was to switch to the constrained dual

problem in Lagrange multipliers and solve it iteratively with preconditioning by the

projector

P = I −G(GTG)+GT, G = BR,

where (GTG)+ denotes a left generalized inverse. Recal that if A is any square

matrix, then

AA+A = A.

The method was later adapted to the solution of variational inequalities [2], [4]. The

dual problem reads

(2.3) min(12λ
TFλ− dTλ) subject to Gλ = o and λI > o,

where

F = BK+BT, G = RTBT, λ = [λT
E , λ

T
I ]

T,

and denotes the Lagrange multipliers with the components enforcing the equality

and inequality constraints, respectively, and d is a vector the specification of which
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is not relevant in this paper. The regular condition number κ(F ) = κ(F | ImF ) was

shown in [6] to satisfy

(2.4) κ(F ) 6 CH/h,

with a constant C independent of the decomposition and discretization parametersH

and h, respectively. This estimate guarantees an optimal complexity of the method

provided the cost of the action of P does not dominate the cost of the iteration.

To overcome the latter limitation and to reduce the dimension of GTG without

compromising the number of subdomains, Farhat, Lesoinne, and Pierson [5] and Kla-

wonn and Rheinbach [9], [10] proposed to enforce some gluing constraints explicitly.

For example, to glue four adjacent subdomains in the only common node

x ∈ Ωi ∩ Ωj ∩ Ωk ∩Ωl,

it is enough to replace the four columns of identity matrix which correspond to x by

a vector with four appropriately placed ones to get the matrix L which transforms

global variables ũ to u,

u = Lũ.

It can be checked that the stiffness matrix K̃ of Ω and the constraint matrices B̃E

and B̃I in remaining variables are given by

K̃ = LTKL, B̃E = BEL, B̃I = BIL.

Moreover, the kernel of the stiffness matrix K̃m of the cluster obtained by gluing

the four subdomains in one node is only one dimensional, while the dimension of the

kernel of diag(Ki,Kj ,Kk,K l) is four. The cluster resulting from the gluing of four

adjacent subdomains in corners is depicted in Fig. 3.

Figure 3. The gluing of four subdomains in adjacent corners.

More generally, we can split the equality constraints into two blocks BEP and

BED,

BE =

[
BEP

BED

]
,
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and use BEP to eliminate some primal variables. The constraint matrix BEP can

define not only gluing of some nodes but also more general relations between the

variables on neighbouring edges such as zero average of the sum of variables in the

interior of adjacent edges. The details of implementation are a bit tricky, but well

known, see e.g. Klawonn and Rheinbach [10], Lee [11], or Dostál et al. [4], Chap. 19.

In this way, we can implement a decomposition of Ω into clusters Ω̃i, i = 1, . . . , nc.

As a result, we shall obtain the H-TFETI problem to find

(2.5) min(12λ
TF̃ λ− d̃Tλ) subject to G̃λ = o and λI > o,

where

F̃ = B̃K̃+B̃T, K̃ = diag(K̃1, . . . , K̃nc), G̃ = R̃TB̃T, λ = [λT
ED, λT

I ]
T

and now denotes the Lagrange multipliers associated with the components enforcing

the inequality and remaining equality constraints of the modified problem described

by a matrix B̃, respectively. The preconditioning is carried out by a modified pro-

jector

P̃ = I − G̃(G̃TG̃)+G̃.

In the next sections, we shall show that it is possible, at least for small clusters,

to get similar optimality results for the solution of (2.5) as those reported above for

TFETI based algorithms for (2.3). Let us point out that there are better results

for TFETI and H-TFETI with standard preconditioners (see e.g. [13] or [14]), but

these results do not support optimality of algorithms for variational inequalities.

The reason is that there is no algorithm for the solution of quadratic programming

problems with general inequality constraints that enjoy the rate of convergence in

terms of conditioning of the Hessian.

3. Schur complements of clusters and general estimates

The condition number of F̃ can be estimated in two steps. The first one is a subject

of the following simple lemma.

Lemma 3.1. Let there be constants 0 < C1 < C2 such that for each λ ∈ R
m,

(3.1) C1‖λ‖
2 6 ‖B̃Tλ‖2 6 C2‖λ‖

2,

where ‖·‖ denotes the Euclidean norm. Then

(3.2) κ(P̃ F̃ P̃ ) 6
C2 max{‖K̃i‖ : i = 1, . . . , nc}

C1 min{λmin(K̃i) : i = 1, . . . , nc}
.
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P r o o f. The proof of this lemma is rather trivial; it uses only the observations

that if λ ∈ Im P̃ , then G̃Tλ = o, i.e. B̃Tλ ∈ ImK, that the nonzero eigenvalues of K̃

are reciprocal to the corresponding eigenvalues of K̃+, and that the spectrum σ(K̃)

of K̃ satisfies

σ(K̃) =

nc⋃

i=1

σ(K̃i).

�

However, the estimate given by Lemma 3.1 is a bit pessimistic. The reason is

that Im B̃ is spanned by the vectors that have zero components corresponding to

the variables in the interior of Ωi. To enhance this observation, let us define the

(extended) skeleton Σ of the decomposition by

Σ :=

ns⋃

i=1

Γi

and decompose the set of indices N = {1, . . . , n} into the indices of skeleton nodes

S and subdomain interior nodes I. For any matrix A ∈ R
m×n and the subsets

I ⊆ {i = 1, . . . ,m} and J ⊆ {j = 1, . . . , n}, let AIJ denote a submatrix of A with

the rows i ∈ I and j ∈ J . Then it is easy to check that

(K̃+)SS = S̃+, S̃ = K̃SS − K̃SIK̃
−1
II K̃IS .

Matrix S̃ is called the Schur complement of the block of subdomain interior variables.

The same formula holds for the clusters, i.e.

((K̃i)+)SiSi
= (S̃i)+, S̃i = K̃i

SiSi
− K̃i

SiIi
(K̃i

IiIi
)−1K̃i

IiSi
, i = 1, . . . , nc,

where Si and Ji denote the boundary and interior indices of the subdomains of

clusters, respectively. We can enhance these observations into the following corollary.

Corollary 3.1. Let the assumptions of Lemma 3.1 be satisfied. Then

(3.3) κ(P̃ F̃ P̃ ) 6
C2 max{‖S̃i‖ : i = 1, . . . , nc}

C1 min{λmin(S̃i) : i = 1, . . . , nc}
.

It is useful to observe that the local Schur complements S̃i are closely related

to the harmonic extensions of functions from the boundary of subdomains Ωi. In

particular, if

ui
h(x) =

∑

j∈Si

ui
jϕj(x)
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is a discrete harmonic function with the indices of the interior and boundary dis-

placements in Ii and Bi, respectively, so that

Ki
IiIi

(ui
h)Ii

+Ki
IiBi

(ui
h)Bi

= o,

then

(3.4) (ui
B)

TSiui
B = (ui)TKiui =

∫

Ωi

‖∇ui
h‖

2 dΩ.

A similar relation holds for the clusters and their skeletons. It follows that we can

bound the spectrum of F̃ by the analysis of Vh(Ω).

4. Gluing by corners

Let us consider a square subdomain Ωi of side length Hs with the discretization

introduced in Section 2 (see Fig. 2).

Theorem 4.1. Let uh ∈ Vh(Ωi) denote a discrete harmonic function, i.e.

∀ vh ∈ Vh(Ωi) ∩H1
0 (Ωi) :

∫

Ωi

∇uh · ∇vh dΩ = 0,

where the dot denotes the Euclidean scalar product in R
2. Then

(4.1)

∫

Ωi

‖∇uh‖
2 dΩ 6 3

∑

xk∈Γi

(uh(xk))
2

(we sum the squares of values of uh in all vertices of the triangles on the boundary

of Ωi).

P r o o f. Let ũh ∈ Vh(Ωi) be defined in the vertices of the triangles by

ũh(xk) :=

{
uh(xk), xk ∈ Γi,

0, xk ∈ Ωi \ Γi.

Let T be a triangle of a triangulation of Ωi with the vertices denoted by xi, xj , xk,

so that the right angle is at the vertex xk. Then

(4.2)

∫

T

‖∇ũh‖
2 dΩ = 1

2 [(ũh(xi)− ũh(xk))
2 + (ũh(xj)− ũh(xk))

2].

If

ũh(xi) 6= 0 6= ũh(xk) or ũh(xj) 6= 0 6= ũh(xk),
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then substituting of

(
ũh(xi)− ũh(xk)

)2
6 2

(
(ũh(xi))

2 + (ũh(xk))
2
)

or
(
ũh(xj)− ũh(xk)

)2
6 2

(
(ũh(xj))

2 + (ũh(xk))
2
)

into (4.2) yields

∫

Ωi

‖∇uh‖
2 dΩ 6

∫

Ωi

‖∇ũh‖
2 dΩ 6 3

∑

xk∈Γi

(ũh(xk))
2 = 3

∑

xk∈Γi

(uh(xk))
2.

�

Lemma 4.1. There exists a constant C > 0 independent of Hs and h such that

‖uh − uh‖
2
L∞(Ωi)

6 C
(
1 + ln

Hs

h

) ∫

Ωi

‖∇uh‖
2 dΩ

for every uh ∈ Vh(Ωi), where

uh =
1

H2
s

∫

Ωi

uh dΩ.

P r o o f. See [12], Corollary 3.2. �

Lemma 4.2. There exists a constant C > 0 independent of Hs and h such that

for every uh ∈ Vh(Ωi) and α ∈
[
min
x∈Ωi

uh(x), max
x∈Ωi

uh(x)
]

‖uh − α‖2L∞(Ωi)
6 C

(
1 + ln

Hs

h

) ∫

Ωi

‖∇uh‖
2 dΩ.

P r o o f. The proof is an easy consequence of Lemma 4.1, because

‖uh − α‖L∞(Ωi)
= max

{
max
x∈Ωi

uh(x)− α, α− min
x∈Ωi

uh(x)
}

6 max
x∈Ωi

uh(x)− min
x∈Ωi

uh(x)

6 2max
{
max
x∈Ωi

uh(x) − uh, uh − min
x∈Ωi

uh(x)
}

= 2‖uh − uh‖L∞(Ωi)
.

�
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To simplify the notation, let us now denote by Ω a cluster of four equal non-

overlapping square subdomains Ω1, . . . ,Ω4 of side length Hs, so that
4⋂

i=1

Ωi = {x0}

(see Fig. 4), and let Σ denote the skeleton of Ω. Define

Vh(Ω) := {uh = (u1
h, u

2
h, u

3
h, u

4
h) : ui

h ∈ Vh(Ωi)},
∫

Ω

‖∇uh‖
2 dΩ :=

4∑

i=1

∫

Ωi

‖∇ui
h‖

2 dΩ,

∑

xj∈Σ

(uh(xj))
2 :=

4∑

i=1

∑

xk∈Γi

(ui
h(xk))

2,

‖uh‖L∞(Ω) := max{‖u1
h‖L∞(Ω1), . . . , ‖u

4
h‖L∞(Ω4)},

max
x∈Ω

uh(x) := max
{
max
x∈Ω1

u1
h(x), . . . ,max

x∈Ω4

u4
h(x)

}
,

min
x∈Ω

uh(x) := min
{
min
x∈Ω1

u1
h(x), . . . , min

x∈Ω4

u4
h(x)

}
.

In this and the following section, we use simplified notations to improve readability.

The following theorem is the main result of this section.

h

Hs

Ω1Ω2

Ω3 Ω4

x0Hc

Figure 4. Cluster Ω joined in one point.

Theorem 4.2. The following statements are true for the cluster obtained by

gluing the subdomains in a corner.

(i) There exists a constant C > 0 independent of Hs and h such that

(
max
x∈Ω

uh(x)−min
x∈Ω

uh(x)
)2

6 C
(
1 + ln

Hs

h

)∫

Ω

‖∇uh‖
2 dΩ

for every uh ∈ Vh(Ω) which satisfies

u1
h(x0) = u2

h(x0) = u3
h(x0) = u4

h(x0).
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(ii) If uh satisfies also

∫

Σ

uh dΓ :=
4∑

i=1

∫

Γi

ui
h dΓ = 0,

then there exists a constant C > 0 independent of Hs and h such that

(4.3) C
h

Hs

(
1 + ln(Hs/h)

)
∑

xj∈Σ

(uh(xj))
2 6

∫

Ω

‖∇uh‖
2 dΩ.

P r o o f of Theorem 4.2. (i) Let i and j be such that

max
x∈Ω

uh(x) = max
x∈Ωi

ui
h(x) and min

x∈Ω
uh(x) = min

x∈Ωj

uj
h(x).

Using Lemma 4.2, we get

(
max
x∈Ω

uh(x) −min
x∈Ω

uh(x)
)2

=
((

max
x∈Ωi

ui
h(x) − α

)
+ (α− min

x∈Ωj

uj
h(x))

)2

6 2(‖ui
h − α‖L∞(Ωi))

2 + 2(‖uj
h − α‖L∞(Ωj))

2

6 C
(
1 + ln

Hs

h

)∫

Ω

‖∇uh‖
2 dΩ,

where

α := u1
h(x0) = u2

h(x0) = u3
h(x0) = u4

h(x0).

(ii) If
∫
Σ
uh dΓ = 0, it follows that

min
x∈Ω

uh(x) 6 0 6 max
x∈Ω

uh(x)

and therefore,

‖uh‖
2
L∞(Ω) 6

(
max
x∈Ω

uh(x)−min
x∈Ω

uh(x)
)2
.

Now it suffices to use (i) and

∑

xj∈Σ

(uh(xj))
2 6 16

Hs

h
‖uh‖

2
L∞(Ω).

�
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Applying (4.1) and (4.3) to the harmonic function uh satisfying
∫
Σ
uh dΓ = 0, we

get

(4.4)
C1h

Hs

(
1 + ln

Hs

h

)−1 ∑

xj∈Σ

(uh(xj))
2 6

∫

Ω

‖∇uh‖
2 6 3

∑

xj∈Σ

(uh(xj))
2.

Using the above inequalities, (3.4) and simple manipulations, we get the following

corollary.

Corollary 4.1. Let the assumption of Lemma 3.1 be satisfied. Then there are

constants C1 and C2 independent of Hs and h such that

(4.5) C1 6 λmin(P̃ F̃ P̃ ) 6 ‖P̃ F̃ P̃‖ 6 C2
Hs

h

(
1 + ln

Hs

h

)
.

R em a r k. If BBT = I, then (4.5) holds with C1 = 1/3.

The following example shows that we can neither exclude the term (1+ ln (/Hsh))

nor replace it with a term of lower order in inequality (4.3).

E x am p l e 4.1. Let us consider the domains

Ω1 = (0, Hs)× (0, Hs), Ω2 = (−Hs, 0)× (0, Hs),

Ω3 = (−Hs, 0)× (−Hs, 0), Ω4 = (0, Hs)× (−Hs, 0)

and uh = (u1
h, . . . , u

4
h) ∈ Vh(Ω) such that

u1
h(ih, jh) := ln(i+ j + 1) for i, j ∈

{
0, . . . ,

Hs

h

}
,

u2
h(x, y) := 0 for (x, y) ∈ Ω2,

u3
h(x, y) := − u1

h(−x,−y) for (x, y) ∈ Ω3,

u4
h(x, y) := 0 for (x, y) ∈ Ω4.

Then uh satisfies the assumptions of Theorem 4.2 and for every (admissible) h > 0

we have (for simplicity we denote m = Hs/h)

(4.6)
∑

xj∈Γ1

(u1
h(xj))

2
> ln2(m+ 1) + . . .+ ln2(2m+ 1) > m ln2 m.
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Moreover, using Lagrange’s Mean Value Theorem, we obtain for every h > 0

(4.7)

∫

Ω1

‖∇u1
h‖

2 dΩ =
m∑

i,j=1

[(ln(i+ j + 1)− ln(i + j))2 + (ln(i + j)− ln(i+ j − 1))2]

6

m∑

i,j=1

[ 1

(i+ j)2
+

1

(i+ j − 1)2

]
6 2

m∑

i,j=1

1

(i+ j − 1)2

6 2
∑

i,j∈N

i+j62m

1

(i+ j − 1)2
= 2

2m∑

k=2

(k − 1) ·
1

(k − 1)2
= 2

2m∑

k=2

1

k − 1

6 2(1 + ln(2m− 1)).

Combining (4.6) and (4.7), we obtain

∑
xj∈Σ(uh(xj))

2

Hsh−1
∫
Ω ‖∇uh‖2 dΩ

=
2
∑

xj∈Γ1
(u1

h(xj))
2

2Hsh−1
∫
Ω1

‖∇u1
h‖

2 dΩ
>

ln2 Hs/h

2(1 + ln(2Hs/h− 1))

≈
(
1 + ln

Hs

h

)
for h → 0 + .

5. Gluing by averages

Let us consider a square subdomain Ωi of side length Hs and let one of its sides

be denoted by Φ. We denote by x0, x1, . . . , xn the nodes of the discretization on Φ

with the discretization parameter h and set n = Hs/h as in Fig. 5. For uh ∈ Vh(Ωi)

we denote the average value in the interior of Φ by

pΦ(uh) :=
uh(x1) + uh(x2) + . . .+ uh(xn−1)

n− 1
.

h

Hs

x0 x1 x2
. . . xn−1 xn

Φ

Figure 5. A subdomain with nodes on one side.
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Lemma 5.1. Let Hs = 1. Then there exists a constant C > 0 independent of h

such that for every uh ∈ Vh(Ωi)

∫

Γi

(uh)
2 dΓ 6 C

(∫

Ωi

‖∇uh‖
2 dΩ + p2Φ(uh)

)
.

P r o o f. First notice that due to the definition of pΦ(uh) and the triangle inequal-

ity,

(uh(xk)− pΦ(uh))
2
6

(
max

j∈{1,...,n−1}
|uh(xk)− uh(xj)|

)2
6

( n∑

i=1

|uh(xi)− uh(xi−1)|

)2

6 n

n∑

i=1

(uh(xi)− uh(xi−1))
2 6 2n

∫

Ωi

‖∇uh‖
2 dΩ.

It follows that

(∫

Φ

uh dΓ

)2
= h2

(
1
2uh(x0) + uh(x1) + uh(x2) + . . .+ uh(xn−1)︸ ︷︷ ︸

=(n−1)pΦ(uh)

+ 1
2uh(xn)

)2

= h2(12 (uh(x0)− pΦ(uh)) +
1
2 (uh(xn)− pΦ(uh)) + npΦ(uh))

2

6 3h2(14 (uh(x0)− pΦ(uh))
2 + 1

4 (uh(xn)− pΦ(uh))
2 + n2p2Φ(uh))

6 3h2

(
n

∫

Ωi

‖∇uh‖
2 dΩ + n2p2Φ(uh)

)
6 3

(∫

Ωi

‖∇uh‖
2 dΩ + p2Φ(uh)

)
,

i.e.

(5.1)

(∫

Φ

uh dΓ

)2
6 3

(∫

Ωi

‖∇uh‖
2 dΩ + p2Φ(uh)

)
.

The remaining part of the proof is a direct consequence of the Poincaré inequality,

the trace theorem and formula (5.1):

∫

Γi

(uh)
2 dΓ 6 C1‖uh‖

2
H1(Ωi)

6 C2

(∫

Ωi

‖∇uh‖
2 dΩ +

(∫

Φ

uh dΓ

)2)

6 C

(∫

Ωi

‖∇uh‖
2 dΩ + p2Φ(uh)

)
.

�
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Now we again consider a cluster Ω comprising four equal square subdomains

Ω1, . . . ,Ω4 of side Hs such that
4⋂

i=1

Ωi = {x0} (as in Fig. 4),

Vh(Ω) := {uh = (u1
h, u

2
h, u

3
h, u

4
h) : ui

h ∈ Vh(Ωi)},

and denote Φi,j = Ωi ∩ Ωj .

Theorem 5.1. There exists a constant C > 0 independent of Hs and h such that

for every uh ∈ Vh(Ω) which satisfies

∫

Σ

uh dΓ :=

4∑

i=1

∫

Γi

ui
h dΓ = 0

and for every Φi,j ∈ {Φ2,3,Φ3,4,Φ1,4} which satisfies

pΦi,j
(ui

h) = pΦi,j
(uj

h)

we have ∫

Σ

(uh)
2 dΓ 6 CHs

∫

Ω

‖∇uh‖
2 dΩ.

Corollary 5.1. Under the above assumptions there is a constant C > 0 indepen-

dent of Hs and h such that

(5.2) C
h

Hs

∑

xj∈Σ

(uh(xj))
2 6

∫

Ω

‖∇uh‖
2 dΩ.

P r o o f of Theorem 5.1. First assume that Hs = 1 (the general case can be

directly obtained using the substitution x = Hsy). If vh = (v1h, v
2
h, v

3
h, v

4
h) ∈ Vh(Ω)

and pΦi,j
(vih) = pΦi,j

(vjh) for Φi,j ∈ {Φ2,3,Φ3,4,Φ1,4}, then by Lemma 5.1

p2Φi,j
(vih) =

(vjh(x1) + vjh(x2) + . . .+ vjh(xn−1)

n− 1

)2

6
1

n− 1

(
(vjh(x1))

2 + (vjh(x2))
2 + . . .+ (vjh(xn−1))

2
)

6
3

h(n− 1)

∫

Γj

(vjh)
2 dΓ 6

6

hn

∫

Γj

(vjh)
2 dΓ = 6

∫

Γj

(vjh)
2 dΓ

6 C1

(∫

Ωj

‖∇vjh‖
2 dΩ + p2Φ3,4

(v3h)

)
,

713



and therefore also

∫

Σ

(vh)
2 dΓ 6 C2

(∫

Ω1

‖∇v1h‖
2 dΩ + p2Φ1,4

(v1h) +

∫

Ω2

‖∇v2h‖
2 dΩ + p2Φ2,3

(v2h)

+

∫

Ω3

‖∇v3h‖
2 dΩ + p2Φ3,4

(v3h) +

∫

Ω4

‖∇v4h‖
2 dΩ + p2Φ3,4

(v4h)

)

6 C

(∫

Ω

‖∇vh‖
2 dΩ + p2Φ3,4

(v3h)

)
.

To finish the proof it is enough to choose vh := uh − pΦ3,4
(u3

h) and notice that

∫

Σ

(vh)
2 dΓ >

∫

Σ

(uh)
2 dΓ− 2pΦ3,4

(u3
h)

∫

Σ

uh dΓ

︸ ︷︷ ︸
=0

=

∫

Σ

(uh)
2 dΓ,

∫

Ω

‖∇vh‖
2 dΩ =

∫

Ω

‖∇uh‖
2 dΩ, p2Φ3,4

(v3h) = 0.

�

Applying (5.2) and (4.1) to the harmonic function uh, we get

(5.3) C1
h

Hs

∑

xj∈Σ

(uh(xj))
2
6

∫

Ω

‖∇uh‖
2
6 3

∑

xj∈Σ

(uh(xj))
2.

Using the above inequalities, (3.4) and simple manipulations, we get the following

corollary.

Corollary 5.2. Let the assumption of Lemma 3.1 be satisfied. Then there are

constants C1 and C2 independent of Hs and h such that

(5.4) C1 6 λmin(P̃ F̃ P̃ ) 6 ‖P̃ F̃ P̃‖ 6 C2
Hs

h
.
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6. Numerical experiments

To compare our estimate with the specific values, we computed the bounds on

the nonzero eigenvalues of the Schur complement of 2 × 2 clusters with Hs = 1/4,

Hc = 1/2, and varying discretization parameter h. We considered clusters obtained

by gluing corners and edge averages. To compute the averages, the variables of each

edge were transformed using the transformation matrix, see [10]. The results are in

Table 1 and in Fig. 6.

HS/h
0 5 10 15 20 25 30

κ(S)

0

50

100

150

200

250

300

350

400

450
2× 2 subdomains

Figure 6. Regular condition number κ(S̃) for 2 × 2 subdomains and changing Hs/h:
dark lower graph-averages, light upper graph-corners, dotted lines-fitted bounds
O(Hs/h) and O((1 + log(Hs/h))Hs/h).

Averages Corners

Hs/h κ(S) λmax λmin κ(S) λmax λmin

5 22.0798 2.6720 0.1210 38.3458 2.6720 0.0697

11 48.2900 2.7904 0.0578 118.8414 2.7904 0.0235

17 74.5157 2.8118 0.0377 211.3836 2.8118 0.0133

23 100.7273 2.8191 0.0280 311.3911 2.8191 0.0091

29 126.9323 2.8225 0.0222 416.8811 2.8225 0.0068

Table 1. Effective condition numbers and extremal eigenvalues for changing Hs/h and 2×2
subdomains.

The results are in agreement with the theoretical results, in particular, it is possible

to observe the nonlinear effect in the estimates for the clusters glued in corners. To

illustrate the conditioning of larger clusters, we carried out the computations also
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for 4 × 4 clusters (see Fig. 7 and Table 2). The results indicate fast deterioration

of the regular condition number for the clusters glued by corners, but promising

results for the clusters glued by averages. In the latter case, the condition number

increased (as compared with 2 × 2 cluster) by some sixty percent, which indicates

that improved parallelization may be very effective.

HS/h
0 5 10 15 20 25

κ(S)

0

200

400

600

800

1000

1200
4× 4 subdomains

Figure 7. Effective condition number κ(S) for 4 × 4 subdomains and changing Hs/h:
dark lower graph-averages, light upper graph-corners, dotted lines-fitted bounds
O(Hs/h) and O((1 + log(Hs/h))Hs/h).

Averages Corners

Hs/h κ(S) λmax λmin κ(S) λmax λmin

5 51.418 2.672 0.052 136.633 2.672 0.020

11 102.526 2.790 0.027 442.471 2.790 0.006

17 153.916 2.812 0.018 793.049 2.812 0.004

23 205.364 2.819 0.014 1170.667 2.819 0.002

Table 2. Effective condition numbers and extremal eigenvalues for changing Hs/h and 4×4
subdomains.

It seems that H-TFETI without preconditioners can be very effective method for

the nonlinear problems but more research is necessary.
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7. Conclusions

We have established bounds on the regular condition number of the Schur com-

plements of floating 2 × 2 clusters arising from gluing the subdomains in nodes and

averages. In the first case, we showed that our estimates cannot be qualitatively im-

proved. We considered the Schur complements of the stiffness matrices arising from

the discretization of problems governed by the Laplace operator. The research was

motivated by the effort to understand massively parallel H-TFETI algorithms for the

solution of elliptic problems described by variational inequalities which have already

proved to be effective for the problems discretized by billions of nodal variables [4].

It seems that the application of H-TFETI can overcome the bottleneck of TFETI

associated with the dimension of the coarse grid and can increase the scalability from

the current tens of thousands of cores to hundreds of thousands of cores.
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