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K Y B E R N E T I K A — V O L U M E 5 3 ( 2 0 1 7 ) , N U M B E R 6 , P A G E S 1 1 1 8 – 1 1 3 0

NILPOTENT APPROXIMATION OF A TRIDENT SNAKE
ROBOT CONTROLLING DISTRIBUTION

Jaroslav Hrdina, Radomil Matoušek, Aleš Návrat and Petr Vaš́ık

We construct a privileged system of coordinates with respect to the controlling distribution of
a trident snake robot and, furthermore, we construct a nilpotent approximation with respect to
the given filtration. Note that all constructions are local in the neighbourhood of a particular
point. We compare the motions corresponding to the Lie bracket of the original controlling
vector fields and their nilpotent approximation.

Keywords: robotic snake, local control, nilpotent approximation
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1. INTRODUCTION

Within this paper, we consider a trident snake robot moving on a planar surface. More
precisely, it is a model when to each vertex of an equilateral triangle a leg of length
1 is attached that is endowed with a pair of passive wheels at its end. The joints of
the legs to the triangle platform are motorised and thus the possible motion directions
are determined uniquely. Local controllability of such mechanism is known, see [7].
Furthermore, some generalized algorithms for motion control of a nonholonomic systems
have been elaborated, see e. g. [10, 11] or [4], for introduction into the topic see [13] or
[20]. If the generalized coordinates are considered, the nonholonomic forward kinematic
equations can be understood as a Pfaff system and its solution as a submanifold in the
configuration space on which the pullback of the defining differential forms vanishes.
Rachevsky–Chow Theorem implies that the appropriate nonholonomic system is locally
controllable if the corresponding distribution is maximally nonintegrable in the sense
that it is not integrable and the Lie algebra generated by taking Lie brackets of the
vectors fields from the controlling distribution has to be of the same dimension as the
configuration space. The spanned Lie algebra is then naturally endowed with a filtration
which shows the way to realize the motions by means of the vector field brackets [15, 19].
In our case, the system is locally controllable and the filtration is (3, 6). Note that a
motion planning of nonholonomic mechanisms ia an actual topic, see e. g. [14] for one
possible approach.

In order to simplify the trident snake robot control, in Section 5 we construct a privi-
leged system of coordinates with respect to the distribution given by local nonholonomic
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conditions and, furthermore, in Section 6 we construct a nilpotent approximation of the
transformed distribution with respect to the given filtration. Note that all constructions
are local in the neighbourhood of 0.

Finally, we compare the motions generated by the Lie brackets of the original con-
trolling vector fields and their nilpotent approximation. The accuracy is demonstrated
by simulations in MATLAB.

2. PRELIMINARIES

We recall the following concepts of functions or vector fields orders and distribution
weights, see [12]. Let us denote by X1, . . . , Xm smooth vector fields on a manifold M
and by C∞(p) the set of germs of smooth functions at p ∈ M . For f ∈ C∞(p) we
say that the Lie derivatives Xif,XiXjf, . . . are nonholonomic derivatives of f of order
1,2,. . . The nonholonomic derivative of order 0 of f at p is f(p).

Definition 2.1. Let f ∈ C∞(p). Then the nonholonomic order of f at p, denoted by
ordp(f), is the biggest integer k such that all nonholonomic derivatives of f of order
smaller than k vanish at p.

Note that in case M = Rn, m = n and Xi = ∂xi
, for a smooth function f , ord0(f) is

the smallest degree of monomials having nonzero coefficient in the Taylor series. In the
language of nonholonomic derivatives, the order of a smooth function is given by the
formula, [12]:

ordp(f) = min
{
s ∈ N : ∃i1, . . . , is ∈ {1, . . . ,m} s.t. (Xi1 · · ·Xisf)(p) 6= 0

}
,

where the convention reads that min ∅ =∞.
If we denote by VF(p) the set of germs of smooth vector fields at p ∈M , the notion

of nonholonomic order extends to the vector fields as follows:

Definition 2.2. Let X ∈ VF(p). The nonholonomic order of X at p, denoted by
ordp(X), is a real number defined by:

ordp(X) = sup
{
σ ∈ R : ordp(Xf) ≥ σ + ordp(f),∀f ∈ C∞(p)

}
.

Note that ordp(X) ∈ Z. Moreover, the null vector field X ≡ 0 has infinite order,
ordp(0) =∞. Furthermore, X1, . . . , Xm are of order ≥ −1, [Xi, Xj ] of order ≥ −2, etc.

Using the notion of a vector field order one can define

Definition 2.3. A family of m vector fields (X̂1, . . . , X̂m) defined near p is called a first
order approximation of (X1, . . . , Xm) at p if the vector fields Xi − X̂i, i = 1, . . . ,m are
of order ≥ 0 at p.

Finally, to define the weights of distributions we use the same notation as in [12]. Let
us by ∆1 denote the distribution

∆1 = span{X1, . . . , Xm}
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and for s ≥ 1 define
∆s+1 = ∆s + [∆1, ∆s],

where [∆1, ∆s] = span{[X,Y ] : X ∈ ∆1, Y ∈ ∆s}. Note that this directly leads to the
fact that every X ∈ ∆s is of order ≥ −s. Now let us consider the sequence

∆1(p) ⊂ ∆2(p) ⊂ · · · ⊂ ∆r−1  ∆r(p) = TpM,

where r = r(p) is called the degree of nonholonomy at p. Set ni(p) = dim∆i(p). Then
we can define the weights at p, wi = wi(p), i = 1, . . . , n = nr(p) by setting wj = s if
ns−1(p) < j ≤ ns(p), where n0 = 0. In other words, we have

w1 = · · · = wn1 = 1, wn1+1 = · · · = wn2 = 2, . . . , wnr−1+1 = · · · = wnr
= r.

The weights at p form an increasing sequence w1(p) ≤ · · · ≤ wn(p).

3. TRIDENT SNAKE ROBOT

The mechanism of the trident snake robot was introduced in [7]. It consists of a body in
the shape of an equilateral triangle with circumscribed circle of radius r and three rigid
links (also called legs) of constant length l connected to the vertices of the triangular
body by three motorised joints. In this paper, we consider r = 1 and l = 1 although
an arbitrary number of links can be attached. For an efficient tool for more extensive
robots in the form of conformal geometric algebra we refer to [5, 6] or [16]. To each free
link end, a pair of passive wheels is attached to provide an important snake-like property
that the ground friction in the direction perpendicular to the link is considerably higher
than the friction of a simple forward move. In particular, this prevents slipping sideways.
To describe the actual position of a trident snake robot we need the set of 6 generalized
coordinates

q = (x, y, θ, φ1, φ2.φ3) =: (x1, x2, x3, x4, x5, x6)

as shown in Figure 1. Hence the configuration space is (a subspace of) R2×S1× (S1)3.
Note that a fixed coordinate system (x, y) is attached. For further studies of more
complicated trident snake robots see e. g. [8], for the description of the dynamics see
[18].

4. LOCAL CONTROLLABILITY AND COORDINATE SYSTEMS

Local controllability of such robot is given by the appropriate Pfaff system of ODEs. To
find more details about the connection between dynamical system and geometric control
theory we refer to e. g. [2]. According to [7], the appropriate nonholonomic constraints
give a control system q̇ = Gµ, where the control matrix G is a 6× 3 matrix spanned by
vector fields g1, g2, g3, where

g1 = cos θ∂x + sin θ∂y + sinφ1∂φ1 + sin(φ2 + 2π
3 )∂φ2 + sin(φ3 + 4π

3 )∂φ3 ,

g2 = − sin θ∂x + cos θ∂y − cosφ1∂φ1 − cos(φ2 + 2π
3 )∂φ2 − cos(φ3 + 4π

3 )∂φ3 ,

g3 = ∂θ − (1 + cosφ1)∂φ1 − (1 + cosφ2)∂φ2 − (1 + cosφ3)∂φ3 .
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Fig. 1: Trident snake robot model.

Note that the parametrizations can vary by setting the angles within the triangular
platform either 2π

3 and 4π
3 or 2π

3 and − 2π
3 , etc. It is easy to check that in regular points

these vector fields define a (bracket generating) distribution with growth vector (3, 6).
It means that in each regular point the vector fields g1, g2, g3 together with their Lie
brackets span the whole tangent space. Consequently, the system is controllable by
Chow–Rashevsky theorem.

Let us decompose the control system in such way that the spatial coordinates w :=
(x, y, θ) = (x1, x2, x3) are parametrized by the angles φ := (φ1, φ2.φ3) = (x4, x5, x6),
and, furthermore, the invariant parameter θ is excluded, i. e. it is of the form

A(φ)RTθ ẇ = φ̇, (1)

where

RTθ =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1


is the matrix of rotation by the angle θ, see [9]. If the spatial coordinate transformation

v = (A(φ))−1φ̇ (2)

is considered, we modify the system (1) and obtain

ẇ = Rθ(A(φ))−1φ̇ = Rθv.
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Consequently, the Lie algebra generating vector fields g1, g2, g3 are transformed as fol-
lows:

g1 = ∂x1 + sin(x4 − 2π
3 )∂x4 + sin(x5)∂x5 + sin(x6 + 2π

3 )∂x6 ,

g2 = ∂x2 − cos(x4 − 2π
3 )∂x4 − cos(x5)∂x5 − cos(x6 + 2π

3 )∂x6 ,

g3 = ∂x3 − (1 + cos(x4))∂x4 − (1 + cos(x5))∂x5 − (1 + cos(x6))∂x6 .

(3)

We shall use this form for the sake of simplicity. Furthermore, to demonstrate the effects
of the Lie algebra motions, we calculate the vector fields given by the Lie brackets of
g1, g2, g3 evaluated at 0 and denote them by g4 = [g1, g2], g5 = [g2, g3] and g6 = [g1, g3].
Their coordinate form with respect to the system (2) is the following:

g4 = ∂x4 + ∂x5 + ∂x6,

g5 =
√

3∂x5 −
√

3∂x6,

g6 = 2∂x4 − ∂x5 − ∂x6.

(4)

Following [7] we demonstrate the motions which approximate the Lie brackets mo-
tions. By the Lie bracket motions we mean motions generated by g4, g5, g6 which are
not in the distribution and thus not allowed. Further details of the Lie bracket exact
realizations are described in Section 7 and can be found in [7]. The following figures
show the trajectories of the root centre point, vertices and wheels when a particular
Lie bracket motion is realized. Note that the trajectories on Figure 2 read that the
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Fig. 2: Realization of g4 motion.

root stays put and the angles represented by the coordinates x4, x5, x6 change, which
is obvious from approximately equal dislocation of the wheel points at the end of the
motion. Considering the vector field g4 at 0 one finds that the angles should change
proportionally to 1:1:1. Similarly, Figure 3 demonstrates the Lie bracket g5 motion and
clearly the trajectories represent the effect that the root moves along the x–axis and the
angles change proportionally to 1:0:-1. Finally, Figure 4 shows g6 realization which reads
that the root moves along the y–axis and the angles change proportionally to -2:1:1.
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Fig. 3: Realization of g5 motion.
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Fig. 4: Realization of g6 motion.

5. PRIVILEGED COORDINATES

A general definition of privileged coordinates is the following, [12], taking into account
the notation from Section 2.

Definition 5.1. A system of privileged coordinates at p is a system of local coordinates
(y1, . . . , yn) such that ordp(yj) = wj for j = 1, . . . , n.

In our case the configuration space of the trident snake robot is a 6–dimensional
manifold M with the coordinate functions denoted by

(x, y, θ, φ1, φ2, φ3) =: (x1, x2, x3, x4, x5, x6).

Let the basis of vector space TpM be denoted by

(∂x1 , ∂x2 , ∂x3 , ∂x4 , ∂x5 , ∂x6),

and let us consider three vector fields g1, g2, g3 in the form (3) which determine a distri-
bution in TM, and we add their Lie brackets g4, g5, g6, see (4). Note that this establishes
a filtration of type (3, 6) on TM. The first question is what is the exact form of a coor-
dinate transformation x := (x1, x2, x3, x4, x5, x6)  (y1, y2, y3, y4, y5, y6) =: y such that
the condition

∂

∂yi
|p= gi |p, i = 1, . . . , 6 (5)

holds in p ∈M. Let us denote by [gik]y the ith coordinate of vector gk in the coordinate
system y and by ei a 6–dimensional vector with coordinates eij = 0 for i 6= j and eij = 1
for i = j, i, j ∈ {1, . . . , 6}. Then e. g. [g1

1 ]x = 1, [g2
1 ]x = 0, [g3

1 ]x = 0, [g4
1 ]x = sin(x3 +

x6) etc. and the condition (5) reads [gi]y = ei. Employing the Einstein summation
convention, i. e. summing over j ranging from 1 to 6, the transformation law for vector
fields under the coordinate change x y reads[

gik
]
y

=
∂yi
∂xj

[
gjk

]
x
.
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Particularly, in the vector form we have

ei = [gi]y =



∂y1
∂xj

[
gji

]
x

∂y2
∂xj

[
gji

]
x

...
∂y6
∂xj

[
gji

]
x

 .

Evaluating all functions at an arbitrary point p, for sake of simplicity we choose the
point p = (0, 0, 0, 0, 0, 0), we get a system of 36 linear PDEs with respect to ∂yi

∂xj
with

constant coefficients. We split the system into 6 groups, each containing 6 equations for
a particular yi, determine the inverse matrix and continue by integration. Clearly, at an
arbitrary p ∈ M the desired transformation x  y will be linear, in our case it will be
given by 

y1
y2
y3
y4
y5
y6

 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0√
3

2
1
2 −2 1 −1

√
3

0 −1 −2 1 2 0
−
√

3
2

1
2 −2 1 −1 −

√
3




x1

x2

x3

x4

x5

x6

 . (6)

The coordinates y = (y1, y2, y3, y4, y5, y6) are clearly the privileged ones.

6. NILPOTENT APPROXIMATION

We proceed according to Belläıche’s algorithm. To find further details about nilpotent
approximations in full generality we refer to [3, 21] while another type of approximation
of a nonholonomic system can be found in [1]. To find a computation of a nilpotent
approximation of a robotic snake model we refer to [17]. Note that in the sequel we use
the first two steps only due to the fact that in our filtration (3,6) of TpM the weights
at p are 1 and 2 and thus no further modification of the coordinate system is needed,
see [12] for a detailed explanation and proof. Let us consider the vector fields g1, g2, g3
from Section 5 expressed in the privileged coordinate system y = (y1, y2, y3, y4, y5, y6).

Vector fields gi are of order ≥ −1 and thus generally their Taylor expansion is of the
form:

gi(y) ∼
∑
α,j

aα,jy
α∂yj ,

where α = (α1, . . . , αn) is a multiindex. Furthermore, if we define a weighted degree of
the monomial yα = yα1

1 · · · yαn
n to be w(α) = w1α1 + · · ·wnαn, then w(α) ≥ wj − 1 if

aα,j 6= 0. Recall that wj = ordp(yj) from Definition 5.1 and in our particular case the
coordinate weights are (1, 1, 1, 2, 2, 2). Grouping together the monomial vector fields of
the same weighted degree we express gi, i = 1, 2, 3 as a series

gi = g
(−1)
i + g

(0)
i + g

(1)
i + · · · ,
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where g(s)
i is a homogeneous vector field of degree s. Note that this means that the

∂y1 , ∂y2 and ∂y3 coordinate functions of g(−1)
1 , g

(−1)
2 and g

(−1)
3 are formed by constants

and the ∂y4 , ∂y5 and ∂y6 coordinate functions are linear polynomials in y1, y2, y3. Then
the following proposition holds, [12]:

Proposition 6.1. Set ĝi = g
(−1)
i , i = 1, 2, 3. The family of vector fields {ĝ1, ĝ2, ĝ3} is

a first order approximation of {g1, g2, g3} at 0 and generates a nilpotent Lie algebra of
step r = 1, i. e. all brackets of length greater than 1 are zero.

P r o o f . In our case in coordinate form given by (6), we obtain the following vector
fields:

ĝ1 = ∂y1 −
y2
2
∂y4 + (−y2

2
− y3)∂y5 −

y1
2
∂y6 ,

ĝ2 = ∂y2 +
y1
2
∂y4 −

y1
2
∂y5 + (

y2
2
− y3)∂y6 ,

ĝ3 = ∂y3 .

Note that due to linearity of the three latter coordinates of {ĝ1, ĝ2, ĝ3}, the coordinates
of their Lie brackets {ĝ4, ĝ5, ĝ6} must be constant. Indeed, we get

ĝ4 = ∂y4

ĝ5 = ∂y5

ĝ6 = ∂y6

and the nilpotency is obvious. It is also easy to see that the value in 0 coincides with the
columns of matrix in (6) and thus the family {ĝ1, ĝ2, ĝ3} is the nilpotent approximation
of {g1, g2, g3} at 0. �

7. LIE BRACKET MOTION EFFECTS

In the following, we compare the effect of the Lie bracket motions in the original coor-
dinate system and in the nilpotent approximation. To do so we follow the structure of
[7], yet to compare the vector fields in the same coordinate system, the inverse transfor-
mation must be applied first and the evaluation of the vector fields effects must be done
consequently. Note that the vector fields {ĝ1, ĝ2, ĝ3, ĝ4, ĝ5, ĝ6} in (x1, x2, x3, x4, x5, x6)
coordinates are of the form

ĝ1 = ∂x1 − (x2 + x3)∂x4 − (
√

3x1
4 + x2

4 −
x3
2 −

√
3

2 )∂x5+

+ (
√

3x1
2 − x2

4 + x3
2 −

√
3

2 )∂x6 ,

ĝ2 = ∂x2 − ∂x4 + ( 3x1
4 +

√
3x2
4 −

√
3x3
2 + 1

2 )∂x5 + ( 3x1
4 −

√
3x2
4 +

√
3x3
2 + 1

2 )∂x6 ,

ĝ3 = ∂x3 − 2∂x4 − 2∂x5 − 2∂x6

ĝ4 = ∂x4 + ∂x5 + ∂x6 ,

ĝ5 = −
√

3
2 ∂x5 +

√
3

2 ∂x6 ,

ĝ6 = −∂x3 + 1
2∂x5 + 1

2∂x6 .
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Note that the Lie bracket motions at 0 correspond exactly to the original ones. Any-
way, to perform the Lie bracket motions we apply a periodic input, i. e. for the vector
fields ĝ4 = [ĝ1, ĝ2], ĝ5 = [ĝ1, ĝ3], ĝ6 = [ĝ2, ĝ3], respectively, the input

v1(t) = (−Aω sinωt,Aω cosωt, 0) (7)
v2(t) = (0,−Aω sinωt,Aω cosωt) (8)
v3(t) = (−Aω sinωt, 0, Aω cosωt) (9)

is applied, because, according to [7], the Lie bracket of a pair of vector fields corresponds
to the direction of a displacement in the state space as a result of a periodic input
with sufficiently small amplitude A, i. e. the bracket motions are generated by periodic
combination of the vector controlling fields. In Figure 5, there is a comparison of the
g4 motion realized by the periodic input in x1, . . . , x6 coordinates (dotted line) and in
nilpotent approximation for A = 0.35 and ω = 2π/100.
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Fig. 5: Comparison of g4 motions.

Figure 6 and 7 show the comparison of g5 and g6 motions, respectively. Note that
the lines represent the trajectories of the appropriate wheel and thus the accuracy of
the motion in real space is pictured.

Figures 8, 9 and 10 display the comparison of the shape angles x1, x2, x3 during g4, g5
and g6 motions, respectively. Figures 11, 12 and 13 show the maximal difference between
the shape angles of the robot controlled by the original vector fields and their nilpotent
approximation during g4, g5 and g6 motions, respectively.

The following table shows the dependence of the maximal deviation of x1, x2, x3 on
the amplitude A during g4 motions.

A 0.15 0.25 0.35 0.45 0.55
x4 0.01 0.06 0.18 0.43 0.86
x5 0.01 0.06 0.18 0.41 0.72
x6 0.01 0.04 0.10 0.21 0.36
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Fig. 6: Comparison of g5 motions.
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Fig. 7: Comparison of g6 motions.

Fig. 8: Comparison of x1, x2, x3 during
g4 motion.

Fig. 9: Comparison of x1, x2, x3 during
g5 motion.

8. CONCLUSIONS

We presented a calculation of a nilpotent approximation of the family of vector fields
corresponding to the controlling distribution of a trident snake robot. Such an approx-
imation is valuable not only for the calculational complexity reasons but also from the
theoretical point of view as the nilpotency simplifies the model for further theoretical
considerations significantly. We showed that even from the practical point of view this
approximation is good as the deviation from the exact model control is minimal. More
precisely, we checked that at 0 the Lie brackets of the original controlling vector fields
and of the approximated ones coincide and, furthermore, if their realization by the peri-
odic input is considered, the deviations depicted in Figures 5, 6, 7 are minimal. Finally
let us claim that the error in control leads to the violation of the nonholonomic con-
ditions and thus the wheels slip a bit, yet the benefits of the nilpotent approximation
prevail.
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Fig. 10: Comparison of x1, x2, x3 dur-
ing g6 motion.

Fig. 11: Deviation of x1, x2, x3 during
g4 motion.

Fig. 12: Deviation of x1, x2, x3 during
g5 motion.

Fig. 13: Deviation of x1, x2, x3 during
g6 motion.
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