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KYBER NET IKA — VOLUM E 5 3 ( 2 0 1 7 ) , NUMBE R 5 , P AGES 8 6 8 – 8 7 6

WATSON–CRICK PUSHDOWN AUTOMATA

Kingshuk Chatterjee and Kumar S. Ray

A multi-head 1-way pushdown automaton with k heads is a pushdown automaton with k
1-way read heads on the input tape and a stack. It was previously shown that the deter-
ministic variant of the model cannot accept all the context free languages. In this paper, we
introduce a 2-tape, 2-head model namely Watson-Crick pushdown automata where the content
of the second tape is determined using a complementarity relation, similar to Watson–Crick
automata. We show computational powers of nondeterministic two-head pushdown automata
and nondeterministic Watson–Crick pushdown automata are same. Moreover, deterministic
Watson–Crick pushdown automata can accept all the context free languages.

Keywords: deterministic Watson–Crick automata, deterministic Watson–Crick pushdown
automata, deterministic multi-head pushdown automata, context free lan-
guages

Classification: 68Q45, 68Q10

1. INTRODUCTION

The first significant study on multi-head pushdown automata was done by Harrison
et al. [6]. Later Chrobak et al. [2] proved that there are languages accepted by (k + 1)-
head 1-way deterministic pushdown automata but not by k-head 1-way nondeterministic
pushdown automata, for every k which was conjectured in [6]. They also gave some
significant results regarding multi-head deterministic pushdown automata. One of the
important results is that there exists a context free language not accepted by any multi-
head deterministic pushdown automaton. A two head pushdown automaton model was
also introduced by Samson [12] but in Samson’s model the two heads move from the two
opposite sides, Nagy did detailed analysis of Samson’s model in [8].

A Watson–Crick automaton [5] is a finite automaton having two independent heads
working on double strands where the characters on the corresponding positions of the
two strands are connected by a complementarity relation similar to the Watson–Crick
complementarity relation. The movement of the heads although independent of each
other is controlled by a single state. Nondeterministic Watson–Crick automata and their
properties were discussed in [10]. Deterministic Watson–Crick automata were introduced
by Czeizler et al. [4]. Czeizler et al. [3] also carried out a detailed survey on Watson–
Crick automata. The State complexity of Watson–Crick automata was reported in [9]
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and [11]. Chatterjee et al. introduced reversible Watson–Crick automata and discussed
their properties in [1].

In this paper, we introduce Watson–Crick pushdown automata by equipping Watson–
Crick finite automata with stack (See Section 3). We show that the introduction of
the DNA properties (two tapes where the content of the second tape is determined
by a complementarity relation) in the nondeterministic model does not increase the
computational power of the model with respect to traditional nondeterministic two-head
pushdown automata, but, deterministic Watson–Crick pushdown automata exploit the
complementarity relation property of Watson–Crick automata to accept all the context
free languages (See Section 4). The results show that addition of DNA complementarity
property to traditional multi-head nondeterministic pushdown automaton has no impact
on its computational power but in case of the restricted models (such as deterministic
model) the computational power increases significantly.

2. BASIC DEFINITIONS

The symbol V is a finite nonempty set of abstract symbols (alphabet). The set of all
finite words over V is denoted by V ∗, which includes the empty word λ. The symbol
V + = V ∗ \{λ} denotes the set of all non-empty words over the alphabet V . For w ∈ V ∗,
the length of w is denoted by |w|. Let u ∈ V ∗ and v ∈ V ∗ be two words and if there is
some word x ∈ V ∗ such that v = ux, then u is a prefix of v, denoted by u ≤ v. Two
words, u and v are prefix comparable, denoted by u ∼p v if u is a prefix of v or vice versa.
Now, let ρ ⊆ V × V be a symmetric relation, called the Watson–Crick complementarity

relation on V . The symbol
[
V
V

]
ρ

={
[
a
b

]
|a, b ∈ V, (a, b) ∈ ρ} and WKρ(V )=

[
V
V

]∗
ρ

denotes

the Watson–Crick domain associated with V and ρ. The symbol
(
w1

w2

)
is just a pair of

strings written in that form instead of (w1, w2) and the symbol
[
w1

w2

]
denotes that the

two strands are of same length i. e. |w1| = |w2| and the corresponding symbols in two
strands are complementary in the sense given by the relation ρ.

2.1. Nondeterministic Watson–Crick automata

A Watson–Crick automaton is a 6-tuple of the form M = (V, ρ,Q, q0, F, δ) where V
is an input alphabet, set of states is denoted by Q, ρ ⊆ V × V is the Watson–Crick
complementarity relation, q0 is the initial state and F ⊆ Q is the set of final states. δ

contains a finite number of transition rules of the form q

(
w1

w2

)
→ q′, which denotes that

the machine in state q parses w1 in upper strand and w2 in lower strand and goes to
state q′ where w1, w2 ∈ V ∗. A transition in a Watson–Crick finite automaton can be

defined as follows: For
(
x1

x2

)
,

(
u1

u2

)
,

(
w1

w2

)
∈

(
V ∗

V ∗

)
such that

[
x1u1w1

x2u2w2

]
∈ WKρ(V )

and q, q′ ∈ Q,
(
x1

x2

)
q

(
u1

u2

) (
w1

w2

)
⇒

(
x1

x2

) (
u1

u2

)
q′

(
w1

w2

)
iff there is a transition rule
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q

(
u1

u2

)
→ q′ in δ and ∗⇒ denotes the transitive and reflexive closure of⇒. The language

accepted by a Watson–Crick automaton M is L(M)={w1 ∈ V ∗|q0
[
w1

w2

]
∗⇒

[
λ
λ

]
q, with

q ∈ F,w2 ∈ V ∗,
[
w1

w2

]
∈ WKρ (V )}. A configuration of a Watson–Crick automaton is a

pair (q,
(
w1

w2

)
) where q is the current state of the automaton and

(
w1

w2

)
is the part of

the input word which has not been read yet.

2.2. Deterministic Watson–Crick automata

Czeizler et al. [4] introduced the notion of determinism in Watson–Crick automata.
Different notions of determinism of Watson–Crick automaton are as follows:

• weakly deterministic Watson–Crick automaton(WDWK): Watson–Crick
automaton is weakly deterministic if in every configuration that can occur in some
computation of the automaton, there is a unique possibility to continue the com-
putation, i. e. at every step of the automaton there is at most one way to carry on
the computation.

• deterministic Watson–Crick automaton(DWK): deterministic Watson–Crick
automaton is a Watson–Crick automaton for which if there are two transition rules

of the form q

(
u
v

)
→ q

′
and q

(
u

′

v
′

)
→ q

′′
then u 6∼p u

′
or v 6∼p v

′
.

• strongly deterministic Watson–Crick automaton(SDWK): strongly deter-
ministic Watson–Crick automaton is a deterministic Watson–Crick automaton
where the Watson–Crick complementarity relation is identity.

2.3. Multi-head pushdown automata

Informally, a multi-head 1-way pushdown automaton with k heads is a pushdown au-
tomaton with k 1-way read heads on the input tape and a pushdown store (stack for
short). The multi-head pushdown automaton accepts by final state. For formal defini-
tion of multi-head pushdown automaton see [6].

3. WATSON–CRICK PUSHDOWN AUTOMATA (WKPDA)

In this section, we define the structure of Watson–Crick pushdown automata.
The Watson–Crick pushdown automaton is a 10-tuple system similar to nondeter-

ministic pushdown automaton [7] defined in formal automata theory. A Watson–Crick
pushdown automaton P = (Q,#, $, V,Γ, δ, q0, Z0, F, ρ) where Q is a finite set of states,
V is an input alphabet, Γ is a finite stack alphabet that is the set of symbols we are al-
lowed to push into the stack, δ is the set of transition rules which governs the behaviour

of the automaton. The rules in δ are of the form (qi,
(
w1

w2

)
, X) → (qj , γ) where qi, qj

are states in Q, the strings w1, w2 ∈ V ∗ ∪V ∗$∪#V ∗ ∪#V ∗$, X is a stack symbol that
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is a member of Γ, γ is the string of stack symbols that replaces X at the top of the stack.
For instance, if γ = λ then the stack is popped, if γ = X, then the stack is unchanged
and if γ = Y Z then X is replaced by Z and Y is pushed onto the stack. q0 is the
start state, the Watson–Crick pushdown automaton is in this state before making any
transitions. Z0 is the start symbol, initially, the Watson–Crick pushdown automaton’s
stack consists of one instance of this symbol and nothing else. The set of accepting
states or final states are denoted by F . ρ is the Watson–Crick complementarity relation
similar to Watson–Crick automaton. The symbol # /∈ V is the left end marker in both
the tapes and $ /∈ V is the right end marker in both the tapes.

3.1. Instantaneous configuration of Watson–Crick pushdown automaton

Here we state the instantaneous configuration of Watson–Crick pushdown automaton

that comprises of the stack contents γ, the remaining input to be read
(
x
y

)
where x, y ∈

#V ∗$∪V ∗$∪λ and the current state of the automaton is q. That is, the instantaneous

configuration of the automaton is a triple (q,
(
x
y

)
, γ). Initially the computation starts

with the input of the form
(

#w1$
#w2$

)
where

[
w1

w2

]
∈ WKρ(V ), the initial state is q0

and the stack contains Z0. The initial configuration of the automaton is the triple

(q0,
(

#w1$
#w2$

)
, Z0). Conventionally the contents of the stack are represented as a string

with the top of the stack on the left end and the bottom of the stack on the right. For
a Watson–Crick pushdown automaton P = (Q,#, $, V,Γ, δ, q0, Z0, F, ρ). ` is understood

as follows: Suppose (q,
(
a1

a2

)
, X) → (p, α), then (q,

(
a1w1

a2w2

)
, Xβ) ` (p,

(
w1

w2

)
, αβ) .

`∗ is used to represent zero or more moves of the Watson–Crick pushdown automaton.

3.2. The acceptance condition of Watson–Crick pushdown automaton

The Watson–Crick pushdown automaton accepts by final state.
Let P = (Q,#, $, V,Γ, δ, q0, Z0, F, ρ) be a Watson–Crick pushdown automaton. Then

the language accepted by P by final state is L(P ) = {w1 ∈ V ∗|w2 ∈ V ∗,where
[
w1

w2

]
∈

WKρ (V ) |(q0,
(

#w1$
#w2$

)
, Z0) `∗ (q,

(
λ
λ

)
, α), for some state q in F and any stack string α}.

3.3. Deterministic Watson–Crick pushdown automata

We are using the deterministic notions of Watson–Crick automata to define the different
notions of determinism in Watson–Crick pushdown automata.

• deterministic Watson–Crick pushdown automaton(DWKPDA):
deterministic Watson–Crick pushdown automaton is a Watson–Crick pushdown
automaton for which if there are two transition rules of the form

δ(q,
(
u
v

)
, X)→ (q

′
, γ) and δ(q,

(
u

′

v
′

)
, X)→ (q

′′
, γ

′
) then u 6∼p u

′
or v 6∼p v

′
.
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• strongly deterministic Watson–Crick pushdown automaton(SDWKPDA):
strongly deterministic Watson–Crick pushdown automaton is a deterministic Watson–
Crick pushdown automaton where the Watson–Crick complementarity relation is
identity.

4. MAIN RESULT

In this section, we show that the computational power of nondeterministic two-head
pushdown automata and nondeterministic Watson–Crick pushdown automata are same.
We further show that deterministic Watson–Crick pushdown automata can accept all
the context free languages.

Proposition 4.1. For every nondeterministic two-head pushdown automaton that ac-
cepts a language L there exists a Watson–Crick pushdown automaton with identity
complementarity relation which accepts the same language L.

Proposition 4.1 follows from the fact that when the complementarity relation is iden-
tity then the content of the second tape of Watson–Crick pushdown automaton is same as
the first head. As a result the head on the first tape of Watson–Crick pushdown automa-
ton can simulate the movement of the first head of the two-head pushdown automaton
and the head on the second tape of Watson–Crick pushdown automaton simulates the
second head of the two-head pushdown automaton.

Proposition 4.2. For every nondeterministic Watson–Crick pushdown automaton M
which accepts a language L, there exists a nondeterministic Watson–Crick pushdown
automaton M

′
which accepts the same language L and all its transitions are of the form

δ(q,
(
u
v

)
, X)→ q

′
where |u| ≤ 1 and |v| ≤ 1.

This can be achieved by breaking the transition δ(q,
(
x
y

)
, X)→ q

′
of M into several

steps as follows. Let x = x1x2 . . . xm and y = y1y2 . . . yn, let δ(q,
(
x
y

)
, X) → q

′
be the

ith transition . We introduce the transitions δ(q,
(
x1

λ

)
, X) → i1, δ(i1,

(
x2

λ

)
, λ) → i2,

. . ., δ(im−1,

(
xm
λ

)
, λ) → im, δ(im,

(
λ
y1

)
, λ) → im+1, δ(im+1,

(
λ
y2

)
, λ) → im+2, . . .,

δ(im+n−1,

(
λ
yn

)
, λ)→ q, in place of the transition δ(q,

(
x
y

)
, X)→ q

′
in M

′
.

Theorem 4.3. For every nondeterministic Watson–Crick pushdown automatonM
′
which

accepts the language L and all its transitions are of the form δ
′
(q,

(
u
v

)
, X) → (q

′
, γ)

where |u| ≤ 1 and |v| ≤ 1 there exists a nondeterministic two-head pushdown automaton
M which accepts the same language L.
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P r o o f . Given a nondeterministic Watson–Crick pushdown automaton M
′

= (Q,#, $,
V,Γ, δ

′
, q0, Z0, F, ρ), where ρ is the Watson–Crick complementarity relation. We can ob-

tain a nondeterministic two-head pushdown automatonM = (2, Q,#, $, V,Γ, δ, q0, Z0, F )

where δ is formed from δ
′
in the following manner for transitions of the form δ

′
(q,

(
u
λ

)
, X)

→ (q
′
, γ) where u ∈ V ∪ {λ,#, $} we introduce δ(q, u, λ,X) = (q

′
, γ) in M

′
. For transi-

tions of the form δ
′
(q,

(
u
v

)
, X)→ (q

′
, γ) where u ∈ V ∪ {λ,#, $}, v ∈ V , we introduce

transitions of the form δ(q, u, a,X) = (q
′
, γ) in δ where ρ(a) = v and a must be present

in the upper strand in the corresponding position as contents of the lower strand is ob-
tained by applying the complementarity relation ρ to each position of the upper strand.
The nondeterministic multi-head pushdown automaton nondeterministically guesses the
complementarity element in the lower head for a and executes that particular transition.

For transitions of the form δ
′
(q,

(
u
v

)
, X)→ (q

′
, γ) where u ∈ V ∪ {λ,#, $}, v ∈ {#, $},

we introduce transitions of the form δ(q, u, v,X) = (q
′
, γ) in M . As the transitions in

M mimic the transitions in M
′

so M behaves in the same manner as M
′
. Moreover,

both M and M
′

have the same set of final states therefore they both accept the same
set of strings L. �

The following corollary follows from Proposition 4.1, Proposition 4.2 and Theo-
rem 4.3.

Corollary 4.4. The computational power of nondeterministic two-head pushdown au-
tomata and nondeterministic Watson–Crick pushdown automata are same.

A λ-free nondeterministic pushdown automaton is a pushdown automaton
which does not have any transition defined on λ.

Theorem 4.5. For every λ-free nondeterministic pushdown automaton NP that ac-
cepts a language L ⊆ V ∗ where V is an alphabet there exists an alphabet VNP ⊇ V
and a complementarity relation ρNP such that a deterministic Watson–Crick pushdown
automaton accepts L as a language over VNP (Both VNP and ρNP depends on NP ).

P r o o f . To prove the above theorem, we first give a construction to obtain a determin-
istic Watson–Crick pushdown automaton M from a λ-free nondeterministic pushdown
automaton NP which accepts a language L by empty stack and then we show that the
deterministic Watson–Crick pushdown automaton M obtained from the λ-free nonde-
terministic pushdown automaton NP accepts the same language L.

First part: Given a λ-free nondeterministic pushdown automaton NP = (Q,V,Γ, δ,
q0, Z0) which accepts a language L by empty stack. We construct a Watson–Crick
pushdown automatonM = (Q

′
,#, $, VNP ,Γ, δ

′
, q0, Z0, F, ρNP ) fromNP in the following

manner:
M has the same initial stack symbol and stack alphabet as NP . We list all the tran-

sitions in NP in a particular order. Each transition is assigned a symbol ti where ti /∈ V
and i is the position of the transition in the list. If there are n transitions in NP then
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VNP = V ∪{ti|1 ≤ i ≤ n} and complementarity relation ρNP = {(x, t1), (t1, x), . . . , (x, ti), (ti, x), . . . , (x, tn), (tn, x)|∀x ∈
V }. For each transition δ(q, x, Y ) = (q

′
, Z) in δ having symbol ti assigned to it, we in-

troduce the transition δ
′
(q,

(
x
ti

)
, Y ) = (q

′
, Z) in δ

′
.

The following transitions are also added to δ
′
.

• δ′
(q

′

0,

(
#
#

)
, Z0) = (q0, Z0) this transition ensures that M enters the start state of

NP at the beginning of the input word w.

• δ′
(q,

(
$
$

)
, λ) = (qf , λ) for all q ∈ Q. These set of transitions ensure that if stack

of NP is empty after completely consuming the input word w then M also enters
its final state after completely consuming its input #w$.

The start state of M is q
′

0, the set of states is Q
′

= Q ∪ {q′

0, qf}, and the set of final
states is F = {qf}.

Second Part: In the second part of the proof, we show that both M and NP
accepts the same language L. If NP accepts w then there is a sequence of transitions of
length |w| that takes NP to an empty stack after consuming w. The complementarity
relation ρ of M relates each symbol to all the transitions in δ, therefore the set of
possible complementarity strings for w comprises of all sequences of transitions of length
|w|. As NP accepts w, among the set of possible complementarity strings for w, we
will find a complementarity string w

′
which resemble the sequence of transitions that

takes NP to empty stack. Now M armed with this correct sequence of transitions
can deterministically decide which transitions to take and following this sequence of
transitions reaches a position when its stack is empty and both its head are on $.

Then the transition δ
′
(q,

(
$
$

)
, λ) = (qf , λ) for all q ∈ Q takes M to its final state after

completely consuming its input and thusM also accepts w. IfNP does not accept w then
there is no sequence of transitions that takes NP to an empty stack after consumption
of w. Thus, no matter what the complementarity string w

′
of w is, M simulating NP

based on w
′

will never be in a position where its stack is empty and the two heads are

on $. Thus the transitions of the form δ
′
(q,

(
$
$

)
, λ) = (qf , λ) for all q ∈ Q cannot be

applied to M , so M will never enter its final state qf as a result M also rejects w.
�

Lemma 4.6. For every context free language L there exists a grammar G in Greibach
Normal Form such that L(G) = L \ {λ}.

Lemma 4.7. For every grammar G in Greibach Normal Form there exists a λ-free
nondeterministic pushdown automaton which accepts the language L(G) by empty stack.

Lemma 4.6 and 4.7 are stated in [7].

Corollary 4.8 follows from Lemma 4.6 and 4.7.
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Corollary 4.8. For every context free language L, there exists a λ-free nondeterministic
pushdown automaton which accepts the language L \ {λ} by empty stack.

The following theorem follows from Theorem 4.5 and Corollary 4.8.

Theorem 4.9. For every context free language L, there exists a deterministic Watson–
Crick pushdown automaton which accepts the language L \ {λ}.

Lemma 4.10. The context free language L = {x1$y1 ∗ x2$y2 ∗ . . . xn$yn# (x
′

1$y
′

1)R ∗
(x

′

2$y
′

2)R ∗ . . . (x′

n$y
′

n)R | there exist i and j such that xi = x
′

j and yi 6= y
′

j , where wR is
the reverse of the string w} is not accepted by any multi-head deterministic pushdown
automaton.

The proof of Lemma 4.10 is in [2].

The following corollary follows from Lemma 4.10 and Theorem 4.9.

Corollary 4.11. Deterministic Watson–Crick pushdown automaton accepts a language
which is not accepted by any multi-head deterministic pushdown automaton.

5. CONCLUSION

In this paper, we add a stack to Watson–Crick automaton to obtain Watson–Crick
pushdown automaton. We show that the nondeterministic variant of the model has
the same computational power as 2-head nondeterministic pushdown automata. We
also show the deterministic variant of the model accepts all the context free languages
by exploiting the complementarity relation property of Watson–Crick automata. Such
a deterministic pushdown model is of significant interest because it is the only multi-head
deterministic pushdown automata that accept all the context free languages.

(Received December 30, 2016)
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