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Abstract. An orientation of a simple graph is referred to as an oriented graph. Cac-
cetta and Häggkvist conjectured that any digraph on n vertices with minimum outdegree
d contains a directed cycle of length at most ⌈n/d⌉. In this paper, we consider short cycles
in oriented graphs without directed triangles. Suppose that α0 is the smallest real such
that every n-vertex digraph with minimum outdegree at least α0n contains a directed tri-
angle. Let ε < (3− 2α0)/(4− 2α0) be a positive real. We show that if D is an oriented
graph without directed triangles and has minimum outdegree and minimum indegree at
least (1/(4− 2α0)+ ε)|D|, then each vertex of D is contained in a directed cycle of length l
for each 4 6 l < (4− 2α0)ε|D|/(3− 2α0) + 2.
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1. Introduction

The notation follows that of [1]. We consider only digraphs without loops and

parallel arcs. For a digraph D, we denote by V (D) the vertex set of D, by A(D)

the arc set of D. We write |D| for the order of D, that is, the number of vertices

in D, and e(D) for the number of arcs. We write N+
D (x) for the outneighbourhood

of a vertex x ∈ V (D) and d+D(x) = |N+
D (x)| for its outdegree. Similarly, we write

N−
D (x) for the inneighbourhood of x and d−D(x) = |N−

D (x)| for its indegree. We write

ND(x) = N+
D (x) ∪ N−

D (x) for the neighbourhood of x and dD(x) = d+D(x) + d−D(x)

for its degree. Let δ+(D) = min{d+D(x) : x ∈ V (D)} be the minimum outdegree

and δ−(D) = min{d−D(x) : x ∈ V (D)} be the minimum indegree of D. Define the

minimum semidegree δ0(D) = min{δ+(D), δ−(D)}. Given X ⊆ V (D) we define
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d+X(x) = |N+
D (x) ∩X | and d−X(x) = |N−

D (x) ∩ X |. Let N+
D (X) =

⋃

a∈X

N+
D (a). Note

that N+
D (X) may include also vertices contained in X . Similarly, we can define

N−
D (X). The subgraph of D induced by X is denoted by D[X ] and we write e(X)

for the number of its arcs. D−X denotes the digraph obtained from D by deleting X

and all arcs incident with X . We say that X is independent if D[X ] contains no

arcs. Given disjoint vertex sets S and T in D, an S-T arc is an arc ab where a ∈ S

and b ∈ T . We write A(S, T ) (or e(S, T )) for the set (or number) of all S-T arcs

in D. When referring to paths and cycles in digraphs we always mean that they are

directed without mentioning this explicitly. A path of length k of D is a list x1, . . . , xk

of distinct vertices such that xixi+1 ∈ A(D) for 1 6 i 6 k − 1. For two vertices x, y

in D, an x-y path is a path which joins x to y. A cycle of length l > 2 is a list

x1, . . . , xl, x1 of vertices with x1, . . . , xl distinct, xixi+1 ∈ A(D) for 1 6 i 6 l− 1 and

xlx1 ∈ A(D). We refer to cycles of length l as l-cycles and a 3-cycle is also called

a triangle. A digraph D is an oriented graph if it does not contain 2-cycles, that is

to say it is obtained from a simple graph where each edge is given an orientation.

So, an oriented graph is called triangle-free if it does not contain directed triangles.

Throughout the paper, we omit all floor and ceiling signs whenever these are not

crucial, to simplify the presentation.

The problem of deciding whether a given digraph D contains a cycle of length l

is one of the most natural and easily stated problems in graph theory. Especially

when l = |D| it becomes the well-known Hamilton problem. In recent years, lots

of results (see [4], [7], [8], [11]) were obtained for Hamilton cycles in digraphs (or

oriented graphs) by using the celebrated “robust expansion” technique. We direct

the interested reader to the survey paper of Kühn and Osthus, see [10]. For cycles of

other lengths, Caccetta and Häggkvist in [3] posed the following conjecture in 1978.

Conjecture 1.1 (Caccetta, Häggkvist [3]). Any digraph on n vertices with mini-

mum outdegree d contains a cycle of length at most ⌈n/d⌉.

The special case of Conjecture 1.1 that has attracted most interest is that of

d = ⌈n/3⌉ (see [2], [3], [5], [14]). Throughout this paper, we use α0 to denote the

smallest real such that every n-vertex digraph with minimum outdegree at least

α0n contains a triangle. Considering the blow-up of a 4-cycle, it’s easy to see that

α0 > 1/4. In fact, we can define a sequence of graphsD(k), for all integers k > 0, such

that (1) D(0) = C4, (2) D
(i+1) is obtained by taking four copies of D(i), denoted by

D0, D1, D2 and D3, and adding all arcs from Dj to Dj+1, where 0 6 j 6 3 and the

subscripts modulo 4. Clearly, D(k) does not contain any triangle and when k → ∞

we have α0 > 1/3. If Conjecture 1.1 is true, then it implies that α0 = 1/3. Using the

theory of flag algebras developed by Razborov in [13], Hladký et al. in [6] proved the
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following up-to-now best known bound. For other details on the Caccetta-Häggkvist

conjecture, see [15].

Theorem 1.2 (Hladký, Kráľ, Norin [6]). Every n-vertex digraph with minimum

outdegree at least 0.3465n contains a triangle.

Note that a triangle will be preserved if we change the direction of all arcs in

a digraph, thus Hladký et al.’s result implies that any digraph with minimum indegree

at least 0.3465n contains a triangle. Therefore, each triangle-free oriented graph

must have both minimum outdegree and minimum indegree less than 0.3465n. In

fact, it is unknown whether any digraph of order n with minimum semidegree at

least ⌈n/3⌉ contains a cycle of length at most 3. Hamburger et al. in [5] proved that

for γ > 0.34564, any n-vertex digraph D with δ0(D) > γn contains a cycle of length

at most 3. Though using Theorem 1.2, this bound was improved to γ > 0.343545

by Lichiardopol in [12]. For related questions of which minimum semidegree forces

cycles of length exactly l > 4 in an oriented graph, Kelly et al. in [9] proved the

following:

Theorem 1.3 (Kelly, Kühn and Osthus [9]). Let l > 4 be a positive integer. If D

is an oriented graph on n > 1010l vertices with δ0(D) > ⌊n/3⌋+ 1, then D contains

an l-cycle. Moreover for any vertex u ∈ V (D) there is an l-cycle containing u.

As noted in [9], the minimum semidegree condition is best possible for l > 4 and

l 6= 0 (mod 3) (considering the blow-up of a directed triangle). It is also noted in [9]

that when l > 4 and 3 | l, the minimum semidegree condition is also best possible

for the moreover part. All the extremal graphs for Theorem 1.3 have many directed

triangles. In this paper, we consider short cycles in triangle-free oriented graphs and

prove the following theorem.

Theorem 1.4. Let ε < (3−2α0)/(4−2α0) be a positive real and D be a triangle-

free oriented graph on n vertices. If δ0(D) > (1/(4− 2α0) + ε)n, then for any vertex

v ∈ V (D), D contains an l-cycle through v for each 4 6 l < (4−2α0)εn/(3−2α0)+2.

By Theorem 1.2, we know that α0 6 0.3465. Thus we have the following immediate

corollary.

Corollary 1.5. Let ε < 0.6976 be a positive real and D be a triangle-free oriented

graph on n vertices. If δ0(D) > (0.3024 + ε)n, then for any vertex v ∈ V (D),

D contains an l-cycle through v for each 4 6 l 6 1.4334εn+ 2.
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2. Proof of the main result

In this section we give a proof of Theorem 1.4. Before that we give some lemmas.

Recall that α0 is the smallest real such that every n-vertex digraph with minimum

outdegree at least α0n contains a triangle. Throughout this section, let

α =
1

4− 2α0
and β =

2− α0

7− 4α0
.

Since α0 > 1/3, we have α0 > α > β.

Given two vertices x, y of a digraph D, the distance dist(x, y) from x to y is

the length of the shortest x-y path. The diameter of D is the maximum distance

between any ordered pair of vertices. We use the following lemma to control the

diameter of D.

Lemma 2.1. If D is a triangle-free oriented graph on n vertices with δ0(D) > αn,

then the diameter of D is at most 4.

P r o o f. For any vertex x ∈ V (D) define X1 = N+(x) and X2 = N+(X1) ∪X1.

If δ+(D[X1]) > α0|X1|, then D[X1] contains a triangle by the definition of α0,

a contradiction. So there exists a vertex x1 ∈ X1 with |N+(x1) ∩ X1| < α0|X1|.

Hence,

|X2| = |X1|+ |N+(X1) \X1|

> |X1|+
(

d+(x1)− |N+(x1) ∩X1|
)

> |X1|+
(

δ0(D)− α0|X1|
)

> (2− α0)δ
0(D) >

n

2
,

here we use the fact |X1| > δ0(D) and δ0(D) > αn = n/(4− 2α0).

Similarly, for any vertex y with y 6= x, by considering the indegrees we have

|{v ∈ V (D) : dist(v, y) 6 2}| >
n

2
.

This implies that there exists a directed x-y path of length at most 4. So the diameter

of D is at most 4. �

A transitive triangle is obtained by orienting the edges of an undirected 3-cycle

such that it does not form a directed triangle.

Lemma 2.2. If D is a triangle-free oriented graph on n vertices with δ0(D) > βn,

then for any vertex x, D[{x} ∪N+(x)] contains at least one transitive triangle.
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P r o o f. By contradiction, suppose that there exists x ∈ V (D) such that D[{x}∪

N+(x)] does not contain any transitive triangle. Choose X ⊆ N+(x) with |X | = βn.

Clearly, X is independent. Let Y be a set of βn inneighbours of x. Arbitrarily

choose an x′ ∈ X . Let X ′ be a set of βn outneighbours of x′ and Y ′ be the set of

inneighbours of x′. Denote Z = V (D) \ ({x} ∪X ∪X ′ ∪ Y ∪ Y ′) and T = Y ′ ∩ Y . In

the following we are going to prove

(2.1) |N−(T ) \ T | > |(Y ∪ Y ′ ∪ Z) \ T |.

This implies that A(X ∪X ′, T ) 6= ∅. It follows that

A(X,T ) 6= ∅ or A(X ′, T ) 6= ∅.

Choosing an arc from A(X,T ) (or A(X ′, T )) arbitrarily, together with x (or x′) and

its incident arcs it will yield a triangle in D. This contradiction completes the proof.

To see (2.1), since X is independent, X ∩ Y ′ = ∅. Note that D is an oriented

graph, so we have X ′ ∩ Y ′ = ∅. Therefore,

(2.2) (X ∪X ′) ∩ Y ′ = ∅.

Thus we have

(2.3) |T | = |Y ′ ∩ Y | = d−(x′)− |Y ′ \ Y |

(2.2)

> δ0(D)− |V \ (X ∪X ′ ∪ Y )|

> δ0(D)− (1 − 3β)n > (4β − 1)n.

Note that since D is triangle-free, it follows from the definition of α0 that there exists

x′ ∈ T such that d−T (x
′) < α0|T |; so

(2.4) |N−(T ) \ T | > d−
D\T (x

′) > δ0(D)− d−T (x
′) > βn− α0|T |.

Since D is oriented, we have X∩Y = ∅. Again the fact that D is triangle-free implies

X ′ ∩ Y = ∅. Thus, (X ∪X ′) ∩ Y = ∅. So we have

|(Y ∪ Y ′ ∪ Z) \ T }| = |V \ ({x} ∪X ∪X ′ ∪ T )|

6 (1− 2β)n− |T |
(2.3)

6 βn− α0|T |
(2.4)
< |N−(T ) \ T |.

The second inequality is equivalent to showing |T | > (1− 3β)n/(1− α0). By (2.3)

and β = (2 − α0)/(7 − 4α0), we have |T | > (4β − 1)n = (1− 3β)n/(1− α0). This

completes the proof of (2.1). �
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In order to prove the cases l > 7 of Theorem 1.4 we need a new notation. An

xy-butterfly is an oriented graph with vertices x, y, a, b, c, d, e and with arcs xa,

xb, ab, bc, bd, cd, de, dy and ey (see Figure 1). The crucial fact about a butterfly is

that it contains x-y paths of lengths 3, 4, 5 and 6, and is thus a useful tool in finding

cycles of prescribed length: any y-x path of length l − 3, l − 4, l − 5 or l − 6 whose

interior avoids the xy-butterfly can yield an l-cycle containing x.

x

a

b

c

d

e

y

Figure 1. An xy-butterfly.

The following lemma tells us that in a triangle-free oriented graph, minimum

semidegree βn is enough to guarantee the existence of a butterfly.

Lemma 2.3. If D is a triangle-free oriented graph on n vertices with δ0(D) > βn,

then for any vertex x ∈ V (D) there exists a vertex y such that D contains an xy-

butterfly.

P r o o f. Using Lemma 2.2 repeatedly, we can choose an arc ab in the outneigh-

bourhood of x, an arc cd in the outneighbourhood of b and an arc ey in the out-

neighbourhood of d. Since D is triangle-free, all the vertices we have chosen are

distinct. �

Now we are ready to prove Theorem 1.4. In the following, we suppose that D is

an oriented graph satisfying the assumptions of Theorem 1.4. At first, we show that

each vertex of D is contained in an l-cycle for each 7 6 l < (4−2α0)εn/(3−2α0)+2.

Then we show that each vertex of D can be contained in cycles of length 4, 5, 6,

respectively.

Lemma 2.4. Each vertex of D is contained in an l-cycle for each 7 6 l <

εn/(1− α) + 2 = (4− 2α0)εn/(3− 2α0) + 2.

P r o o f. Note that δ0(D) > (α + ε)n > βn. For any x ∈ V (D), by Lemma 2.3

we can find an xy-butterfly with some vertex y ∈ V (D), and a, b, c, d, e as in the

definition of an xy-butterfly. Since ε < (3− 2α0)/(4− 2α0) = 1− α we have

δ0(D) > (α+ ε)n >
εn

1− α
> l − 2.
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We may greedily pick a path P of length l− 7 from y to some vertex v such that P

avoids a, b, c, d, e.

LetD′ = D−({a, b, c, d, e}∪(V (P )\{v})). Again by the fact that δ0(D) > (α+ε)n

and l < εn/(1− α) + 2, we have

δ0(D′) > δ0(D)− (l − 2) > α(n− (l − 2)).

Applying Lemma 2.1 to D′, we can find a v-x path P ′ of length at most 4. Pick

a path P ′′ from x to y in the xy-butterfly such that |P ′∪P ′′| = 7, then C = P∪P ′∪P ′′

is a desired l-cycle containing x. �

The idea for the proof of cases l = 4, 5, 6 is the same: To find an l-cycle contain-

ing x, we use Theorem 1.2 and the minimum semidegree condition to show that the

outneighbourhoods and inneighbourhoods of some fixed vertex sets have nonempty

intersection. Now we deal with them respectively.

Lemma 2.5. Each vertex of D is contained in a 4-cycle.

P r o o f. For any x ∈ V (D), let X be a set of αn outneighbours and Y be a set

of αn inneighbours of x. Consider D[X ], since D is triangle-free, there exists x′ ∈ X

such that d+X(x′) < α0|X | by the definition of α0. Similarly, there exists y
′ ∈ Y such

that d−Y (y
′) < α0|Y |. Let

X ′ = N+(x′) \X and Y ′ = N−(y′) \ Y.

We have

|X ′| > δ0(D)− d+X(x′) > (1− α0)αn.

Analogously, |Y ′| > (1−α0)αn. Again, from the fact that D is triangle-free it follows

that

X ′ ∩ Y = X ∩ Y ′ = ∅.

If X ′ ∩ Y ′ = ∅, then

n > 1 + |X |+ |X ′|+ |Y |+ |Y ′| > (4− 2α0)αn = n,

a contradiction. So X ′ ∩ Y ′ 6= ∅, which yields a 4-cycle through x. �

Lemma 2.6. Each vertex of D is contained in a 5-cycle.
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P r o o f. Note that δ0(D) > αn > βn. For any x ∈ V (D), D[{x} ∪ N+(x)]

contains a transitive triangle by Lemma 2.2. There are vertices a, y ∈ N+(x) such

that xa, xy, ay ∈ A(D). To prove that x is contained in a 5-cycle, it suffices to prove

the existence of at least one of the following:

(i) a y-x path of length 4,

(ii) a y-x path of length 3 avoiding a.

By Lemma 2.1, the diameter of D is at most 4, so we must have a y-x path of

length at most 4. Since D is triangle-free we cannot have a y-x path of length 2.

Thus we have a y-x path of length 3 or 4, and if it is of length 3, it must avoid

a because D is oriented. �

Lemma 2.7. Each vertex of D is contained in a 6-cycle.

P r o o f. Note that δ0(D) > αn > βn. For any vertex x ∈ V (D), by Lemma 2.2,

D[{x} ∪ N+(x)] contains a transitive triangle. We can pick an arc az in the out-

neighbourhood of x. Again use Lemma 2.2 to find an arc by in the outneighbourhood

of z. To complete the proof it suffices to prove the existence of at least one of the

following:

(i) a y-x path of length 2,

(ii) a y-x path of length 3,

(iii) a y-x path of length 4 avoiding z.

Let X be a set of αn inneighbours of x and Y be a set of αn outneighbours of y.

Suppose X ∩ Y = ∅, otherwise (i) is satisfied. By the same arguments as before,

there exist x′ ∈ X with d−X(x′) < α0|X | and y′ ∈ Y with d+Y (y
′) < α0|Y |. Let

X ′ = N−(x′) \X and Y ′ = N+(y′) \ Y.

We have

|X ′| > δ0(D)− d−X(x′) > (1− α0)αn,

and |Y ′| > (1− α0)αn similarly. We may assume that

X ∩ Y ′ = X ′ ∩ Y = ∅,

since otherwise (ii) is satisfied. If X ′ ∩ Y ′ = ∅, then

n > 1 + |X |+ |X ′|+ |Y |+ |Y ′| > (4− 2α0)αn = n,

a contradiction. So X ′ ∩ Y ′ 6= ∅. This implies (iii). �
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