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PARAMETRIC IDENTIFICATION OF SORENSEN MODEL
FOR GLUCOSE-INSULIN-CARBOHYDRATES DYNAMICS
USING EVOLUTIVE ALGORITHMS

Eduardo Ruiz Velázquez, Oscar D. Sánchez, Griselda Quiroz
and Guillermo O. Pulido

Diabetes mellitus (DM) is a disease affecting millions of people worldwide, and its medical
care brings an economic wear to patients and public health systems. Many efforts have been
made to deal with DM, one of them is the full-automation of insulin delivery. This idea consists
in design a closed-loop control system to maintain blood glucose levels (BGL) within normal
ranges. Dynamic models of glucose-insulin-carbohydrates play an important role in synthesis
of control algorithms, but also in other aspects of DM care, such as testing glucose sensors, or
as support systems for health care decisions. Therefore, there are several mathematical models
reproducing glycemic dynamics of DM, most of them validated with nominal parameters of
standardized patients. Nevertheless, individual patient-oriented models could open the pos-
sibility of having closed-loop personalized therapies. This problem can be addressed through
the information provided by open-loop therapy based on continuous glucose monitoring and
subcutaneous insulin infusion. This paper considers the problem of identifying particular pa-
rameters of a compartmental model of glucose-insulin dynamics in DM; the goal is fitting the
model response to historical data of a diabetic patient collected during a time period of her/his
daily life. At this time, Sorensen model is one of the most complete compartmental models
representing the complex dynamics of the glucose-insulin metabolism. This is a system of 19
ordinary differential equations (ODEs), thus the identification of its parameters is a non-easy
task. In this contribution, parameter identification was performed via three evolutionary algo-
rithms: differential evolution, ant colony optimization and particle swarm optimization. The
obtained results show that evolutionary algorithms are powerful tools to solve problems of para-
metric identification. Also, a comparative analysis of the three algorithms was realized throw a
wilcoxon sign-rank test, in which colony optimization had the better performance. The model
obtained with the estimated parameters could be used to in type 1 diabetes mellitus (T1DM)
care, such as in the design of full-automation of insulin infusion.
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1. INTRODUCTION

Diabetes mellitus is a metabolic disorder characterized by increased levels of blood glu-
cose (hyperglycemia), which is caused by a deficit in the secretion or a defect in the
action of the insulin hormone. This hormone is produced in pancreas and it controls
the level of glucose in blood, so it is essential for our metabolism. Uncontrolled DM
care can lead to complications such as nerve and brain damage, heart diseases, vision
loss, amputations, kidney diseases and ultimately death [16]. Nowadays DM is a critical
public health problem being one of the leading causes of death. Just in 2014 it was
estimated that approximately 422 million adults were living with diabetes [40].

A particular type of this disease is caused by an immunological fault blocking pan-
creatic insulin production, this is called type 1 diabetes mellitus (T1DM). The conven-
tional treatment of T1DM consists in injections of exogenous insulin to regulate glucose
glycemic values. Nevertheless, the regulation is difficult to perform due to the complex-
ity of the glucose metabolism and its main disturbances: meal, stress, exercise, among
others [36]. The automation glucose control has been for a long time an objective to
develop the called artificial pancreas, this is, a closed-loop system to automate insulin
infusion by means of a continuous glucose monitoring and an insulin pump (see [19] – [21]
and [7]).

With the purpose of designing a control algorithm to connect the insulin pump
and glucose monitoring system, it is necessary a dynamic model of glucose-insulin-
carbohydrates [11]. This could be useful, for example, to verify the effectiveness of
control before clinical trials , that is, to carry out in silico assessments. Different dy-
namic models has been reported in literature, among them, we can mention the model of
Bergman et al., which is the simplest one and it was developed for patients with T1DM
in intensive care [6]. It reproduces the systemic dynamics of glucose and insulin, thus
important physiological processes are not considered. Hovorka et al. proposed a com-
partmental model of three subsystems: glucose, insulin and insulin action [25]. Wilinska
et al. presented a model to assess the delivery of insulin in patients with T1DM [39]. On
the other hand, there are approaches considering physiological aspects not only systemic
response of glucose metabolism. Tiran et al. developed a model of the dynamics of glu-
cose [35], Guyton et al. [22] followed the line of Tiran et al. and they presented a model
of the metabolism of insulin-glucose in healthy individuals. Such model was also used
by Cobelli et al. to derive an integrated whole-body model [29]. Adopting some features
of various models, Sorensen developed a compartment model to represent the major
organs that interact in glucose-insulin dynamics [34]. These organs are: brain, heart,
lungs, intestine, liver, kidney and periphery. The methodology proposed by Sorensen
includes the mass balance of glucose and insulin at each compartment, and it results in
a system of 19 ODEs.

A critical issue of physiological models is the parametric identification both single-
subject models or a nominal model describing a study population [8]. The access to
measured signals on a physiological process can be restricted, thus the parametric esti-
mation of a model becomes an interesting problem [23]. This could be addressed if some
states of the proposed model can be measured. In the case of the model of Sorensen, the
parametric identification is not a simple task due to the large number of parameters.

The task of parametric identification in physiological models for T1DM has been
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performed to represent different scenarios of this disease, such as the work presented in
[23]; in there they build on a nonlinear physiologically motivated time-varying model
of glucose regulation. They adopted the bayesian approach to estimate model parame-
ters and to obtain posterior probability distribution of time-invariant and time-varying
parameters with the use of Markov chain Monte Carlo methodology, this is carried out
in the model of Hovorka [23]. A similar work was performed in [37], they propose a
bayesian method for the identification of a model from plasma glucose and insulin con-
centrations, by exploiting the prior model parameter distribution; five parameters of the
UVA/Padova model was identified by this method. This contribution proposes the use
of evolutionary algorithms to estimate parameters of glucose-insulin-carbohydrates dy-
namical models. The motivation to carry out the parametric estimation to the model of
Sorensen is due to the complexity of this model, in addition, it has been used successfully
in works of regulation of glucose, that is why this model is an excellent option to test
new methods of identification. Evolutionary algorithms have been used in identifying
parameters of biological models as it is described [41], in which a differential evolution
algorithm is used to estimate the unknown parameters of a gene regulatory network
model. In this manner, this contribution presents an identifiability analysis of some
metabolic parameters of the model proposed by Sorensen. Such analysis is carried out
using the GenSSI toolbox of MatLab R© [9]. In addition a comparative analysis of the
performance of the evolutionary algorithms is included.

2. IDENTIFIABILITY ANALYSIS

2.1. Compartmental model

The physiological compartmental model proposed by Sorensen is a system of 19 nonlinear
ODEs. It includes three subsystems to represent the dynamics of: glucose, insulin,
glucagon and metabolic rates. The complete description of the model is reported in [34].
In order to reproduce the T1DM dynamics, two assumptions are made:(see [34]): 1) the
rate of release of insulin is omitted and 2) the scale of metabolic functions can be changed
such that response to blood glucose levels corresponding to a patient with DMT1. The
first assumption is justified because the insulin release of a T1DM patient is zero. The
second concerns to the parametric identification. The complete set of equations of the
Sorensen model are presented in Appendix A. To clarity in presentation, the equations
are grouped together according to the subsystems they belong to: glucose (equations
(22) – (29)), insulin (equations (30) – (36)), metabolic rates (equations (37) – (54)) and
glucagon (equation (55)). Such appendix includes a brief description of the subsystems.
Also, the set of nominal values of the parameters are presented in Appendix B.

2.2. Structural identifiability definition

To carry out the identifiability analysis, the Sorensen model (equation (22) – (55)) is
rewritten as an affine system. The resulting representation is as follow:

Σ

 ẋ = f(x, p) + g(x, p), x ∈ Rn, p ∈ Rq
ṗ = 0
y = h(x), y ∈ Rm

(1)



Parametric identification of Sorensen model 113

where, x = (x1, · · · , xn) ∈ Rn is a measurable state vector, p = (p1, · · · , pq) ∈ Rq is
the unknow/uncertain parameter vector in parameter space P , y = (y1, · · · , ym) ∈ Rm.
f(x, p) is a smooth nonlinear function.

The identifiability is the property to identify the parameters of a dynamic system
through its input-output behavior. Such property is a prerequisite to estimate param-
eters of a model uniquely from measured data [3]; thus it is necessary to know the
observability properties of the model. There are different methods to analyze the ob-
servability of nonlinear systems such as system (1), the most used are the differential
geometric and the algebraic approach. Rank test condition is used in both the ap-
proaches, this consists in calculate the dimension of the space spanned by gradients of
the Lie-derivatives of its output functions, this defines the called observability matrix
O [3]:

O =


∂h(x)
∂x

∂Lfh(x)
∂x
...

∂Ln−1
f h(x)

∂x

 (2)

If O is a full rank matrix (Rank(O) = n), then the system is algebraically observable.
Parameter identifiability can be an special case of observability problem by considering
parameters as state variables with null time derivative i. e., ṗ = 0, so the observability
rank test can used to determine parameter identifiability. Thus, in system Σ with
assumption ṗ = 0, both x and p are assumed as state variables. Assuming that the
initial conditions of x are known, then x and p can be considered as non-observable
variables. Suppose a full set of initial conditions on x, i. e., x(0) = x0, then the problem
of observability of x disappears [3]. Thus, the rank test regarding variable p in system
(1) defines the following identifiability matrix:

ON =


∂h(x)
∂p

∂Lfh(x)
∂p
...

∂Ln−1
f h(x)

∂p

 (3)

where Lfh = ∂h(x)
∂x f(x, p) is the Lie derivative [33] . Then, (1) is locally identifiable if

rank(ON (p)) = q (4)

Let us consider p∗ ∈ P and note that for all p in the neighborhood of p∗(i.e, p ∈ V (p∗))

y = ON (p)p (5)

then, condition (4) implies that for p ∈ V (p∗):

p = (ON (p)TON (p))−1ON (p)T y (6)
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Remark I. pi, i = 1, . . . , q is a parameter estructuraly globally (or uniquely) identifi-
able if for almost any p∗ ∈ P

Σ(p) = Σ(p∗)⇒ pi = p∗. (7)

Remark II. pi, i = 1, . . . , q is an estructuraly locally identifiable parameter if for
almost any p∗ ∈ P , there exists a neighbourhood V (p∗) such that

p ∈ V (p∗) and Σ(p) = Σ(p∗)⇒ pi = p∗. (8)

Remark III. pi, i = 1, . . . , q is an estructuraly no-identifiable parameter if for almost
any p∗ ∈ P , there exists no a neighbourhood V (p∗) such that

p ∈ V (p∗) and Σ(p) = Σ(p∗)⇒ pi = p∗. (9)

A easy way to visualize the possible structural identifiability problems and to assist
in the solution of the nonlinear system of equations is using of identifiability tableaus as
defined in [4]. The tableau represents the non-zero elements of the jacobian of the series
coefficients with respect to the parameters, and it has as many columns as parameters
and as many rows as non-zero series coefficients. If the rank of the jacobian is equal
to the number of parameters, then it will be possible to, at least, locally identify the
parameters. When there are empty rows the rank is deficient (this may corresponds to
non-identifiable parameters), or if the number of Lie derivatives is not sufficient. From
the generated tableau, a number of linear independent rows are selected to guarantee
the jacobian rank condition.

2.3. Numerical implementation

The numerical implementation of the structural identifiability requieres symbolic ma-
nipulation. In the special case of this contribution, the structural identifiability of de
Sorensen model was carried out using the GenSSI R© software [22]. This software can
handle systems represented by a set of linear/nonlinear differential equations and it is
based on the generating series approach coupled with the use of identifiability tableaus
[4]. The underlying idea is to generate a non-linear system of equations on the parame-
ters from the computation the successive Lie derivatives of f and g. If the solution of the
system of equations is unique then the parameters are globally identifiables. Once the
Lie derivatives are computed, the identifiability tableaus help not only to devise global
identifiable parameters but to decide on the appropriate way to handle the non-linear
system of equations on the remaining parameters.

In order to analyze the structural identifiability of Sorensen model, the system de-
fined by equations (22) – (55) is represented in state space, and considering the set of
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parameters defined in Appendix B, the model can be rewritten in the affine form:

ẋ1 = p1(x3 − x1)− p2(x1 − x2)
ẋ2 = p3(x1 − x2)− p4p76

ẋ3 = p5(p6x1 + p7x5 + p8x6 + p9x7 − p10x3 − p77)
ẋ4 = p11(x3 − x4)− p12p78

ẋ5 =p13(p14x3 + p15x4 − p16x5 + (p59x18(p60tanh(p61x19)− x17)×
(p62 − p63tanh(p64((x5/p86)− p65))))−
(p69x18(p66 + p66tanh(p67((x5/p86)− p68)))))

ẋ6 = p17(x3 − x6)− p18(p70 + p70tanh(p71(x6 − p72)))
ẋ7 = p19(x3 − x7)− p20(x7 − x8)
ẋ8 = p21(x7 − x8)− p22(p73(x8/p87)(p73 + p74tanh(p75((x15/p88)− p68))))
ẋ9 = p23(x10 − x9)

˙x10 = p24(p25x9 + p26x12 + p27x13 + p28x14 − p19x10)
˙x11 = p30(x10 − x14)− p31(x14 − x15)
˙x12 = p32(x10 − x11)
˙x13 = p33(p34x10 + p35x11 − p36x12 − (p91(p34x10 + p35x11)))
˙x14 = p37(x10 − x13)− p38(p92(p27x13))
˙x15 = p39(x14 − x15)− p40((x15)/((p90 − p93)/p93)(p57)− (p58))
˙x16 = p41(p42 − p43tanh(p44((x12/p45)− p46))− x16)
˙x17 = p47(((p48tanh(p49x19)− p50)/p51)− x17)
˙x18 = p52(p53tanh((p54x12)/p55)− x18)
˙x19 =p56(((p79 − p80tanh(p81((x3/p88)− p83)))×

(p82 − p83tanh(p84((x10/p89)− p85))))− x19)

(10)

where x1 = GBV , x2 = GBI , x3 = GH , x4 = GG, x5 = GL, x6 = GK , x7 = GPV ,
x8 = GPI , x9 = IB , x10 = IH ,x11 = IG, x12 = IL, x13 = IK , x14 = IPV , x15 = IPI ,
x16 = M I

HGP , x17 = M I
HGU , x18 = f2, x19 = GC .

At [32] it is proved that the solutions of equations [10] are mostly sensitive to the
parameters related to: the effect of glucagon in the hepatic glucose production and
the effect of the glucose concentration on the hepatic glucose production. Thus, it
is possible to find diverse hyperglycemia scenarios on T1DM subjects, by fitting the
parameters of model (22) – (55). Here, nine of the sensitive parameters reported in
[32] are considered for the identifiability analysis; such parameters are: (p61, p62, p63,
p64, p65, p73, p74, p75 and p80). The model (10) is considered fully, that is, y1 = x1,
. . . , y19 = x19, this assumption allows us to assign values to the unknown parameters
p = [p61 p62 p63 p64 p65 p73 p74 p75 p80].

Solution of the series approach results in an identifiability tableau of rank 9, and
multiple solutions of the parameters have been found (see Figure 1). A complete solution
of the parameter pi that characterize the reduced identifiability tableu can not be found
because of the computational complexity that it implies; however all parameters can be
estimated.
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Fig. 1. First order reduced identifiability tableau obtained by means

of the generating series methods applied to the polynomial form of

the model (10).

3. PARAMETRIC ESTIMATION METHODS

Evolutionary algorithms have proven to be very effective to solve optimization problems.
In particular, the problem of parametric identification of biological models are difficult
to solve with traditional estimation techniques [41]. Thus evolutionary algorithms could
represent a useful option to solve such problem. This section provides a description of
the algorithms used for parametric identification of the Sorensen model.

3.1. Differential evolution algorithm

Differential evolution algorithm (DE) is an efficient evolutionary algorithm for global
optimization, which uses three typical operators to search the solution space: crossover,
mutation and selection [31]. DE begins with a random initialization of a population
of individuals in the search space. Therefore, it is the best overall solution using the
address information and distance according to the differentiation between populations.
However, the search behavior of each individual in the search space is set by the dynamics
of change of the address and the differentiation step.

Let be S ⊆ RD the search space, DE involves a population of NP vectors (candidate
solutions):

xi,g = [x1,i,g, x2,i,g, . . . , xD,i,g] ∈ i = 1, 2, . . . , NP. (11)

Mutation and crossover operator are applied to individuals in every generation g,
and a new population is generated. Then, in the selection step the individuals of both
populations compete for understanding the next generation. For each individual xi,g,
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under mutation operator, a mutant vector vi,g+1 = [v1,i,g, . . . , vD,i,g] is generated by the
following equation:

vi,g = xr1,g + F (xr2,g − xr3,g) (12)

where r1, r2, r3 belongs to {1, 2, . . . , NP} are randomly chosen, different among them-
selves and with different index i. F ∈ [0, 1] is a constant called spreading factor which
controls the amplification of the differential expansion xr2,g − xr3,g, and NP is at least
four mutation. xr1,g, the vector base, is a random member of the current population,
therefore is the best information that could be shared among the population.

After the mutation, the crossover operator is applied to increase the diversification
of the population. A trial vector ui,g+1 = [u1,i,g, . . . , uD,i,g] is generated by crossing
the target vector xi,g with the corresponding mutant vector vi,g under a crossover rate
CR ∈ [0, 1], for every target vector xi,g:

uj,i,g =
{
vj,i,g if rand[0, 1] ≤ CR o j = randn(j)
xj,i,g otherwise j = 1, 2, . . . , D (13)

where rand j is the jth independent random number uniformly distributed in the range
of [0, 1], randn i is the index chosen randomly from the set 1, 2, . . . , D. CR ∈ [0, 1] is
the crossover parameter that controls the diversity of the population.

The next step is the selection, where it is decided whether the trial vector ui,g+1

would be a member of the population of the next generation (g + 1). For a minimum
optimization problem, ui,g+1 is compared to the initial target individual xi,g by the
following selection criterion:

xi,g+1 =
{
ui,g, if f(ui,g) ≤ f(xi,g)
xi,g, otherwise (14)

where f is the objective function and xi,g+1 is the individual of the new population.
The procedure described above is considered as the standard version of DE. Several
variants of DE have been proposed, depending on the selection of the base vector to
be perturbed, the number and selection of the differentiation vectors and the type of
crossover operators [31].

3.2. Ant colony algorithm

Ant colony optimization algorithm (ACO), also known as ANT, is inspired in the behav-
ior of real colonies of ants whose are able to solve troubles of combinatorial optimization,
that is, some agents works in a simple computational way and they cooperate and com-
municate between them using trails of artificial pheromone, this is used to identify the
ways of next ants [18]. The pheromone density at real ant colonies decreases due evap-
oration and degradation. This effect of evaporation at the ANT is simulated with a
properly defined evaporation rule. Pheromone evaporation is useful on artificial ant
colonies even if it has not a noticeable effect on real ants.

In ANT, each ant is placed on different or the same corners at the beginning of the
problem. The probability equation (15) determines the adyacent node of each ant at
time t:

P kij(t)

{
[τij(t)]

α[ηij(t)]
βP

i∈Ni
[τij(t)]αηij(t)]β

, if k is an allowed selection

0 , otherwise
(15)
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where τij(t) traces amount of pheromones at (i, j) the corners, ηij is the visibility value
between (i, j) corners. This termn varies according to the criterium to solve the problem.
α shows the relative importance of the pheromone trace in the problem. β shows the
importance of the visibility value. Ni set of the node points that has not been chosen
yet.

Ants make the next elections according to the probability equation. A round or
iteration is completed after all the nodes at the problem have been visited. At this
point, the pheromone trace is updated according to next equation [12]:

τij(t+ n) = (1− ρ)τij(t) + ∆τij(t) (16)

ρ is the proportion of pheromone trace evaporated between the time period t and t+ 1
(0 < ρ < 1). τij stands for the pheromone trace of the corner due to the election of the
(i, j) corner during a tour of the ant. This value is computed by equation (17):

∆τkij(t) =
m∑
k=1

τij (17)

m is total number of ants, τkij is the amount of pheromone trace left by the k−th ant at
(i, j) corner. Equation (18) shows the contribute amount of the (k) ant to the pheromone
trace at the (i, j) corner [1]:

∆τkij =
Q

Lk
(18)

where Q is constant, Lk is the tour length of the k−th ant. If the k−th ant used the
(i, j) corner along the tour, then the trace value is calculated according to equation (18),
otherwise, the trace value is zero [1].

3.3. Particle swarm optimization

Particle swarm optimization (PSO) is a population-based stochastic optimization tech-
nique proposed by Kennedy and Eberhart in [17] and [26]. PSO is easy to implement
and effective to explore global solutions for some hard problems. PSO is one of the most
popular optimization techniques due it has been successfully applied in many areas [28] –
[38]. The concept of PSO is to simulate the social interaction behavior of birds flocking
and fish schooling. PSO generates a population of particles randomly positioned in an
n-dimensional search space. Each particle in the population has two vectors, one for
the velocity and other for the position. During each iteration, each particle updates
its velocity and position by learning from the particle’s own historically best position
and the best position found by the entire swarm so far. Let Vi(v1

i , v
2
i , . . . , v

n
i ) and

Xi(x1
i , x

2
i , . . . , x

n
i ) be the ith particle’s velocity vector and position vector, respectively,

and M be the number of particles in a population. The update rules in the original PSO
on the time step t, are given by:

vji (t+ 1) = wvji (t) + c1rand1(pBestji − x
j
i (t)) + c2rand2(gBestji − x

j
i (t)) (19)

xji (t+ 1) = xji (t) + vji (t) (20)
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where pBesti = (pBest1i , pBest
2
i , . . . , pBest

n
i ) is the historically best position of particle

i = (1, 2, . . . ,M), gBest = (gBest1, gBest2, . . . , gBestn) is the historically best position
of the entire swarm, w is the inertia factor, c1 and c2 are two parameters to weigh
the relative importance of pBesti and gBest, respectively, rand1 and rand2 are random
numbers uniformly distributed in [0, 1], and j = (1, 2, . . . , n) represents the jth dimension
of the search space.

4. RESULTS

4.1. Experimental data

With the goal of identify the most sensitive parameters in Sorensen model, a set of
experimental data was recollected. This comes from a diabetics woman, 23 years old,
with 14 year old T1DM diagnosis, 1.68m and 58.5 kg. The patient does not present any
other complication or diseased associated to DM. Collected data were selected from a
set of five normal days, under medical supervision, with a standard ingesta (three meals
per day and some snacks) and without exercise events.

Experimental blood glucose data was recorded by a Paradigm Real-time Insulin Pump
R© and Continuous Glucose Monitoring System (CGMS) by MiniMed Inc R©. Insulin
pump delivers preprogrammed basal rates and preprandial bolus by subcutaneous via.
This information is provided by patient in base of its particular condition, in such
way, that blood glucose level will possible maintain at euglycemic range. Added to
this information, patient provided to insulin pump the contents of carbohydrates for
each meal. Glucose sensor is subcutaneously connected, which in turn is connected
to a wireless transmitter, it provides a sample of intersticial blood glucose every five
minutes to CGMS included in the insulin pump. In this way, it is possible to obtain the
interaction between blood glucose level, insulin infused and meals. After lifetime of the
sensor, the insulin pump and sensor should be disconnect from patient. At this moment,
experimental data with blood glucose concentration, subcutaneous insulin infused and
grams of carbohydrate in meals can be stored in a computer. The following data were
collected for three days and sampling time of five minutes: glucose concentration, infused
insulin and carbohydrates intake.

The Sorensen model considers as input the plasma insulin concentration and the con-
tinuous absorption of glucose by gut. Then these inputs must be computed from infused
insulin and carbohydrate intake data via a dynamical model of subcutaneous insulin
absorption and rate appearance of glucose in gut, respectively. Insulin is infused in two
ways: the basal rate is a continuous infusion to support the basal metabolism whereas
bolus is a single-shot infusion to correct hyperglycemia due to carbohydrate intake.
Both basal rate and bolus are infused by the subcutaneous route and the corresponding
plasma insulin concentration can be computed by the absorption model proposed by
Berger [37]. Regarding the rate of appearance of glucose in gut, the model proposed
by Lehmann is used to compute this input from carbohydrate intake data [38]. The
concentration of insulin in plasma (i(t)) after basal and bolus doses, the rate of glucose
appearance in gut (Γmeal), and the glucose concentration measured by the CGMS (XD)
are shown in Figure 2.
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Fig. 2. Data from T1DM patient: a) Insulin concentration in plasma

after bolus an basal subcutaneous dose (i(t)). b) Carbohydrates

absorption after oral ingestion (Γmeal). c) Blood glucose level

concentration measured by CGMS (XD(t)).

4.2. Estimation results

The data set used to estimate the sensitive parameters has been described in the pre-
viously subsection. It is observed that the dynamics of the blood glucose of Figure 2 is
complex and it is difficult to faithfully reproduce such dynamics with fixed parameters.
Additionally, the information that can be provided to the model is short. That is why
a time window of 150 minutes (30 samples) is chosen. At this time the Sorensen model
is able to reproduce a good approximation of the real dynamics of data. If the time
window is decreased, the approximation would improve but the parameters would be
constantly updated which could generate an overfeed. On the other hand, if the time
window is increased, the approach error would increase. Considering the time window
of 150 minutes, the parameters are adjusted 33 times throughout the three days of data
collection. The parameter identification for the three algorithms is summarized in eight
steps:
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1. Set an initial interval [ti, tf ], where ti = 1 and tf = 30.

2. Extract a time window from the historic data XD.

3. Estimate parameters (p61, p62, p63, p64, p65, p73, p74, p75, p80).

4. Solve the Sorensen model (equations 22-55) from the initial time ti until the final
time tf . Because the measured data is the interstitial glucose concentration, the
state variable of the Sorensen model x8 is considered as the output signal.

5. Compute the fitness error:

ferror =
1
n

tf∑
m=ti

√
(log(x8(m))− log(XD(m)))2 (21)

where n represents the total data used for evaluation in the time window. x8(m)
represents the glucose concentration in every time m from ti to tf . XD(m) stores the
real concentration of blood glucose on time m.

6. If the error can not be reduced anymore go to the next step, otherwise back to the
step 3.

7. To update the time window ti ← ti + 30 tf ← tf + 30.

8. If there is more data in the next time window go to step 2 otherwise end.

The numerical experiments have been performed to estimate the glucose concen-
tration in the interstitial space of the peripheral tissue, (x8), from the parameter sets
computed by the DE, ANT and PSO algorithms. Results of each algorithm are depicted
in Figure 3, Figure 4 and Figure 5, respectively. The estimation error e(m) in (Figure 6)
is defined as the substraction of the measure data XD(m) and the estimated one x8(m)
at each sample m = 1, . . . , 1000.

The experiment depicted in Figure 3 shows real data (circles) and the blood glucose
concentration estimated via DE algorithm (triangles). This algorithm converges in 330
seconds; after that the error is no longer reduced or it is not reduced significantly. The
total mean square error (MSE) of the experiment is 14.52236 mg/dl with a standard
deviation (SD) of 9.04005 mg/dl.

In the same manner, Figure 4 and 5 show the results of estimation the blood glucose
concentration from real data (circles) for ANT (triangles) and PSO (circles) algorithm,
respectively. Regarding ANT algorithm, the convergence time of each estimation window
was 617.78 seconds (MSE=12.02457 mg/dl, SD=7.73827 mg/dl) whereas PSO algorithm
converged at 680.4 seconds (MSE=12.35 mg/dl, SD=7.91054 mg/dl). These results are
summarized in Table 1.

The results show that the three algorithms have a similar estimation error. The
smallest error e(k) has been obtained from the ANT algorithm. DE algorithm has a
short convergence time, but sacrificing the estimation error. Based on these performance
criteria, the two best algorithms are PSO and ANT. Figure 7 shows a comparative graph
of the blood glucose concentration estimated by both algorithms (black and blue dot-line
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Fig. 3. Blood glucose concentration recorded by the CGMS system

and the corresponding blood glucose concentration estimated by DE

algorithm.

Algorithms Convergence time (s) MSE (mg/dl) SD (mg/dl)
DE 330 14.52236 9.04005
ANT 617.78 12.02457 7.73827
PSO 680.40 12.35 7.91054

Tab. 1. Mean square error (MSE) and the standard deviation (SD)

for each estimation algorithm.

for PSO and ANT, respectively) and the real data (red solid-line). Regarding the set
of identified parameters, Table 2 summarized the mean and SD of each parameter and
algorithm through the 33 time windows. It is observed that the ANT algorithm achieves
a smaller SD, which means that it maintains the identified parameters in a narrow range
of variation through time.
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Fig. 4. Blood glucose concentration recorded by the CGMS system

and the corresponding blood glucose concentration estimated by ANT

algorithm.

ANT PSO DE
Parameter Mean SD Mean SD Mean SD

p61 1.058 0.48 1.307 0.7409 1.284 0.779
p62 1.7104 0.624 1.853 0.899 1.666 0.816
p63 2.159 0.8301 2.211 1.105 2.136 1.162
p64 1.409 0.438 1.362 0.643 1.276 0.639
p65 0.809 0.585 1.135 0.8301 0.716 0.706
p73 3.957 1.009 4.009 1.647 3.841 1.584
p74 1.455 0.7006 1.292 1.062 1.4706 1.013
p75 0.341 0.259 0.384 0.387 0.379 0.342
p80 4.995 0.878 5.015 1.485 5.079 1.422

Tab. 2. Mean and SD of the parameters identified by each algorithm.
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Fig. 5. Blood glucose concentration recorded by the CGMS system

and the corresponding blood glucose concentration estimated by PSO

algorithm.

In order to analyze the behaviour of the three evolutionary algorithms presented in
this work, the wilcoxon sign-rank test was used. This is a statistical technique that uses
the fitness error of each time window in the following manner [20]. It is assumed n time
windows from a data set with two observations xi and yi for each time window i. This
results in two paired samples x1, . . . , xn and y1, . . . , yn. Then T − statistic is the sum
of the negative ranges obtained by zi = yi − xi for all i = 1, . . . , n.

In this test we use the following null hypothesis.
H0: the distribution of difference scores in two algorithms is symmetric about zero.

The critical values for the T − statistic are given in the wilcoxon signed-rank table,
according to the level of significance α. The minimum level of significance for the
wilcoxon table is 0.05. In this work is used α = 0.05 for PSO vs DE with n = 33,
α = 0.1 for PSO vs ANT with n = 33 and α = 0.1 for ANT vs DE with n = 33. From
this analysis it is found that T − crit = 170 for α = 0.5 and T − crit = 187 for α = 0.1
(two-tail test).
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Fig. 6. Estimation error of the measure data and the estimated data.

Error of: DE algorithm (upper), ANT algorithm (middle) and PSO

algorithm (bottom).

Since for PSO vs ANT, T − crit = 187 < 278 = T , we can not reject the null
hypothesis, and so we can conclude that there is no significant difference between the
two algorithms. For PSO vs DE, T − crit = 170 > 166 = T , we can reject the null
hypothesis, and so we can conclude that there is a significant difference between the
two algorithms. For ANT vs DE, T − crit = 187 > 182 = T , we can reject the null
hypothesis, and so we can conclude that there is a significant difference between the two
algorithms. A summary of the results are shown in the Table 3.

5. CONCLUSION

The problem of glucose regulation is a difficult task, and it depends largely of the
mathematical model. This explains why many efforts have been made to mimic the
dynamics of T1DM as close to reality as possible. However, in this work was considered
the task of obtaining a model of the DMT1 of a single patient instead of a general model
for a population. In this way, the control algorithms for glucose regulation could be
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Fig. 7. Comparative graph of the blood glucose concentration

estimated by both algorithms (black and blue dot-line for PSO and

ANT, respectively) and the real data (red solid-line).

Parameter of test PSO vs ANT PSO vs DE ANT vs DE
α 0.10 0.05 0.10

tails 2 2 2
t 278 166 182

t− crit 187 170 187
sig no si si

Tab. 3. Parameter of wilcoxon signed-rank test.

developed according to particular conditions of a patient. Then for this purpose, the
sensitive parameters play an important role in the identification of an individual model.
Varying the sensitive parameters it is possible to obtain different conditions of DMT1.
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In another hand, evolutionary algorithms have shown be a powerful tool in identifi-
cation task. Particularly, in the case of the Sorensen model the three algorithms (ANT,
DE and PSP) proved to identify successful (at least locally) the sensitive parameters.
Also, the results obtained by the algorithms are close to the historical real data of the
T1DM patient with an acceptable error. Although the estimation error may seem high,
in fact the error that drives the glucose sensor is higher, ranging , in average, around
16.7 mg/dl and a median absolute relative differences of 13.2. This error is accepted
since it is not significant and in case of control design, the error can be considered in the
synthesis method in such a manner that the resulting control scheme can compensate
it.

In addition, the difference between the three algorithms is acceptable. From the
wilcoxon rank-test it was corroborated that ANT had a better behavior in comparison to
DE. However, there is not significant difference between ANT and PSO, but it can be said
that the algorithm that obtained better performance is ANT because the total MSE and
SD were lower than the other two algorithms. This consideration is made such that the
identification is done off-line, therefore the time of convergence is not relevant. However
in terms of time DE is the one that converges in the shortest time. As future work, the
model obtained can be used to test control algorithms for T1DM in-silico environment.
In addition, the parameters identified can be considered as uncertain parameters, which
would help to design robust controllers through the parametric variation.

A. SORENSEN MODEL

A.1. Glucose subsystem

The subsystem of glucose involves six compartments: 1) brain and central nervous sys-
tem 2) heart and lungs; 3) periphery, concerns adipose tissue and skeletal muscle; 4)
stomach and small intestine; 5) liver 6) kidney. The interconnection of the compart-
ments is direct. Each compartment is a minimal required set of physiological processes
to isolate the unit of glucose metabolism in organs and tissues. The mass in each com-
partment results in a set of eight ODE with nonlinear terms:

Brain (vascular tissue):

dGBV
dt

=
QGB
V GBV

(GH −GBV )− VBI
V GBV TB

(GBV −GBI). (22)

Brain (intersticial tissue):

dGBI
dt

=
VBI
VBITB

(GBV −GBI)−
ΓBGU
VBI

. (23)

Heart and lungs:

dGH
dt

=
1
V GH

(QGBGBV +
(
QGLGL +QGKGK +QGPGPV −QGHGH − ΓRBCU )

)
. (24)

Gut:
dGG
dt

=
QGG
V GG

(GH −GG) +
1
V GG

(Γmeal − ΓGGU ). (25)
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Liver:
dGL
dt

=
1
V GL

(QGAGH +QGGGG −QGLGL + ΓHGP − ΓHGU ). (26)

Kidney:
dGK
dt

=
QGK
V GK

(GH −GK)− ΓKGE
V GK

. (27)

Periphery (vascular tissue):

dGPV
dt

=
QGP
V GPV

(GH −GPV )− VPI
TGP V

G
PV

(GPV −GPI). (28)

Periphery (intersticial tissue):

dGPI
dt

=
VPI

TGP VPI
(GPV −GPI)−

ΓPGU
VPI

. (29)

A.2. Insulin subsystem

Regarding the dynamics of insulin, it is similar to physiological glucose with the differ-
ence that this subsystem considers the pancreas as an additional compartment. This
compartment is removed according to the above consideration to use it as models of
T1DM. Also, the dynamics of insulin in the interstitial fluid of the brain has been over-
looked, because of in the brain cell membrane is impermeable to the passage of insulin
in the cerebrospinal fluid [24]:
Brain (vascular tissue):

dIB
dt

=
QIB
V IB

(IH − IB). (30)

Heart and lungs:

dIH
dt

=
1
V IH

(QIBIB +QILIL +QIKIK +QIP IPV −QIHIH + i(t)). (31)

Gut:
dIG
dt

=
QIG
V IG

(IH − IG). (32)

Liver:
dIL
dt

=
1
V IL

(QIAIH +QIGIG −QILIL + ΓPIR − ΓLIC). (33)

Kidney:
dIK
dt

=
QIK
V IK

(IH − IK)− ΓKIC
V IK

. (34)

Periphery (vascular tissue):

dIPV
dt

=
QIP
V IPV

(IH − IPV )− VPI
T IPV

I
PV

(IPV − IPI). (35)
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Periphery (intersticial tissue):

dIPI
dt

=
VPI
T IPV

I
PI

(IPV − IPI)−
ΓPIC
VPI

. (36)

A.3. Metabolic rates and dynamics of glucagon

The metabolic rates (MRs) contribute in mass balance representing the physiologic pro-
cesses in some compartments. In the glucose subsystem are included seven MRs. In
regard insulin, three MRs are considered. In addition, there are two MRs relative for
the plasma glucagon clearance rate and plasmatic glucagon release rate:
Brain glucose uptake rate:

ΓBGU = 70mg/min. (37)

Red blood cell glucose rate:
ΓRBCU = 10mg/min. (38)

Glut glucose uptake rate:
ΓGGU = 20mg/min. (39)

Periphery glucose uptake rate:

ΓPGU = 35
GPI
86.81

{7.03 + 6.52tanh[0.388(
IPI

5.304− 5.82
)]}. (40)

Hepatic glucose production rate:

ΓHGP = 155M I
HGP {2.7tanh(0.39GC)− f2}

{
1.42− 1.41tanh

[
0.62

(
GL
101
− 0.497

)]}
.

(41)

Hepatic glucose production mediated by insulin:

d

dt
M I
HGP =

1
25

{
1.21− 1.14tanh

[
2.44

(
IL

21.43
− 0.89

)
−M I

HGP

]}
(42)

df2

dt
=

1
65

[
2.7tanh(0.39GC)− 1

2
− f2

]
. (43)

Hepatic glucose uptake rate:

ΓHGU = 20M I
HGU

{
5.66 + 5.66tanh

[
2.44

(
GL
101
− 1.48

)]}
. (44)

Solution of hepatic glucose uptake mediated by insulin:

d

dt
(MHGU )I =

1
25

[
2tanh

(
0.55

IL
21.43

−M I
HGU

)]
. (45)
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Kidney glucose excretion rate:

ΓKGE =

{
71 + 71tanh[0.11(GK − 460)], 0 ≤ GK < 460mg/min

−330 + 0.872Gk , GK ≥ 460mg/min.
(46)

Hepatic insulin clearance rate:

ΓLIC = FLIC [QIAIH +QIGIG + ΓPIR] (47)

ΓLIC = 0.40. (48)

Pancreatic insulin release rate:

ΓPIR = 0.0. (49)

Kidney insulin clearance rate:

ΓKIC = FKIC [QIKIK ] (50)

ΓKIC = 0.30. (51)

Periphery insulin clearance rate:

ΓPIC =
IPI[(

1−FPIC
FPIC

)( 1
QIP

)− ( T
I
P

VPI

)] (52)

ΓPIC = 0.15. (53)

Plasmatic glucagon release rate:

ΓPTR = 2.93− 210tanh
[
4.18

(
GH

91.89
− 0.61

)]
1.31− 0.61tanh

[
1.06

(
IH

15.15− 0.47

)]
.

(54)
Only one compartment was used for modeling the counter-regulatory effect of glucagon
on the glucose-insulin system.

d

dt
GC = 0.0916(ΓPΓR −GC). (55)
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B. NOMINAL PARAMETER VALUES

p1 = QGB
V GBV

p11 = QGG
V GG

p21 = 1
TGP

p31 = VPI
T IPV

I
PV

p41 = 1
τl

p51 = 2

p2 = VBI
V GBV TB

p12 = 1
V GG

p22 = 1
VPI

p32 = QIG
V IG

p42 = 1.21 p52 = 1
τGC

p3 = 1
T−B p13 = 1

V GL
p23 = QIB

V IB
p33 = 1

V IL
p43 = 1.14 p53 = 2

p4 = 1
VBI

p14 = QGA p24 = 1
V IH

p34 = QIA p44 = 1.66 p54 = 0.55

p5 = 1
V GH

p15 = QGG p25 = QIB p35 = QIG p45 = 21.43 p55 = 21.43

p6 = QGB p16 = QGL p26 = QIL p36 = QIL p46 = 0.84 p56 = 1
V GCG

p7 = QGL p17 = QGK
V GK

p27 = QIK p37 = QIK
V IK

p47 = 1
65 p57 = 1

QPI

p8 = QGK p18 = 1
V GK

p28 = QIP p38 = 1
V IK

p48 = 2.7 p58 = TPI
VPII

p9 = QGP p19 = QGP
QGPV

p29 = QIH p39 = 1
T IP

p49 = 0.39

p10 = QGH p20 = VPI
TGP V

G
PV

p30 = QIP
V IPV

p40 = 1
V PI

p50 = 1

Tab. 4. Hemodynamic parameters.

p59 = 155 p64 = 0.62 p69 = 20 p74 = 6.52 p79 = 2.93 p84 = 1.06 p89 = 2.55

p60 = 2.7 p65 = 0.497 p70 = 71 p75 = 0.338 p80 = 2.10 p85 = 0.47 p90 = 9.12

p61 = 0.39 p66 = 5.66 p71 = 0.11 p76 = 70 p81 = 4.18 p86 = 35.0

p62 = 1.42 p67 = 2.44 p72 = 460 p77 = 10 p82 = 1.31 p87 = 0.0098

p63 = 1.41 p68 = 1.48 p73 = 7.03 p78 = 20 p83 = 0.61 p88 = 5.82

Tab. 5. Metabolic parameters.
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Barragán 1421, Guadalajara, Jalisco. México.
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