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Nil series from arbitrary functions in group theory

Ian Hawthorn

Abstract. In an earlier paper distributors were defined as a measure of how close
an arbitrary function between groups is to being a homomorphism. Distributors
generalize commutators, hence we can use them to try to generalize anything
defined in terms of commutators. In this paper we use this to define a general-
ization of nilpotent groups and explore its basic properties.
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1. Function conjugation

A notion of function conjugation was introduced by Hawthorn and Guo in [2].
If f : G → H is an arbitrary function between finite groups and a ∈ G, then

we define a new function fa(x) = f(a)−1f(ax) which we call conjugate of f by a.
Clearly f is a group homomorphism if and only if fa = f for all a ∈ G. Consi-

der for example the inverse function (−1): g 7→ g−1. Then (−1)a(x) = ax−1a−1 =
[(−1)(x)]a, hence function conjugation generalizes the usual conjugate.

Note that fa(1) = 1, hence conjugation maps the set of all functions onto the
set of identity preserving ones. Furthermore function conjugation defines a group
action of G on the set of identity preserving functions mapping from G to H since
f1 = f and (fa)b = fab. Homomorphisms are precisely the functions invariant
under this action. It follows that the number of function conjugates of a given
identity preserving function f is the index of the stabilizer

StabG(f) = {x ∈ G : f(xg) = f(x)f(g) ∀ g ∈ G}.

Our function action was defined in terms of multiplication from the left. We
could also have defined an action using multiplication from the right. We in-
troduce temporary notation f |x>(g) = fx(g) for the action from the left and
define action from the right by f<x|(g) = f(gx−1)f(x−1)−1. Then f<1| = f and
(f<a|)<b| = f<ab| so this is indeed an action.

We might expect that the actions from the left and right are related. In fact
they are equivalent. An intertwining map is given by f (−1)(x) = f(x−1)−1.
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2 Hawthorn I.

Note that (f (−1))(−1) = f hence f 7→ f (−1) is of order two and in particular
is a bijection. One can easily check that

(f<x|)(−1) = (f (−1))|x>,

(f |x>)(−1) = (f (−1))<x|,

so this defines an equivalence between the left and right actions.
Because the two actions are equivalent we will focus our attention on the left

action and will revert to our initial less cumbersome notation. We can also use
((f (−1))x)(−1) to refer to the right action if necessary.

Function conjugation is related to the notion of a planar function studied by
P. Dembowski in [1] and the others in [3]. A function f : G → H is planar if the
functions fu(x) = f(ux)f(x)−1 are bijections for all u which of course requires
that G and H have the same order. Such a function generates a projective plane
and is of interest for that reason.

In our notation fu(x) = f<x−1|(u). However whereas we are interested in this
expression as a collection of functions of u, in planar function theory it is treated
as collection of functions of x. The bijection condition in the definition of a planar
function requires that all function conjugates of f be completely different in the
sense that fa(x) = f b(x) for some x if and only if a = b. Hence planar functions
can be viewed as functions that are the opposite of homomorphisms since their
conjugates are as different from each other as possible.

The stabilizer for the right action is

StabG(f) = {x ∈ G : f(gx) = f(g)f(x) ∀ g ∈ G}.

Our intertwining map tells us that the stabilizer under the right action of the
function f is the same as the stabilizer under the left action of the function f (−1).

The function (−1): g 7→ g−1 has the property that (−1)(−1) = (−1). Hence
the stabilizers under the left and right actions of the function (−1) are the same
and both are equal to the centre Z(G). We can thus regard stabilizers of functions
as generalizations of the centre. Since our aim is to generalize nilpotency these
subgroups will be vitally important, you might even say central, to our discussion.
Deciding how to name them is complicated by the fact that there are two of them
and they need not be equal. For reasons that will become clear later we will call
the stabilizer for the right action the f -centre Zf(G) of G so that

Zf (G) = {z ∈ G : f(gz) = f(g)f(z) ∀ g ∈ G}.

Hence the stabilizer StabG(f) for the more standard left action is Zf(−1)

. The
reasons for this apparently perverse choice will become clear later.

If X ≤ G and X ≤ Zf (G) then we say that; X is an f -central subgroup of G;
G f -centralizes X; and, f is an X-centralizing function; depending on which of
X , G, or f is the focus of our attention.
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We noted that since (−1)(−1) = (−1) the left and right centres for this function
are equal. This will also be the case for any function f with the property that
f (−1) = f . We call such a function inverse preserving as it preserves the rela-
tionship of being inverse. This is an important and interesting class of functions.
Inverse preserving functions are not difficult to directly construct. Furthermore
any odd collection of identity preserving functions which is closed under the map
f 7→ f (−1) must contain an inverse preserving function.

If f is inverse preserving then in general fa need not be inverse preserving. If
all function conjugates of f are inverse preserving then we say that f is strongly

inverse preserving. The inverse function is strongly inverse preserving as are all
homomorphisms. This is an interesting class of functions worthy of further study.

2. Distributors

Distributors were also defined in [2]. They provide us with another measure of
how closely an arbitrary function resembles a homomorphism.

If f : G → H is an arbitrary function between finite groups and x, y ∈ G then
we define the f -distributor [x, y; f ] of x and y to be

[x, y; f ] = f(y)−1f(x)−1f(xy) = f(y)−1fx(y).

It follows that f(xy) = f(x)f(y)[x, y; f ].
Clearly [x, y; f ] = 1 for all x, y ∈ G if and only if f is a homomorphism

and so the set of distributors provides a measure of how close f is to being
a homomorphism. Distributors for the function (−1): g 7→ g−1 are commutators

[x, y; (−1)] = yxy−1x−1 = [y−1, x−1].

Hence distributors can be regarded as generalized commutators. They are also
related to group cohomology. For example expanding f(xyz) using distributors
gives the cocycle identity

(1) [y, z; f ][x, yz; f ] = [x, y; f ]f(z)[xy, z; f ].

Another useful elementary identity is the product-conjugate identity

(2) [xy, z; f ] = [x, z; f ][y, z; fx]

which can be easily checked by simply expanding both sides.
In the defining equation f(xy) = f(x)f(y)[x, y; f ] we chose to place the dis-

tributor on the right. We could equally well have chosen to place it on the left
using the defining equation f(xy) = [f ; x, y]f(x)f(y) where the placement of the
function on the left inside the brackets has been used to distinguish this from the
standard definition. These other-handed distributors are related to the standard
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ones via the equations

[f ; x, y] = [x, y; f ](f(x)f(y)),

[f ; x, y]−1 = [y−1, x−1; f (−1)].

If X ≤ G we define its f -image f(X) ≤ H by

f(X) = 〈f(x) : x ∈ X〉.

If K ≤ H and K ≤ f(X) then we will say that X is an f -cover of K. Note that
the set of possible f -covers is generally not closed under intersection. The notions
of f -image and f -cover relate subgroups of G and subgroups of H and are vitally
important in what follows.

We also define the closed f -image fG(X) ≤ H to be

fG(X) = 〈fg(x) : x ∈ X, g ∈ G〉.

Clearly fG(X) = 〈fg(X) : g ∈ G〉.
If X, Y ≤ G then we define their distributor [X, Y ; f ] ≤ H by

[X, Y ; f ] = 〈[x, y; f ] : x ∈ X, y ∈ Y 〉.

The f -center was defined earlier as Zf(G) = {z ∈ G : f(gz) = f(g)f(z)}. We
note that [G, Zf (G); f ] = 1 and [G, X ; f ] = 1 if and only if X ≤ Zf (G). The other

kind of center Zf(−1)

(G) can also be described in this way with [Zf(−1)

(G), G; f ] = 1

and [X, G; f ] = 1 if and only if X ≤ Zf(−1)

(G). These generalize a similar result
for commutators and the ordinary center where [X, G] = [G, X ] = 1 if and only
if X ≤ Z(G).

In general anything which can be described in terms of commutators admits
a generalization using distributors. For example consider normality. If X ≤ G
we have X E G if and only if [G, X ] ≤ X . We can generalize this as follows. If
X ≤ G we say X is f -normal in G if [G, X ; f ] ≤ f(X). Clearly the f -center is
f -normal.

Also if X is f -normal and Y ≤ X with [G, X ; f ] ≤ f(Y ) then clearly Y is also
f -normal since [G, Y ; f ] ≤ [G, X ; f ] ≤ f(Y ). In particular every subgroup of the
f -center is f -normal.

Similarly if X, Y ≤ G with [Y, X ; f ] ≤ f(X) we will say that X is f -normalized

by Y .
In general there is no unique maximal subgroup Y which f -normalizes X , hence

we cannot define something like an f -normalizer. To demonstrate this we give an
example. Let g ∈ G, g 6= 1 and let f : G → Z2 be the characteristic function to
the cyclic group Z2 of order 2 defined (using additive notation) by

f(x) =

{

0, x 6= g,
1, x = g.
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Then [y, x; f ] = 0 unless exactly one of the three elements y, x and yx is equal to
g in which case [y, x; f ] = 1.

Now suppose 1 6= X ≤ G and g /∈ X . Then f(X) = 0 and Y will f -normalize
X if and only if g /∈ Y and g /∈ yX . In general there is no unique maximal
subgroup with these properties for a given g /∈ X . Consider G = A5, g = (12)(34)
and X = 〈(123)〉 then every Sylow 5-subgroup of A5 f -normalizes X , but the
group these generate is A5 which clearly does not.

If X, Y ≤ G we say that Y f -centralizes X if [Y, X ; f ] = 1. Once again while
we can speak of one subgroup f -centralizing another, we cannot in general speak
of the f -centralizer, a unique maximal subgroup which f -centralizes X . The
previous example also suffices to show this.

In some special cases however a centralizer does exist. For example there is
a unique maximal subgroup Y characterized by the property that [Y, G; f ] = 1,

namely the group Zf(−1)

. So G itself always has a f -centralizer. Furthermore for
some functions (like the function (−1)) f -centralizers exist for every subgroup.

In [2] we proved

Proposition 2.1 ([G, G; f ]E f(G)). If K E f(G) and π : f(G) → f(G)/K is the

natural projection map then πf is a homomorphism if and only if [G, G, f ] ≤ K.

Note that πf is a homomorphism if and only if πf(g) = πfa(g) for all a, g ∈ G.
We need a generalization of this result. First a lemma.

Lemma 2.2. If f : G → H is arbitrary, X ≤ G and m ∈ G, then

[G, X ; f ] = [G, X ; fm].

Proof: The product-conjugate identity gives [g, x; fm] = [m, x; f ]−1[mg, x; f ].
Hence [G, X ; fm] ⊆ [G, X ; f ] and the result follows by symmetry. �

We can now state our generalization.

Proposition 2.3. If f : G → H is arbitrary and X ≤ G, then [G, X ; f ]EfG(X).
Furthermore if K E fG(X) and π : fG(X) → fG(X)/K is the natural projection,

then πf(x) = πfg(x) for all x ∈ X , g ∈ G if and only if [G, X ; f ] ≤ K.

Proof: To show that [G, X ; f ]EfG(X) it is enough to show that if x, a ∈ X and
g, m ∈ G then [g, x; f ]f

m(a) ∈ [G, X ; f ]. The product-conjugate identity applied
to [m−1g, x; fm] gives [g, x; f ] = [m−1, x; fm]−1[m−1g, x; fm] and hence

[g, x; f ]f
m(a) = [m−1, x; fm]−fm(a)[m−1g, x; fm]f

m(a).

This expression is generated by terms of the form [k, x; fm]f
m(a) where k ∈ G

and it is therefore enough to show that each such term lies in [G, X ; f ]. But from
the cocycle identity [k, x; fm]f

m(a) = [x, a; fm][k, xa; fm][kx, a; fm]−1 so these
terms all lie in [G, X ; fm], and [G, X ; fm] = [G, X ; f ] by Lemma 2.2. Hence
[G, X ; f ] E fG(X) as claimed.
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Let K E fG(X) with natural projection π : fG(X) → fG(X)/K. If x ∈ X
and g ∈ G then πf(x) = πfg(x) ⇔ (π

(

f(x))−1fg(x)
)

= 1 ⇔ [g, x; f ] ∈ K. So
πf(x) = πfg(x) ∀x ∈ X, g ∈ G if and only if [G, X ; f ] ≤ K as claimed. �

Corollary 2.4. If f : G → H and X ≤ G, then f(X)[G, X ; f ] = fG(X).

Proof: Since [G, X ; f ] E fG(X) then f(X)[G, X ; f ] is a semidirect product giv-
ing a well defined subgroup of fG(X). It is therefore enough to show all gen-
erating elements of fG(X) are in f(X)[G, X ; f ]. But fG(X) is generated by
elements of the form fg(x) where g ∈ G and x ∈ X . And fg(x) = f(x)[g, x; f ] ∈
f(X)[G, X ; f ] so f(X)[G, X ; f ] = fG(X) as claimed. �

Corollary 2.5. If X ≤ G then X is f -normal if and only if fG(X) = f(X).

Proof: By definition X is f -normal if and only if [G, X ; f ] ≤ f(X). But
[G, X ; f ] ≤ f(X) ⇔ f(X)[G, X ; f ] ≤ f(X) ⇔ fG(X) ≤ f(X) ⇔ fG(X) =
f(X). �

3. Nilmorphisms and f-nil groups

Consider an arbitrary f : G → H . We say that f is a nilmorphism and also
that G is an f -nil group if there is a chain of subgroups G = G0 ≥ G1 ≥
G2 ≥ · · · ≥ Gn = 1 with the property that [G, Gi; f ] ≤ f(Gi+1) for all i. We call
such a chain an f -central chain. Note that all the groups Gi in an f -central chain
are f -normal although of course they need not be normal in the ordinary sense.

This definition generalizes nilpotency as nilpotent groups are precisely (−1)-nil
groups. We are interested in seeing to what extent the theory of nilpotent groups
can be extended to f -nil groups. This of course will very much depend on the
nature of the function f which must be defined on the group being considered. It
is only meaningful to consider whether the specific group G which is the domain
of f is f -nil, and for that reason it is usually not meaningful to consider f -nil
groups as a class.

The exception to this is where f denotes a class of functions which is well-
defined on every group. Examples include the power functions (n) : x 7→ xn and
the p-part function πp which maps every element to its p-part where p is a prime.

We can generalize solubility in the same way. We say that f is a solmorphism

and that G is an f -sol group if there is a chain of subgroups G = G0 ≥ G1 ≥
G2 ≥ · · · ≥ Gn = 1 with the property that [Gi, Gi; f ] ≤ f(Gi+1) for all i. We call
such a chain an f -chain.

This paper will focus on nilmorphisms. Clearly every nilmorphism is a solmor-
phism and from f -nil follows f -sol.

We begin by looking at subgroups of f -nil groups and asking whether they
are in some sense also f -nil. An obvious restriction is to subgroups which are
f -normal. However even in this case the answer in general is no, and we begin
with an example of this.
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Example 3.1. Let H ≤ G and let {xi} be a set of coset representatives so that
{xiH} is the set of cosets. Assume that x0 = 1 so that 1 is the coset representative
for the coset H = 1H . Then every g ∈ G can be uniquely written in the form
g = xih for some xi and h ∈ H . Define f : G → H by f(g) = f(xih) = h so that
f projects onto the H component. Then we claim that f is a nilmorphism, G is
f -nil and G ≥ H ≥ 1 is an f -central series.

Proof: Note that if g ∈ G and h ∈ H then f(h) = h and f(gh) = f(g)h.
Clearly [G, G; f ] ≤ H = f(H). And also [g, h; f ] = f(h)−1f(g)−1f(gh) =
h−1f(g)−1f(g)h = 1 so [G, H ; f ] = 1 = f(1). Hence G ≥ H ≥ 1 is f -central, G is
f -nil and f is a nilmorphism as claimed. �

Now consider the particular case where G = S3 = 〈x, y : x2 = y3 = 1, xy =
y2x〉 and H = 〈y〉. Then {1, x} is a set of coset representatives. Define f : G → 〈y〉
via the method in Example 3.1. Then G ≥ 〈y〉 ≥ 1 is f -central, G is f -nil and f
is a nilmorphism.

Now consider M = 〈xy〉 which is a cyclic subgroup of order 2. Then [G, M ; f ] =
[M, M ; f ] = 〈y〉 = f(M) so M is an f -normal subgroup of G. However clearly
M is not f -nil since the only proper subgroup of M is 1 and f(1) = 1 does not
contain [M, M ; f ] = 〈y〉. Hence there is no f -central series for M .

So in general the f -nil property is not inherited by subgroups. But for some
functions f , it will be so inherited.

We say that a function f : G → H is intersection preserving if for subgroups
X, Y ≤ G we have f(X ∩ Y ) = f(X) ∩ f(Y ). In general we only know that
f(X ∩ Y ) ≤ f(X) ∩ f(Y ).

Note that the function in the previous example is not intersection preserving
since f(〈y〉) ∩ f(〈xy〉) = 〈y〉 while f(〈y〉 ∩ 〈xy〉) = f(1) = 1.

Proposition 3.2. If f : G → H is intersection preserving, G is f -nil and M ≤ G
then the restriction f |M : M → H of f to M is also intersection preserving and

M is f |M -nil.

Proof: Clearly f |M is intersection preserving.
Let G = G0 ≥ G1 ≥ . . . ≥ Gn = 1 be an f -central chain. It is enough to show

that M = M ∩ G0 ≥ M ∩ G1 ≥ . . . ≥ M ∩ Gn = 1 is an f |M -central chain.
But [M, M ∩ Gi; f |M ] ≤ [M, M ; f ] ≤ f(M) and also [M, M ∩ Gi; f |M ] ≤

[G, Gi; f ] ≤ f(Gi+1). Hence [M, M ∩Gi; f |M ] ≤ f(M)∩ f(Gi+1) = f(M ∩Gi+1)
and the result follows. �

We will write f instead of f |M where this does not cause confusion, and will
therefore describe this result by saying that subgroups of f -nil groups are f -nil if
f is intersection preserving.

If we restrict our attention to only f -normal subgroups, then since all sub-
groups in a central chain are f -normal, we really only need the f -intersection
property to hold for f -normal subgroups. We leave it to the reader to construct
the appropriate proposition which will have essentially the identical proof.

The intersection preserving condition in these results is sufficient but not ne-
cessary. Intersection preserving is actually a very strong property for a function
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between finite groups. Even homomorphisms are not in general intersection pre-
serving as can be seen by considering the quotient map π : S3 → S3/A3 and any
two Sylow 2-subgroups of S3. Of course if f : G → H is a homomorphism then
all distributors are trivial so every subgroup is f -nil.

This failure of the f -nil property to be inherited by subgroups, even f -normal
ones, has important consequences. It means for example that there is no f -
equivalent of the descending central series. The descending central series for
nilpotent groups is a central series constructed via the greedy algorithm starting
at the top with L0 = G and defining Li+1 = [G, Li].

A similar construction via the greedy algorithm in the f -nil case would require
us to define Li+1 to be some minimal f -cover of [G, Li; f ]. Unfortunately this is
not uniquely determined and a choice is required to pick a minimal f -cover. In
our example both 〈y〉 and 〈xy〉 are minimal f -covers of [G, G; f ] and therefore
are possible first steps in a greedy algorithm. However only the 〈y〉 choice can be
completed to give an f -central series.

If G is f -nil and {Gi} is f -central then we know that at each step Gi+1 is an
f -cover of [G, Gi; f ] and therefore Gi+1 must contain at least one minimal f -cover
Mi+1 of this group. If we replace Gi+1 with Mi+1 the resulting series will still be
f -central. By applying this idea repeatedly (and systematically) we can obtain
an f -central series where Gi+1 is a minimal f -cover of [G, Gi; f ] at each step.
In other words at least one route through the greedy algorithm will lead us to
a central series. Unfortunately a wrong choice at any step may lead us to a dead
end.

The greedy algorithm will stop if we arrive at an f -normal subgroup M ≤ G
where M itself is a minimal f -cover of [G, M ; f ]. We define a subgroup M of G
to be f -problematic if M is f -normal and is a minimal f -cover of [G, M ; f ]. The
subgroup 〈xy〉 in our example is f -problematic. The intersection property ensures
that f -problematic subgroups cannot exist.

To see this assume f is intersection preserving and G is f -nil with f -central
series G = G0 ≥ G1 ≥ . . . Gn = 1. Assume M ≤ G is f -problematic. Choose i so
that M ≤ Gi but M � Gi+1. Then [G, M ; f ] ≤ f(M) ∩ f(Gi+1) = f(M ∩ Gi+1)
by the intersection property. But this contradicts the f -problematic property of
M since M ∩ Gi+1 is a smaller cover.

If f is intersection preserving then because there are no f -problematic sub-
groups, the greedy algorithm will always give an f -central series no matter what
choices we make at each step.

Proposition 3.3. If G has no f -problematic subgroups then G is f -nil by the

greedy algorithm, and furthermore so is every f -normal subgroup of G.

Proof: If there are no f -problematic subgroups then the greedy algorithm will
not halt until the trivial subgroup is reached. Hence it will generate an f -central
series and so G is f -nil. Furthermore we can start up the greedy algorithm at any
f -normal subgroup X ≤ G thereby generating a sequence X = X0 ≥ X1 ≥ . . . ≥
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Xn = 1 with [G, Xi; f ] ≤ f(Xi+1). But this implies [X, Xi; f ] ≤ f(Xi+1) and so
X is f -nil. �

4. Ascending series and the f-boundary

We next look at whether ascending f -central series exist for f -nil groups, that
is whether f -central series can be constructed via the greedy algorithm working
upwards from the trivial subgroup.

To facilitate the discussion in this section consider an f -central series numbered
in ascending fashion with 1 = G0 ≤ G1 ≤ . . . ≤ Gn = G and where therefore
[G, Gi+1; f ] ≤ f(Gi). If each step in such a series is maximal with this property
we will say that the series is ascending. We begin by looking at the group G1 in
the first step.

Since [G, G1; f ] = 1 then [g, a; f ] = 1 and hence f(ga) = f(g)f(a) for all g ∈ G
and a ∈ G1. We have met this property before. In particular the subgroup Zf(G)
consists of precisely the elements a that satisfy this property. Hence G1 ≤ Zf(G),
and since Zf (G) is maximal with the property that [G, Zf (G); f ] = 1, if our series
is to be ascending we must have G1 = Zf (G). Thus in contrast to the descending
case the greedy algorithm involves no choice in the first step, which is promising.

Let us now consider a general step Gi ≤ Gi+1 and what it would mean for this
step to be maximal. By the f -central property the elements of Gi+1 all have the
property that [g, a; f ] ∈ f(Gi) for all a ∈ Gi+1 and g ∈ G. This leads us to make
the following definition.

If f : G → H is an arbitrary function between finite groups and M ≤ G then
the f -boundary Bf (M) of M is the set

Bf (M) = {a ∈ G : [g, a; f ] ∈ f(M) for all g ∈ G and f(a) ∈ NH(f(M))}.

Note that the f -center is the f -boundary of 1. The second part of this definition
is needed to ensure that Bf (M) is a subgroup. In particular it allows us to show
the following.

Proposition 4.1. If M is f -normal then M ≤ Bf (M) ≤ G and Bf (M) is also

f -normal.

Proof: Suppose a, b ∈ Bf (M). We wish to show that ab ∈ Bf (M).
Let g ∈ G. Then the cocycle identity gives

(3) [g, ab; f ] = [a, b; f ]−1[g, a; f ]f(b)[ga, b; f ]

and the three terms on the right are all in f(M) using the definition of the f -
boundary and the fact that M is f -normal.

Also f(ab) = f(a)f(b)[a, b; f ] where f(a), f(b) ∈ NH(f(M)) and [a, b; f ] ∈
f(M) ≤ NH(f(M)). Hence f(ab) ∈ NH(f(M)).

We can conclude that ab ∈ Bf (M) and hence the f -boundary is closed un-
der product. For finite groups this is sufficient to show that Bf (M) ≤ G.
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Checking the definition and using f -normality it is straightforward to verify that
M ≤ Bf (M). We thus have [G, Bf (M); f ] ≤ f(M) ≤ f(Bf (M)) and so Bf (M)
is also f -normal. �

We can apply this result repeatedly to construct an f -central series by setting
G0 = 1 and defining Gi+1 = Bf (Gi). We call this the ascending boundary series,
and if it ascends all the way to G then G will be f -nil.

What is less clear however is whether, when G is f -nil, the ascending boundary
series must always ascend to the top. To understand the issue consider an f -
central series G = Gn ≥ Gn−1 ≥ . . . ≥ G1 ≥ G0 = 1 for the f -nil group G. Let
us look at what this tells us about boundaries. We have [G, Gi+1; f ] ≤ Gi which
suggests that we might have Gi+1 ≤ Bf (Gi). If this were true it would force the
ascending boundary series to reach the top. However to prove this we would also
need f(Gi+1) ≤ NH(f(Gi)), and it is not at all clear why this should be true.

We do not however know of a counterexample, so the question remains open.
Nilpotent groups are (−1)-nil groups; and (−1)-normal subgroups are simply

normal. However in general f -normal and normal are not the same. The awk-
wardness with the ascending boundary series arises because of this clash between
the two types of normality. The f -normal property is the one linked most closely
to the function f , but ordinary normality remains vitally important for considera-
tions relating to subgroups and quotients. Hence we cannot simply replace every
mention of normality in the theory of nilpotency with f -normality and expect
everything to work.

The ascending central series for nilpotent groups for example is usually defined
in terms of quotients and thus makes heavy use of this coincidence between (−1)-
normality and normality. Since we cannot expect in general to be able to take
the quotient of an f -normal subgroup we cannot use this approach in the general
case.

The question of how f -nil groups behave under quotient is however worthy of
study. In particular we would like to answer such basic questions as whether the
quotient of an f -nil group must in some sense be f -nil.

5. Quotients

If f : G → H and N E G then in the case that G is f -nil we would like to
know what we can conclude about G/N . To consider this question we first need
to obtain from f a function defined on G/N . Clearly f(xN) = f(x) need not
be a well defined function on the quotient group, however we may hope to make
it well defined by combining it with a projection map π : H → H/K for some
suitable K E H .

In order that πf gives a well defined function on G/N we need πf(g) = πf(gn)
for all g ∈ G and n ∈ N . It follows that we must have f(g)−1f(gn) = fg(n) ∈ K,
and so fG(N) ≤ K. As it is not necessarily the case that fG(N)EH we will also
need to close it under conjugation in H . Hence we choose K = (fG(N))H , the
subgroup generated by all conjugates of fG(N) in H . If π denotes the quotient
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by this subgroup, then f : gN 7→ πf(g) gives a well defined function from G/N
to H/K.

Proposition 5.1. With the notation above, if G is f -nil then G/N is f -nil.

Proof: Let G = G0 ≥ G1 ≥ . . . ≥ Gn = 1 be an f -central chain. We claim that
G/N = G0N/N ≥ G1N/N ≥ . . . ≥ GnN/N is an f -central chain.

It is enough to show that [G/N, GiN/N ; f ] ≤ f(Gi+1N/N). But if g ∈ G and
x ∈ Gi then

[gN, xN ; f ] =
(

f(xN)
)−1 (

f(gN)
)−1

f(gN.xN)

= π
(

f(x)−1f(g)−1f(gx)
)

= π[g, x; f ] ∈ π (f(Gi+1))

and π(f(Gi+1)) = 〈πf(x) : x ∈ Gi+1〉 = 〈f(xN) : x ∈ Gi+1〉 = f(Gi+1N/N). �

Note that if f(G) � H then first restricting f to map into f(G) may strengthen
the result by allowing a smaller normal subgroup K. It is perhaps rather surpris-
ing that the f -nil property is inherited by quotients when it is not inherited by
subgroups.

A limited converse is also of interest.

Proposition 5.2. Let f : G → H be arbitrary and let N E G with f(N) E f(G).

Assume f(G) = H by restricting the range if necessary. Let K =
(

fG(N)
)H

E H

and define f : G/N → H/K by composition of f with the quotient into H/K as

described above.

If G/N is f -nil and N is f -central then G is f -nil.

Proof: Since N is f -central then [G, N ; f ] = 1 and fG(N) = f(N). Also f(N)E
f(G) = H by assumption. Hence K = f(N).

Let G/N = G0/N ≥ G1/N ≥ . . . ≥ Gn/N = N/N be an f -central chain for
G/N . We claim that G = G0 ≥ G1 ≥ . . . ≥ Gn = N ≥ 1 is an f -central chain
and therefore G is f -nil.

We already noted that [G, N ; f ] = 1 so it is enough to show that [G, Gi; f ] ≤
f(Gi+1). Let g ∈ G and x ∈ Gi. Then [gN, xN ; f ] ∈ f(Gi+1) and hence [g, x; f ] ∈
f(Gi+1)K. But K = f(N) ≤ f(Gi+1) so [g, x; f ] ∈ f(Gi+1). It follows that
[G, Gi; f ] ≤ f(Gi+1) as claimed. �

This generalizes the result that a group is nilpotent if and only if G/Z(G) is
nilpotent. However our generalization is much weaker. Whereas every nilpotent
group admits a decomposition into a center and a nilpotent quotient, f -nil groups
cannot always be decomposed in this way.

One problem is that the f -center Zf (G) need not be normal in G so we cannot
always take a quotient. And another problem is that even when Zf(G) is normal,
unless we also have f(Zf(G)) E f(G) the kernel K will be too big to allow us to
make inferences about f from the properties of f . The two assumptions in the
proposition, that N E G and that f(N) E f(G) are required to deal with these
issues.
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6. Nilmorphisms as a set of functions

As well as studying f -nil groups as a generalization of nilpotency these defi-
nitions also open up the study of nilmorphisms as a generalization of homomor-
phism. The most obvious question in this area is whether the composition of
nilmorphisms must be a nilmorphism and consequently whether the autonilmor-
phisms of G form a group.

Let us look at the first of these questions, namely whether the composition
of nilmorphisms is a nilmorphism. Consider a nilmorphism f : G → H . Let
ι : K → G be the injection homomorphism for some subgroup K ≤ G. Then ι
is a nilmorphism since homomorphisms are nilmorphisms. In this situation the
composition ιf will be a nilmorphism if and only if K is f -nil as a subgroup of G.

So if the composition of nilmorphisms was always a nilmorphism we would be
able to prove that subgroups of f -nil groups were always f -nil; something which
we know to be false because we have constructed a counterexample. We conclude
that the composition of two nilmorphisms need not be a nilmorphism.

The fact that nilmorphisms are not closed under composition suggests that we
might try extending the definition by closing the collection of nilmorphisms under
composition.

Definition 6.1. A subnilmorphism, also alled a composite nilmorphism, is a func-
tion which can be written as a composition of nilmorphisms.

The collection of finite groups and composite nilmorphisms forms a category.
However we pay a price for this in terms of computability. Determining whether
a particular function is a subnilmorphism requires us to consider chains of func-
tions between finite groups whose composition gives us that function. Since this
involves arbitrary embeddings there are an infinite number of such chains. We
therefore cannot be assured of a finite halting algorithm for determining whether
a particular map between groups is a subnilmorphism.

If however we restrict our attention only to endomorphisms of G then things
are a little bit nicer.

Definition 6.2. An autosubnilmorphism is a composition of invertible nilmor-
phisms from G to G.

Autosubnilmorphisms are composite nilmorphisms, but the converse may not
be true. As autosubnilmorphisms of a finite group G are constructed within the
finite set of invertible functions from G to G there are no issues of computability
in this definition. The invertible autosubnilmorphisms from G to G form a group
which we call the autosubnilmorphism group. It contains the automorphism group
of G and is contained within the group of invertible functions from G to G.
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7. Conclusion

The generalization of nilpotency to f -nil groups defined in this paper seems
like a fruitful and potentially useful one. While this paper has concentrated on
the basic questions which might be described as establishing a general theory of
nilmorphisms and f -nil groups, applications are most likely to arise with respect
to a specific function f , or a specific class of functions chosen to suit a particular
group or context. Nilpotency is the specific case where f = (−1). It is reasonable
to hope that other choices of f might also prove useful.
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