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Abstract. Let K/Q be an algebraic number field of class number one and let OK be its
ring of integers. We show that there are infinitely many non-Wieferich primes with respect
to certain units in OK under the assumption of the abc-conjecture for number fields.
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1. Introduction

An odd rational prime p is called Wieferich prime if

(1.1) 2p−1 ≡ 1 (mod p2).

Wieferich in [8] proved that if an odd prime p is non-Wieferich prime, i.e., p satisfies

2p−1 6≡ 1 (mod p2),

then there are no integer solutions to the Fermat equation xp+yp = zp, with p ∤ xyz.

The known Wieferich primes are 1093 and 3511 and according to the PrimeGrid

project (see [5]), these are the only Wieferich primes less than 17 · 1015. One of the
unsolved problems in this area of research is to determine whether the number of

Wieferich or non-Wieferich primes is finite or infinite. Instead of the base 2 if we

take any base a, then p is said to be a Wieferich prime with respect to the base a if

(1.2) ap−1 ≡ 1 (mod p2),
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and if the congruence (1.2) does not hold then we say that p is non-Wieferich prime

with respect to the base a. Under the famous abc-conjecture (defined below), Silver-

man in [6] proved that given any integer a, there are infinitely many non-Wieferich

primes with respect to the base a. He established this result by showing that for any

fixed α ∈ Q×, α 6= ±1, and assuming the truth of the abc conjecture,

card{p 6 x : αp−1 6≡ 1 (mod p2)} ≫α log x as x → ∞.

In [1] Graves and Murty extended this result to primes in an arithmetical progression

by showing that for any a > 2 and any fixed k > 2, there are≫ log x/log log x primes

p 6 x such that ap−1 6≡ 1 (mod p2) and p ≡ 1 (mod k), under the assumption of the

abc conjecture.

In this paper, we study non-Wieferich primes in algebraic number fields of class

number one. More precisely, we prove

Theorem 1.1. Let K = Q(
√
m) be a real quadratic field of class number one

and assume that the abc-conjecture holds true in K. Then there are infinitely many

non-Wieferich primes in OK with respect to the unit ε satisfying |ε| > 1.

Theorem 1.2. Let K be any algebraic number field of class number one and

assume that the abc-conjecture holds true in K. Let η be a unit in OK satisfying

|η| > 1 and |η(j)| < 1 for all j 6= 1, where η(j) is the jth conjugate of η. Then there

exist infinitely many non-Wieferich primes in K with respect to the base η.

The plan of this article is as follows. In Section 2, we define the abc-conjecture for

number fields. In Section 3, a brief introduction to Wieferich/non-Wieferich primes

over number fields will be given and in Sections 4 and 5, we prove Theorem 1.1 and

Theorem 1.2, respectively.

2. The abc-conjecture

The abc-conjecture propounded by Oesterlé and Masser (1985) states that given

any δ > 0 and positive integers a, b, c such that a+ b = c with (a, b) = 1, we have

c ≪δ (rad(abc))1+δ,

where rad(abc) :=
∏

p|abc

p.

The abc-conjecture has several applications, the reader may refer to [7], [2], [3] for

details.
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To state the analogue of the abc-conjecture for number fields, we need some prepa-

rations, which we do below. The interested reader may refer to [7], [2] for more

details.

Let K be an algebraic number field and let VK denote the set of primes on K,

that is, any v in VK is an equivalence class of the norm on K (finite or infinite). Let

‖x‖v := NK/Q(p)
−vp(x) if v is a prime defined by the prime ideal p of the ring of

integers OK in K and vp is the corresponding valuation, where NK/Q is the absolute

value norm. Let ‖x‖v := |g(x)|e for all non-conjugate embeddings g : K → C with

e = 1 if g is real and e = 2 if g is complex. Define the height of any triple a, b, c ∈ K×

as

HK(a, b, c) :=
∏

v∈VK

max(‖a‖v, ‖b‖v, ‖c‖v),

and the radical of (a, b, c) by

radK(a, b, c) :=
∏

p∈IK(a,b,c)

NK/Q(p)
vp(p),

where p is a rational prime with pZ = p ∩ Z and IK(a, b, c) is the set of all primes p

of OK for which ‖a‖v, ‖b‖v, ‖c‖v are not equal.
The abc conjecture for algebraic number fields is stated as follows: For any δ > 0,

we have

(2.1) HK(a, b, c) ≪δ,K (radK(a, b, c))1+δ

for all a, b, c ∈ K× satisfying a+b+c = 0, the implied constant depends on K and δ.

3. Wieferich/non-Wieferich primes in number fields

Let K be an algebraic number field and OK its ring of integers. A prime π ∈ OK

is called a Wieferich prime with respect to the base ε ∈ O∗
K if

(3.1) εN(π)−1 ≡ 1 (mod π2),

where N(·) is the absolute value norm. If the congruence (3.1) does not hold for
a prime π ∈ OK , then π is called a non-Wieferich prime to the base ε.

Notation: In what follows, ε will denote a unit in OK and we will write ε
n− 1 =

unvn, where un is the square free part and vn is the squarefull part, i.e., if π | vn
then π2 | vn. We will denote the absolute value norm on K by N .
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4. Proof of theorem 1.1

Let K = Q(
√
m), m > 0, be a real quadratic field and OK its ring of integers. Let

ε ∈ O∗
K be a unit with |ε| > 1. The results of Silverman in [6], Murty and Hester

in [1] elucidated in the introduction the use of a key lemma of Silverman (see [6],

Lemma 3). We derive an analogue of Silverman’s lemma for number fields which will

play a fundamental role in the proof of the main theorems.

Lemma 4.1. Let K = Q(
√
m) be a real quadratic field of class number one. Let

ε ∈ O∗
K be a unit. If ε

n − 1 = unvn, then every prime divisor π of un is a non-

Wieferich prime with respect to the base ε.

P r o o f. The assumption that K has class number one allows us to write the

element εn − 1 ∈ OK as a product of primes uniquely. Accordingly, we will write

εn − 1 = unvn

for n ∈ N. Then

(4.1) εn = 1 + πw

with π | un and π and w are coprime. As π is a prime, we have N(π) = p or p2,

where p is a rational prime.

Case 1 : Suppose N(π) = p.

From equation (4.1), we get

εn(p−1) ≡ 1 + (p− 1)πw 6≡ 1 (mod π2).

Case 2 : Suppose N(π) = p2.

Again from equation (4.1), we obtain

εn(p2−1) = εn(N(π)−1) = (1 + πw)(p
2−1) ≡ 1 + πw(p2 − 1) 6≡ 1 (mod π2).

Thus in either case,

ε(N(π)−1) 6≡ 1 (mod π2),

and hence π is a non-Wieferich prime to the base ε. �

The above lemma shows that whenever a prime π divides un for some positive

integer n, then π is a non-Wieferich prime with respect to the base ε. Thus, if we

can show that the set {N(un) : n ∈ N} is unbounded, then this will imply that the
set {π : π | un, n ∈ N} is an infinite set. Consequently, this establishes the fact that
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there are infinitely many non-Wieferich primes in every real quadratic field of class

number one with respect to the unit ε, with |ε| > 1. Therefore, we need only to show

Lemma 4.2. Let Q(
√
m) be a real quadratic field of class number one. Let

ε ∈ O∗
K be a unit with |ε| > 1. Then under the abc-conjecture for number fields, the

set {N(un) : n ∈ N} is unbounded.

P r o o f. Invoking the abc-conjecture (2.1) to the equation

(4.2) εn = 1 + unvn

yields

(4.3) |εn| ≪
(

∏

p|unvn

N(p)vp(p)
)1+δ

=

(

∏

p|un

N(p)vp(p)
∏

p|vn

N(p)vp(p)
)1+δ

for some δ > 0. Here the implied constant depends on K and δ.

As vp(p) 6 2 for any prime ideal p lying above the rational prime p, we have

(4.4)
∏

p|un

N(p)vp(p) 6 N(un)
2.

For a prime ideal p | vn, let ep be the largest exponent of p dividing vn, i.e.,

pep ‖ vn. As vn is the square-full part of ε
n − 1, we have ep > 2. Hence,

(1) N(p)2vp(p) 6 N(p)2+ep for all prime ideals p with vp(p) = 2;

(2) N(p)2vp(p) 6 N(p)ep for all prime ideals p with vp(p) = 1.

Thus,

∏

p|vn

N(p)2vp(p) 6
∏

p|vn
vp(p)=2

N(p)2+ep
∏

p|vn
vp(p)=1

N(p)ep

6
∏

p|vn
vp(p)=2

N(p)2
∏

p|vn
vp(p)=2

N(p)ep
∏

p|vn
vp(p)=1

N(p)ep

6
∏

p

′
N(p)2

∏

p|vn
vp(p)=2

N(p)ep
∏

p|vn
vp(p)=1

N(p)ep ,

where ‘′’ indicates that the product is over all primes p in OK such that vp(p) = 2.

As it is well known that there are only finitely many ramified primes in a number

field, it follows that the product is bounded by a constant A (say). Thus, we have

(4.5)
∏

p|vn

N(p)vp(p) 6
√

AN(vn).
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Combining equations (4.3), (4.4) and (4.5), we get

(4.6) |εn| ≪
(

N(un)
2
√

N(vn)
)1+δ

.

Now, as |ε| > 1,

N(un)N(vn) = N(εn − 1) 6 2|εn − 1| < 2|ε|n,

i.e.,

N(vn) <
2|ε|n
N(un)

.

Substituting the above expression into (4.6), we obtain

|εn| ≪
(

N(un)
2 |ε|n/2
√

N(un)

)1+δ

.

Thus,

(N(un))
3(1+δ)/2 ≫ |ε|n(1−δ)/2.

Thus, for a fixed δ, N(un) → ∞ as n → ∞. This proves the lemma and hence
completes the proof of the theorem. �

5. Non-Wieferich primes in algebraic number fields

In this section we generalize the arguments of the previous section to arbitrary

number fields. From now onwards, K will always denote an algebraic number field

of degree [K : Q] = l over Q of class number one. Let r1 and r2 be the number

of real and non-conjugate complex embeddings of K into C, respectively, so that

l = r1 + 2r2. We begin with an analogue of Lemma (4.1).

Lemma 5.1. Let ε be a unit in OK . If ε
n−1 = unvn, then every prime divisor π

of un is a non-Wieferich prime with respect to the base ε.

P r o o f. Let N(π) = pk, where p is a rational prime and k is a positive integer.

Then

εn(N(π)−1) = εn(p
k−1) = (1 + wπ)(p

k−1) ≡ 1 + (pk − 1)wπ 6≡ 1 (mod π2).

This implies εN(π)−1 6≡ 1 (mod π2).

Thus, the lemma shows that π is a non-Wieferich prime to the base ε whenever

the hypothesis of the lemma is met. Now, under the abc-conjecture for number fields,

we show below the existence of infinitely many non-Wieferich primes. �
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Lemma 5.2. The set {N(un) : n ∈ N} is unbounded, where un’s are as defined

in Lemma 5.1.

P r o o f. By the hypothesis of the lemma, we have εn = 1 + unvn, where

εn, 1, unvn ∈ K×. Applying the abc-conjecture for number fields to the above equa-

tion, we obtain

(5.1)
∏

v∈VK

max(|unvn|v, |1|v, |εn|v) ≪
(

∏

p|unvn

N(p)vp(p)
)1+δ

for some δ > 0.

Note that for the absolute value |·| in VK we have

(5.2) |εn| 6
∏

v∈VK

max(|unvn|v, |1|v, |εn|v).

As vp(p) 6 l for any prime ideal p lying above the rational prime p, we have

(5.3)
∏

p|un

N(p)vp(p) 6 N(un)
l.

As before, we denote by ep the largest exponent of p which divides vn, i.e., p
ep ‖ vn.

Clearly ep > 2. Then

∏

p|vn

N(p)2vp(p) 6
∏

p|vn
vp(p)>2

N(p)2l+ep
∏

p|vn
vp(p)=1

N(p)ep

6
∏

p|vn
vp(p)>2

N(p)2l
∏

p|vn
vp(p)>2

N(p)ep
∏

p|vn
vp(p)=1

N(p)ep

6
∏

p

′
N(p)2l

∏

p|vn
vp(p)>2

N(p)ep
∏

p|vn
vp(p)=1

N(p)ep ,

where ‘′’ indicates that the product is over all primes p in OK such that vp(p) > 2.

As there are only finitely many ramified primes in a number field, it is bounded by

a constant B (say). Thus, we have

(5.4)
∏

p|vn

N(p)vp(p) 6
√

BN(vn).

Therefore, the equations (5.1)–(5.4) yield

(5.5) |εn| ≪ (N(un)
l
√

N(vn))
1+δ.
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Note that in the case of real quadratic fields, the unit ε satisfies |ε| > 1 and this

information was crucial in proving Theorem 1.1. However, in the case of general

number fields, the following result (see [4], Lemma 8.1.5) comes to our rescue. We

state this result as

Lemma 5.3. Let E = {k ∈ Z : 1 6 k 6 r1 + r2}. Let E = A ∪ B be a proper

partition of E. There exists a unit η ∈ OK with |η(k)| < 1 for k ∈ A, and |η(k)| > 1

for k ∈ B.

Taking A = {k : 1 < k 6 r1 + r2} and B = {1}, Lemma 5.3 produces a unit
η ∈ O∗

K such that |η| > 1 and |η(k)| < 1, where η(k) denotes the kth conjugate of

η, k 6= 1. Since every unit satisfies (5.5), replacing ε with η in (5.5) we obtain

(5.6) |ηn| ≪ (N(un)
l
√

N(vn))
1+δ,

where, by abuse of notation, we will denote ηn − 1 = unvn, with un and vn denoting

the same quantities as defined earlier.

Now,

N(un)N(vn) = N(ηn − 1) = (ηn − 1)(η(2)n − 1)(η(3)n − 1) . . . (η(l)n − 1).

By Lemma 5.3, |η(j)n − 1| < 2 for all j, 2 6 j 6 l.

Thus,

N(un)N(vn) < C|ηn| or N(vn) <
C|ηn|
N(un)

.

Now, (5.6) can be written as

(5.7) (N(un))
(2l−1)(1+δ)/2 ≫ |η|n(1−δ)/2.

For a fixed δ, the right hand side of (5.7) tends to ∞ as n → ∞. Therefore the
set {N(un) : n ∈ N} is unbounded. This shows that there are infinitely many non-
Wieferich primes in K with respect to the base η. �
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