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Abstract. A group G has all of its subgroups normal-by-finite if H/HG is finite for all
subgroups H of G. The Tarski-groups provide examples of p-groups (p a “large” prime) of
nonlocally finite groups in which every subgroup is normal-by-finite. The aim of this paper
is to prove that a 2-group with every subgroup normal-by-finite is locally finite. We also
prove that if |H/HG| 6 2 for every subgroup H of G, then G contains an Abelian subgroup
of index at most 8.
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1. Introduction

A group G is a CF-group (core-finite) if each of its subgroups is normal-by-finite,

that is, H/HG is finite for all H 6 G. The subgroup HG, the core of H in G, defined

by

HG =
⋂

g∈G

Hg,

is the biggest normal subgroup of G contained in H .

If G is a CF-group, we denote by σ(G) the sup
H6G

|H : HG| and we say that G is

BCF (boundedly core-finite) if σ(G) < ∞.

The main Theorem in [1] states that every locally finite CF-group is Abelian-

by-finite and BCF. In order to prove the previous result, the hypothesis that G is

locally finite is essential, as indicated by the existence of so-called Tarski-groups, for

instance the examples due to Rips and Ol’shanskii (see [5]) of infinite groups all of

whose nontrivial subgroups have prime order.

The aim of this paper is to provide an elementary proof of the following results.
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Theorem A. Let G be a 2-group. If G is a CF-group, then G is locally finite.

As a consequence of Theorem A and the main result of [1] we have that every CF

2-group is Abelian-by-finite and BCF.

In the particular case of 2-groups G with σ(G) 6 2 we can provide a proof that G

is locally finite and hypercentral in a direct way (see Lemma 8). We also extend to

all groups a result proved in [7] for finite groups.

Theorem B. Let G be a group. If σ(G) 6 2, then G contains an Abelian

subgroup of index at most 8.

2. Proofs

A quasicyclic 2-group is a group of type C2∞ , that is, an Abelian group with

generators x1, x2, . . . , xn, . . . and defining relations x
2
1 = 1 and x2

i+1 = xi for all i > 1.

A group of type C2∞ is not finitely generated and has every proper subgroup cyclic

of infinite index; in particular, if a CF-group G contains a quasicyclic 2-group C,

then C E G.

Let G be a group and let Λ be a well-ordered set; an indexed set (Gλ)λ∈Λ of

subgroups of G is an ascending series if whenever λ, µ ∈ Λ and λ 6 µ, then Gλ 6 Gµ.

Lemma 1. If a group G is the union of an ascending series (Gλ)λ∈Λ of locally

finite groups, then G is locally finite.

P r o o f. Trivial (see the proof of Lemma 1.A.2 in [3]). �

Lemma 2. Every periodic hyperabelian group is locally finite.

P r o o f. It is clear that a periodic Abelian group is locally finite. Since extensions

of locally finite groups by locally finite groups are locally finite (Lemma 1.A.2 of [3]

or 14.3.1 of [6]), the conclusion follows by Lemma 1. �

The following result is the key to prove our Theorem A.

Lemma 3. Let G be an infinite 2-group containing no subgroups of type C2∞ .

Then the centralizer of every finite subgroup of G is infinite.

P r o o f. This is Theorem C of [4]. �
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P r o o f of Theorem A. Let G be an infinite 2-group which is CF. Since every

quotient of a CF-group is trivially a CF-group, in order to prove that G is locally

finite, by Lemma 2 it suffices to prove that G contains a nontrivial normal Abelian

subgroup. We must distinguish between two cases.

(I) G contains a subgroup A of type C2∞ .

Since |A : AG| is finite and A does not contain proper subgroups of finite index,

we have AG = A and hence A is a nontrivial normal Abelian subgroup of G.

(II) G contains no subgroups of type C2∞ .

By the Zorn’s Lemma in G there is a maximal Abelian subgroup A. If A is finite,

then by Lemma 3, CG(A) is infinite. Let g ∈ CG(A) \ A, then clearly 〈A, g〉 is

Abelian, against the hypothesis that A is maximal. Hence A is infinite and since

|A : AG| < ∞, we have that AG is infinite. So AG is a nontrivial normal Abelian

subgroup of G.

This proves Theorem A. �

Remark 4. Let G be a finite 2-group.

(a) If σ(G) = 1, then G is Abelian or Hamiltonian (for the structure of Hamiltonian

groups see 5.3.7 of [6]), in particular, G contains an Abelian normal subgroup

of index 2.

(b) In [7] it is proved that if σ(G) 6 2, then G contains an Abelian normal subgroup

of index at most 4 and this bound is sharp.

(c) In [2] it is proved that if σ(G) 6 2s, then G contains an Abelian subgroup of

index at most 2t with

t 6 1

2
(s+ 1)(2s3 + 7s2 + 9s+ 2)(s3 + 2s2 + 3s+ 3).

Using an inverse limit argument (see Proposition 1.K.2 of [3] and the Remark that

follows) it is not difficult to check that all previous results are valid if G is locally

finite, and hence, by our Theorem A, for all 2-groups.

By proving Theorem B we extend the Corollary of [7] to infinite groups. In the

proof we freely make use of the fact that if G is a BCF-group and H 6 G, then

σ(H) 6 σ(G),

moreover if H E G, then

σ(G/H) 6 σ(G).
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Lemma 5. Let G be a group with σ(G) 6 2 and let A be the subgroup of G

generated by all infinite cyclic normal subgroups and by all cyclic subgroups of odd

order. Then A is Abelian.

P r o o f. Finite odd-order subgroups of G are normal and also Dedekind groups,

which implies that the elements of G of odd order generate an abelian normal sub-

group of G.

Let x ∈ G with o(x) = ∞ and 〈x〉 E G. The only nonidentity element α of

Aut(〈x〉) inverts x; if a ∈ G and xa = x−1, then 〈x〉 ∩ 〈a〉 6 C〈x〉(α) = 1. Thus, x is

centralized by every odd order element and by every infinite cyclic normal subgroup

of G. This shows that A is abelian. �

Lemma 6. Let G be a nonperiodic group with σ(G) 6 2 and let A be the

subgroup generated by all normal infinite cyclic subgroups of G and by all cyclic

subgroups of odd order of G. Then for each g ∈ G either ag = a for all a ∈ A or

ag = a−1 for all a ∈ A. Therefore |G : CG(A)| 6 2 and moreover g ∈ CG(A) for

every g ∈ G of infinite order.

P r o o f. By Lemma 5, A is Abelian and hence if g ∈ G induces by conjugation

a nontrivial automorphism on A, then g2 ∈ A.

Let x ∈ G with o(x) = ∞ and let u ∈ A of odd order. We have 〈x2〉 E G, hence

[u, x2] = 1 and we can write (x2u)2 = x4u2, so o(x2u) = ∞ and 〈(x2u)2〉 E G. Now

〈u〉 = 〈u2〉 6 〈x2, (x2u)2〉.

Accordingly, if G is a nonperiodic group, then the subgroup A is the one generated

by the normal infinite cyclic subgroups of G. Let 〈x〉 E G and 〈y〉 E G with o(x) =

∞ = o(y). If there is g ∈ G such that xg = x−1 and yg = y, then 〈x, y〉 = 〈x〉 × 〈y〉,

so o(xy) = ∞, but 〈(xy)2〉 is not normal in G. This shows that ag = a−1 for every

a ∈ A and hence |G : CG(A)| 6 2. �

Remark 7. From Lemmas 5 and 6 it follows that every group G with σ(G) 6 2

and without elements of order 2 is Abelian.

Lemma 8. Let G be a 2-group. If σ(G) 6 2, then G is hypercentral.

P r o o f. Suppose G 6= 1. If G has no elements of order 4, then G is elementary

Abelian and the claim is proved. If there is an element g ∈ G with o(g) = 4, then

〈g2〉 is a normal subgroup of order 2 of G and hence g2 ∈ Z(G), so Z(G) 6= 1. �

Lemma 9. Let G be a hypercentral periodic group. If σ(G) 6 2, then G contains

an Abelian normal subgroup of index at most 4.
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P r o o f. Since G is hypercentral, it is locally finite and, by Lemma 5, we can

write G = R1×R2 with R1 an Abelian 2
′-group and R2 a locally finite (hypercentral)

group. By Remark 4(b), R2 contains a normal Abelian subgroup S of index at most 4.

We can conclude that R1 ×S is a normal Abelian subgroup of index at most 4 in G.

�

P r o o f of Theorem B. Suppose that G is a periodic group and let A be the

subgroup of G generated by all elements of odd order. By Lemma 5, A is Abelian,

and hence locally finite. Since G/A is a 2-group with σ(G/A) 6 2, it is locally finite

and hence we can deduce that G is locally finite. By Corollary of [7], every finite

group X with σ(X) 6 2 contains an Abelian subgroup of index at most 8, applying

Proposition 1.K.2 of [3] we obtain that also G has an Abelian subgroup of index at

most 8. So in this case the claim is proved.

From now we suppose that G contains elements of infinite order.

Let A be the subgroup of G generated by all normal infinite cyclic subgroups of

G and by all cyclic subgroups of odd order of G and let C = CG(A) (by the proof of

Lemma 6, A is actually generated by the normal infinite cyclic subgroups of G). By

construction we have that A is normal and G/A is a 2-group, by Lemma 5 we have

that A is Abelian and by Lemma 6 that |G : C| 6 2.

First of all we prove that if G = C, then G contains a normal Abelian subgroup

of index at most 4. In this case G is hypercentral because G/A is a 2-group, which

is hypercentral by Lemma 8, and A 6 Z(G) by hypothesis.

Let a ∈ A be such that 〈a〉 E G and o(a) = ∞.

Let h ∈ G, then [h, a] = 1, moreover if o(h) < ∞, then o(ah) = ∞ and a2h2 =

(ah)2 ∈ A, so h2 ∈ A. Hence for every g ∈ G we have g2 ∈ A and G/A is an

elementary Abelian 2-group. Since A 6 Z(G) for g, h ∈ G, we can write

[g, h]2 = [g2, h] = 1

and this shows G′ to be an elementary Abelian 2-subgroup of A. By the Zorn’s

Lemma in A there is a free Abelian subgroup of maximal rank Q, moreover we can

suppose Q E G because since |Q : QG| 6 2, we can consider QG instead of Q. Then

A/Q is an Abelian periodic group. Let T be the full preimage in G of the 2′-Hall

subgroup of A/Q, then T does not have elements of finite even order and G/T is

a 2-group. Moreover,G′∩T = 1 and hence the full preimage of any Abelian subgroup

of G/T is an Abelian subgroup of G. Since G/T is periodic and hypercentral, then,

by Lemma 9, it contains a normal Abelian subgroup S/T of index at most 4. The

full preimage S of S/T in G is a normal Abelian subgroup of index at most 4 of G.

Suppose now |G : C| = 2. For the previous argument we know that in C there is

an Abelian (normal) subgroup S of index at most 4 and hence |G : S| 6 8. �
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Remark 10. The bound found in Theorem B is best possible, as has been shown

in the proof of Corollary of [7].

Example (i). Let G = 〈xi, y ; xy
i = x−1

i 〉 be the semidirect product of the

quasicyclic 2-group 〈x1, x2, . . . , xn, . . .〉 by the infinite cyclic group 〈y〉, then G is

a nonperiodic CF-group. The element xny
2 ∈ G has infinite order and it is easy to

prove that |〈xny
2〉 : 〈xny

2〉G| = 2n−1, so G is not a BCF-group. This shows that

the main theorem of [1] cannot be extended to nonperiodic groups.

Remark 11. Let G be a group and suppose that for every g ∈ G we have

|〈g〉 : 〈g〉G| 6 2. Then the subgroup N = 〈g2 ; g ∈ G〉 is Abelian or Hamiltonian and

G/N has exponent 2, so it is elementary Abelian. Hence G′ 6 N and |G′′| 6 2 (in

particular if G is periodic, then it is locally finite), but it can happen that σ(G) = ∞,

as shown in Example (ii).

Example (ii). Let

G =
⊕

i∈N

Di

with Di = 〈xi, yi;x
4
i , y

2
i , x

yi

i xi〉 isomorphic to the dihedral group of order 8. It is clear

that if g ∈ G, then |〈g〉 : 〈g〉G| 6 2, but G does not possess Abelian subgroups of finite

index. Moreover, if n ∈ N, the elementary Abelian subgroup H = 〈y1, y2, . . . , yn〉

of G is such that |H | = 2n and HG = 1, in particular σ(G) = ∞.
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