Czechoslovak Mathematical Journal

Victor J. W. Guo
A new proof of the q-Dixon identity

Czechoslovak Mathematical Journal, Vol. 68 (2018), No. 2, 577-580

Persistent URL: http://dml.cz/dmlcz/147237

Terms of use:

© Institute of Mathematics AS CR, 2018

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

A NEW PROOF OF THE q-DIXON IDENTITY

Victor J. W. Guo, Huai'an

Received February 2, 2017. First published April 16, 2018.

Abstract. We give a new and elementary proof of Jackson's terminating q-analogue of Dixon's identity by using recurrences and induction.

Keywords: q-binomial coefficient; q-Dixon identity; recurrence
MSC 2010: 05A30

1. Introduction

Jackson's terminating q-analogue of Dixon's identity [2], [8]:

$$
\sum_{k=-a}^{a}(-1)^{k} q^{\left(3 k^{2}+k\right) / 2}\left[\begin{array}{l}
a+b \tag{1.1}\\
a+k
\end{array}\right]\left[\begin{array}{l}
b+c \\
b+k
\end{array}\right]\left[\begin{array}{c}
c+a \\
c+k
\end{array}\right]=\left[\begin{array}{c}
a+b+c \\
a+b
\end{array}\right]\left[\begin{array}{c}
a+b \\
a
\end{array}\right]
$$

where the q-binomial coefficients are defined by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]= \begin{cases}\frac{(1-q)\left(1-q^{2}\right) \ldots\left(1-q^{n}\right)}{(1-q)\left(1-q^{2}\right) \ldots\left(1-q^{k}\right)(1-q)\left(1-q^{2}\right) \ldots\left(1-q^{n-k}\right)} & \text { if } 0 \leqslant k \leqslant n \\
0 & \text { otherwise }\end{cases}
$$

is an important identity in combinatorics and number theory. Note that Dixon's identity (see [8], [12], page 43, equation (IV), or [9], page 11, equation (2.6)) is the $q=1$ case of (1.1). Several short proofs of the Dixon or q-Dixon identity can be found in [4], [5], [6], [7]. The q-Dixon identity can also be deduced from the q-Pfaff-Saalschütz identity (see [7], [13]).

This work was partially sponsored by the Natural Science Foundation of Jiangsu Province (grant BK20161304), and the Qing Lan Project of Education Committee of Jiangsu Province.

Recently, Mikić [10], [11] gave an elementary proof of Dixon's identity and some other binomial coefficient identities by using recurrences and induction. The aim of this note is to give a new proof of (1.1) by generalizing the argument of [10], [11].

2. Proof of (1.1)

For any integer n let $[n]=\left(1-q^{n}\right) /(1-q)$. Denote the left-hand side of (1.1) by $S(a, b, c)$. We introduce two auxiliary sums as follows:

$$
\begin{align*}
& P(a, b, c):=\sum_{k=-a}^{a}(-1)^{k} q^{\left(3 k^{2}+k\right) / 2}[a-k][a+k]\left[\begin{array}{l}
a+b \\
a+k
\end{array}\right]\left[\begin{array}{l}
b+c \\
b+k
\end{array}\right]\left[\begin{array}{l}
c+a \\
c+k
\end{array}\right], \tag{2.1}\\
& Q(a, b, c):=\sum_{k=-a}^{a}(-1)^{k} q^{3\left(k^{2}+k\right) / 2}[b-k][b+k]\left[\begin{array}{l}
a+b \\
a+k
\end{array}\right]\left[\begin{array}{l}
b+c \\
b+k
\end{array}\right]\left[\begin{array}{l}
c+a \\
c+k
\end{array}\right] . \tag{2.2}
\end{align*}
$$

It is easy to see that $[k]\left[\begin{array}{l}n \\ k\end{array}\right]=[n]\left[\begin{array}{c}n-1 \\ k-1\end{array}\right]$, and so for $a, b, c \geqslant 1$,

$$
\begin{align*}
P(a, b, c) & =[a+b][a+c] \sum_{k=-a+1}^{a-1}(-1)^{k} q^{\left(3 k^{2}+k\right) / 2}\left[\begin{array}{l}
a-1+b \\
a-1+k
\end{array}\right]\left[\begin{array}{c}
b+c \\
b+k
\end{array}\right]\left[\begin{array}{c}
c+a-1 \\
c+k
\end{array}\right] \tag{2.3}\\
& =[a+b][a+c] S(a-1, b, c) .
\end{align*}
$$

Similarly, we have

$$
\begin{equation*}
Q(a, b, c)=[a+b][b+c] S(a, b-1, c) \tag{2.4}
\end{equation*}
$$

It follows from (2.1) and (2.2) that

$$
\begin{equation*}
P(a, b, c)-Q(a, b, c) q^{a-b}=[a+b][a-b] S(a, b, c) \tag{2.5}
\end{equation*}
$$

If $a \neq b$, then from (2.3)-(2.5) we deduce that

$$
\begin{equation*}
S(a, b, c)=\frac{1}{[a-b]}\left([a+c] S(a-1, b, c)-[b+c] S(a, b-1, c) q^{a-b}\right) \tag{2.6}
\end{equation*}
$$

We need to consider the case when $a=b=c$, separately. Noticing the well known relations (see, for example [1], equations (3.3.3) and (3.3.4))

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=\left[\begin{array}{c}
n-1 \\
k
\end{array}\right] q^{k}+\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]=\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]+\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right] q^{n-k}
$$

we have

$$
\begin{align*}
S(a, a, a)= & \sum_{k=-a}^{a}(-1)^{k} q^{\left(3 k^{2}+k\right) / 2}\left(\left[\begin{array}{c}
2 a-1 \\
a+k
\end{array}\right] q^{a+k}+\left[\begin{array}{c}
2 a-1 \\
a+k-1
\end{array}\right]\right) \tag{2.7}\\
& \times\left(\left[\begin{array}{c}
2 a-1 \\
a+k
\end{array}\right]+\left[\begin{array}{c}
2 a-1 \\
a+k-1
\end{array}\right] q^{a-k}\right)^{2} \\
= & \sum_{k=-a}^{a}(-1)^{k} q^{\left(3 k^{2}+k\right) / 2}\left(\left[\begin{array}{c}
2 a-1 \\
a+k
\end{array}\right]^{3} q^{a+k}+\left[\begin{array}{c}
2 a-1 \\
a+k-1
\end{array}\right]^{3} q^{2 a-2 k}\right. \\
& \left.+\left[\begin{array}{c}
2 a \\
a+k
\end{array}\right]\left[\begin{array}{c}
2 a-1 \\
a+k
\end{array}\right]\left[\begin{array}{c}
2 a-1 \\
a+k-1
\end{array}\right]\left(1+q^{a-k}+q^{2 a}\right)\right) .
\end{align*}
$$

By the symmetry of q-binomial coefficients, it is clear that

$$
\begin{aligned}
\sum_{k=-a}^{a}(-1)^{k} q^{\left(3 k^{2}+k\right) / 2}\left[\begin{array}{c}
2 a-1 \\
a+k
\end{array}\right]^{3} q^{k} & =\sum_{k=-a}^{a-1}(-1)^{k} q^{\left(3 k^{2}+3 k\right) / 2}\left[\begin{array}{c}
2 a-1 \\
a+k
\end{array}\right]^{3}=0, \\
\sum_{k=-a}^{a}(-1)^{k} q^{\left(3 k^{2}+k\right) / 2}\left[\begin{array}{c}
2 a-1 \\
a+k-1
\end{array}\right]^{3} q^{-2 k} & =\sum_{k=-a+1}^{a}(-1)^{k} q^{\left(3 k^{2}-3 k\right) / 2}\left[\begin{array}{c}
2 a-1 \\
a+k-1
\end{array}\right]^{3}=0,
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{k=-a}^{a}(-1)^{k} q^{\left(3 k^{2}+k\right) / 2}\left[\begin{array}{c}
2 a \\
a+k
\end{array}\right]\left[\begin{array}{c}
2 a-1 \\
a+k
\end{array}\right]\left[\begin{array}{c}
2 a-1 \\
a+k-1
\end{array}\right] q^{a-k} \\
&=\sum_{k=1-a}^{a-1}(-1)^{k} q^{3 k^{2}-k / 2}\left[\begin{array}{c}
2 a \\
a+k
\end{array}\right]\left[\begin{array}{c}
2 a-1 \\
a+k
\end{array}\right]\left[\begin{array}{c}
2 a-1 \\
a+k-1
\end{array}\right] q^{a}=q^{a} S(a, a, a-1) .
\end{aligned}
$$

Therefore the identity (2.7) implies that

$$
\begin{equation*}
S(a, a, a)=\left(1+q^{a}+q^{2 a}\right) S(a, a, a-1) . \tag{2.8}
\end{equation*}
$$

We now give a proof of (1.1) by induction on $a+b+c$. It is clear that (1.1) is true for $a=b=c=1$. Assume that (1.1) holds for all non-negative integers a, b and c with $a+b+c=n$. Let a, b and c be non-negative integers satisfying $a+b+c=n+1$. We consider three cases:
\triangleright If at least one of the numbers a, b and c is equal to 0 , then (1.1) is obviously true. \triangleright If $a=b=c$, then by the induction hypothesis we have

$$
S(a, a, a-1)=\left[\begin{array}{c}
3 a-1 \\
2 a
\end{array}\right]\left[\begin{array}{c}
2 a \\
a
\end{array}\right] .
$$

Therefore by (2.8) we obtain

$$
S(a, a, a)=\left(1+q^{a}+q^{2 a}\right)\left[\begin{array}{c}
3 a-1 \\
2 a
\end{array}\right]\left[\begin{array}{c}
2 a \\
a
\end{array}\right]=\left[\begin{array}{c}
3 a \\
2 a
\end{array}\right]\left[\begin{array}{c}
2 a \\
a
\end{array}\right] .
$$

\triangleright If $a \neq b$, then by (2.6) and the induction hypothesis we get

$$
\begin{aligned}
S(a, b, c)= & \frac{[a+c]}{[a-b]}\left[\begin{array}{c}
a+b+c-1 \\
a+b-1
\end{array}\right]\left[\begin{array}{c}
a+b-1 \\
a-1
\end{array}\right] \\
& -\frac{[b+c]}{[a-b]}\left[\begin{array}{c}
a+b+c-1 \\
a+b-1
\end{array}\right]\left[\begin{array}{c}
a+b-1 \\
a
\end{array}\right] q^{a-b} \\
= & {\left[\begin{array}{c}
a+b+c \\
a+b
\end{array}\right]\left[\begin{array}{c}
a+b \\
a
\end{array}\right] }
\end{aligned}
$$

as desired. If $a=b$, then $a \neq c$, and we can proceed similarly as before by noticing the symmetry of a, b and c in $S(a, b, c)$.

Hence, (1.1) holds for $a+b+c=n+1$, and by induction, it holds for all non-negative integers a, b and c.

References

[1] G. E. Andrews: The Theory of Partitions. Cambridge University Press, Cambridge, 1998.
[2] W. N. Bailey: A note on certain q-identities. Q. J. Math., Oxf. Ser. 12 (1941), 173-175.
[3] A. C. Dixon: Summation of a certain series. London M. S. Proc. 35 (1903), 284-289.
[3] A. C. Dixon: Summation of a certain series. London M. S. Proc. 35 (1903), 284-289.
[4] S. B. Ekhad: A very short proof of Dixon's theorem. J. Comb. Theory, Ser. A 54 (1990), 141-142.
zbl MR
zbl MR doi
[5] I. Gessel, D. Stanton: Short proofs of Saalschütz and Dixon's theorems. J. Comb. Theory Ser. A 38 (1985), 87-90.
[6] V. J. W. Guo: A simple proof of Dixon's identity. Discrete Math. 268 (2003), 309-310.
[7] V. J. W. Guo, J. Zeng: A short proof of the q-Dixon identity. Discrete Math. 296 (2005), 259-261.
[8] F. H. Jackson: Certain q-identities. Q. J. Math., Oxford Ser. 12 (1941), 167-172.
zbl MR doi
[9] W. Koepf: Hypergeometric Summation-An Algorithmic Approach to Summation and Special Function Identities. Universitext, Springer, London, 2014.
zbl MR doi
[10] J. Mikić: A proof of a famous identity concerning the convolution of the central binomial coefficients. J. Integer Seq. 19 (2016), Article ID 16.6.6, 10 pages.
zbl MR doi
[11] J. Mikić: A proof of Dixon's identity. J. Integer Seq. 19 (2016), Article ID 16.5.3, 5 pages. Zbl MR
[12] M. Petkovšek, H.S. Wilf, D. Zeilberger: A = B. With foreword by Donald E. Knuth. A. K. Peters, Wellesley, 1996.
[13] D. Zeilberger: A q-Foata proof of the q-Saalschütz identity. Eur. J. Comb. 8 (1987), 461-463.

Zbl MR doi
Authors' addresses: Victor J. W. Guo, School of Mathematical Sciences, Huaiyin Normal University, Huai'an 223300, Jiangsu, P. R. China, e-mail: jwguo@hytc.edu.cn.

