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On dihedral 2-groups as inner mapping groups

of finite commutative inverse property loops
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Abstract. We show that finite commutative inverse property loops may not have
nonabelian dihedral 2-groups as their inner mapping group.
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1. Introduction

If Q is a loop then the mappings La(x) = ax and Ra(x) = xa are called the
left and right translation. These two mappings are permutations on Q for every
a ∈ Q and the permutation group M(Q) = 〈La, Ra : a ∈ Q〉 is called the multipli-
cation group of Q. The stabilizer of the neutral element of Q is the inner mapping
group of Q and we denote it by I(Q). If Q is a group then I(Q) = Inn(Q), the
group of inner automorphisms of Q. We know that in the case of commutative
groups Inn(Q) is always trivial whereas noncommutative groups have nontrivial
inner automorphism groups. For example, there are three nonisomorphic groups
of order 16, whose inner automorphism group is the dihedral group of order 8. We
also know that there exist nonassociative and noncommutative loops of order 16
whose inner mapping group is the dihedral group of order 8 (private communi-
cation from Michael Kinyon). What about the situation in finite commutative
loops? In [2, pages 357–358], Drápal introduces a construction of finite commu-
tative loops of order 2m, m ≥ 3, such that the inner mapping group I(Q) is the
dihedral group of order 2m.

A loop Q is an inverse property loop if Q has a unique left and right inverse
x−1 and x−1(xy) = y = (yx)x−1 for every x, y ∈ Q. The purpose of this paper is
to show that in the case of finite commutative inverse property loops, nonabelian
dihedral 2-groups do not appear as inner mapping groups of these loops.

We consider only finite loops and groups in this paper. The proofs of our main
theorems rely on the use of connected transversals in finite groups and this notion
and some basic results about these transversals are explained in the following
section. For basic facts about loop theory and its connections to group theory the
reader is advised to consult [1] and [5].
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2. Loops and groups: some results

Our proofs are based on the use of connected transversals in a group (this group
turns out to be the multiplication group M(Q) mentioned in the introduction)
and therefore we shall start with a brief discussion about connected transversals
and try to give some insight into the relationship between loops and groups given
by this notion.

Let G be a group and H ≤ G. If A and B are two left transversals to H in
G and a−1b−1ab ∈ H for every a ∈ A and for every b ∈ B, then we say that
the two transversals are H-connected in G. If A = B, then we say that A is
a selfconnected transversal to H in G. In the following lemmas and theorems we
consider some basic properties of H-connected transversals A and B. We denote
by HG the core of H in G (it is the largest normal subgroup of G contained in H).

Lemma 2.1. If HG = 1, then 1 ∈ A ∩B and AZ(G) ⊆ A and BZ(G) ⊆ B.

For the proof, see [5, page 113] and [4, Lemma 2.3].

From Lemma 2.1 it follows that if HG = 1, then Z(G) ⊆ A ∩B.

Lemma 2.2. If HG = 1, then NG(H) = H × Z(G).

For the proof, see [5, Proposition 2.7].

Theorem 2.3. Let H be a nilpotent subgroup of G. If G = 〈A,B〉 and HG = 1,
then H is subnormal in G and Z(G) > 1.

For the proof, see [3, Theorem 2.8].

Theorem 2.4. If H is cyclic and G = 〈A,B〉, then G′ ≤ H .

For the proof, see [5, Theorem 3.5].

Theorem 2.5. Let p be a prime number. If H ∼= Cp ×Cp and G = 〈A,B〉, then
G′ ≤ NG(H).

For the proof, see [6, Lemma 4.2].

Next we prove

Lemma 2.6. Let G = 〈A,B〉. If H is nilpotent and HG = 1, then the core of

HZ(G) in G properly contains Z(G).

Proof: By Lemma 2.2 and Theorem 2.3, NG(H) = H ×Z(G) and Z(G) > 1. If
the core of HZ(G) in G equals Z(G), then from Lemma 2.2 it follows that

NG/Z(G)(HZ(G)/Z(G)) = HZ(G)/Z(G)× Z(G/Z(G)).

Now we write Z(G/Z(G)) = M/Z(G) and thus NG(HZ(G)) = HM , where
M is normal in G, Z(G) is a proper subgroup of M and H ∩ M = 1. Then
HM = CH = DH , where C ⊆ A and D ⊆ B. By Lemma 2.1,

Z(G/Z(G)) ⊆ AZ(G)/Z(G) ∩BZ(G)/Z(G).
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We conclude that M ⊆ CZ(G) ∩ DZ(G). If m ∈ M , then m = cz = dr,
where c ∈ A, d ∈ B and z and r are elements from Z(G). If t ∈ A ∪ B, then
[t,m] ∈ M ∩ H = 1. Thus CG(M) ≥ 〈A,B〉 = G. But then M = Z(G),
a contradiction. �

We shall conclude this section by establishing the relation between connected
transversals and loop theory. If A = {La : a ∈ Q} and B = {Ra : a ∈ Q} are the
sets of left and right translations, then A and B are I(Q)-connected transversals
in M(Q). Since M(Q) is transitive on Q, it follows that the core of I(Q) in
M(Q) is trivial. Kepka and Niemenmaa proved the following theorem in 1990 [5,
Theorem 4.1].

Theorem 2.7. A group G is isomorphic to the multiplication group of a loop if

and only if there exist a subgroup H of G satisfying HG = 1 and H-connected

transversals A and B such that G = 〈A,B〉.

If Q is a commutative loop, then A = B. Furthermore, if Q is a commutative
inverse property loop, then (La)

−1 = La−1 and thus A = A−1.

3. Main theorems

In this section we consider the situation that A = B, A = A−1 and H is
a nonabelian dihedral 2-group. We first consider the case where |H | = 8.

Theorem 3.1. Let H ≤ G be a dihedral group of order 8. If A is a self-connected

transversal to H in G, G = 〈A〉 and A = A−1, then HG > 1.

Proof: Assume that HG = 1. From Theorem 2.3 it follows that Z(G) > 1 and
by Lemma 2.6, the core of HZ(G) in G is equal to KZ(G), where 1 < K ≤ H . If
|K| ≥ 4, then HZ(G)/KZ(G) is cyclic and by Theorem 2.4, G′ ≤ HZ(G). This
means that HZ(G) is normal in G. As (HZ(G))′ = H ′ 6= 1, we get HG > 1,
a contradiction.

Thus we may assume that |K| = 2. Clearly,K = Z(H) = H ′. We then consider
G/KZ(G) and the subgroup HZ(G)/KZ(G). Now HZ(G)/KZ(G) ∼= C2 × C2.
By Theorem 2.5 and Lemma 2.2,

(G/KZ(G))′ ≤ NG/KZ(G)(HZ(G)/KZ(G)) = HZ(G)/KZ(G)× Z(G/KZ(G)).

It follows that G′ ≤ HM , where M/KZ(G) = Z(G/KZ(G)). Clearly, HM
and M are normal in G and H ∩M = K. We may also conclude that M = CK,
where Z(G) ⊆ C ⊆ A. By using Lemma 2.1, we get

AKZ(G)/KZ(G) · CKZ(G)/KZ(G) ⊆ AKZ(G)/KZ(G).

It follows that CA ⊆ AK. Then let c ∈ C and a ∈ A. Now ca = bh, where

b ∈ A and h ∈ K. Thus h = b−1ca and ha−1

= (b−1ca)a
−1

= ab−1caa−1 =
ab−1a−1bb−1ac = [a−1, b]b−1cal = [a−1, b]hl, where l ∈ H . As A = A−1 and
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KZ(G) is normal in G, we conclude that ha−1

∈ Ka−1

∩H ≤ KZ(G) ∩H = K.

If h 6= 1, then ha−1

= h (as |K| = 2) and a ∈ NG(K).
If d ∈ A, then (ca)d = (bh)d, hence ckag = bfhd = cah−1fhd, where k ∈ K

and g, f ∈ H . It follows that hd = f−1hkag ∈ H . This is true for every d ∈ A, so

h ∈
⋂

d∈AHd−1

= HG = 1.

We may now conclude that ca = b ∈ A. As A = A−1, we also have c−1a−1 =
w ∈ A. Thus wb = c−1a−1ca ∈ H . But then w = b−1 and c−1a−1ca = 1. This
means that c ∈ Z(〈A〉) = Z(G) and M = CK ≤ KZ(G). But then G′ ≤ HM ≤
HZ(G) and HZ(G) is normal in G. Now (HZ(G))′ = H ′ 6= 1 and thus HG > 1,
a contradiction. �

We shall next consider the general situation whereH is any nonabelian dihedral
2-group.

Theorem 3.2. Let H ≤ G be a dihedral 2-group of order 2n, n ≥ 3. If A is

a selfconnected transversal to H in G, G = 〈A〉 and A = A−1, then HG > 1.

Proof: Assume that G is a minimal counterexample. By Theorem 3.1 we may
assume that n ≥ 4. As in the proof of Theorem 3.1, it follows that the core
of HZ(G) in G is equal to KZ(G), where 1 < K ≤ H . Likewise, we may
conclude that HZ(G)/K(ZG) is not cyclic. If HZ(G)/KZ(G) is dihedral of
order 2m, n > m ≥ 3, then the core of HZ(G)/KZ(G) in G/KZ(G) is not
trivial, a contradiction.

Thus we may assume that HZ(G)/KZ(G) ∼= C2 ×C2 and K is cyclic of order
2n−2, where n ≥ 4. Let T = 〈x ∈ KZ(G) : x2 = 1〉. As KZ(G) is normal in G,
it follows that T is normal in G. Then consider G/T and its subgroup HT/T .
As HT/T is a nonabelian dihedral 2-group, we conclude that the core of HT in
G properly contains T . We denote this core by E and conclude that E = FM ,
where F ≤ K, |F | ≥ 4 and M ≤ Z(G) is an elementary abelian 2-group. Then
〈x2 : x ∈ E〉 is a nontrivial normal subgroup of G contained inH and thusHG > 1.
The proof is complete. �

By combining Theorem 2.7 with Theorem 3.2 we get

Theorem 3.3. Let Q be a finite commutative inverse property loop. Then the

inner mapping group I(Q) cannot be a nonabelian dihedral 2-group.
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