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Abstract. We introduce a method to compute rigorous component-wise enclosures of
discrete convolutions using the fast Fourier transform, the properties of Banach algebras,
and interval arithmetic. The purpose of this new approach is to improve the implementation
and the applicability of computer-assisted proofs performed in weighed ℓ1 Banach algebras
of Fourier/Chebyshev sequences, whose norms are known to be numerically unstable. We
introduce some application examples, in particular a rigorous aposteriori error analysis for
a steady state in the quintic Swift-Hohenberg PDE.
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1. Introduction

In this paper, we introduce a method to compute discrete convolutions with verified

accuracy using the fast Fourier transform (FFT), the properties of Banach algebras of

bi-infinite complex valued sequences and interval arithmetic. Our motivation comes

from the field of rigorously verified numerics in dynamics (see e.g. [9], [16], [19], [21],

[23], [25], [27], [30]), which aims at obtaining computer-assisted proofs (CAPs) of

existence of solutions of differential equations (ODE, PDEs, delay equations, etc.)

and discrete dynamical systems (iterations of finite and infinite dimensional maps).

One of the common approaches in obtaining the CAPs for differential equations is to

represent the solutions using Fourier/Chebyshev series, and to apply the contraction
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mapping theorem on a ball centered at a numerical approximation in a Banach

space of Fourier/Chebyshev coefficients with weighed ℓ1-norms (see e.g. [8], [15],

[26], [28]). More explicitly, the Banach spaces considered in the aforementioned

papers are sequence spaces of the form

(1.1) ℓ1ω
def
= {a = {ak}k∈Z : ak ∈ C and ‖a‖ω < ∞}

with norm

(1.2) ‖a‖ω
def
=

∑

k∈Z

|ak|ωk,

where ω = {ωk}k∈Z is a sequence of positive weights satisfying the sub-multiplicative

property ωn+k 6 ωnωk for all n, k ∈ Z. The advantage of using the sequence

space (1.1) in the CAPs is essentially twofold. First, ℓ1ω has a known dual (a weighed

ℓ∞ space) which facilitates estimating norms of functionals and operators. Second,

the sub-multiplicative property of the weights ensures that ℓ1ω is a Banach algebra

under discrete convolutions (see Section 3), which facilites performing the nonlinear

analysis. However, choosing the Banach space ℓ1ω in performing the CAPs has the

disadvantage that its norm ‖·‖ω can be unstable with respect to a given sequence of

weights. For instance, in the papers [12], [17], [26] the numerical instability of the

ℓ1-norms with geometrically growing weights prevented obtaining some CAPs (see

e.g. the discussion in Section 6 of [12] or the discussion in Section 6.3 in [26]). The

goal of this paper is precisely to address this issue. In order to formalize the problem,

we need a bit of notation and background on discrete convolutions.

Assume that two functions u1, u2 : R → R with period 2π/L (that is with frequency

L > 0) have absolutely converging Fourier series expansions

u1(t) =
∑

k∈Z

a
(1)
k eikLt and u2(t) =

∑

k∈Z

a
(2)
k eikLt.

Then their product u1(t)u2(t) also has an absolutely converging Fourier series ex-

pansion, which is given by

u1(t)u2(t) =
∑

k∈Z

(a(1) ∗ a(2))ke
ikLt,

where, given two sequences a = {ak}k∈Z and b = {bk}k∈Z, a∗ b denotes their discrete

convolution defined component-wise by

(1.3) (a ∗ b)k =
∑

k1+k2=k
k1,k2∈Z

ak1
bk2

.
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R em a r k 1.1. The approach presented in the present paper can also help con-

trolling the coefficients of product of functions represented by Chebyshev series. In-

deed, as Chebyshev series are Fourier series “in disguise” [1], their product naturally

leads to discrete convolutions (see e.g. [18]).

For many applications and for some computer-assisted proofs, we are interested in

computing the product of trigonometric polynomials with high but finite degree, that

is Fourier series which have only finitely many non zero coefficients. More explicitly,

we consider 2π/L-periodic trigonometric polynomials ui(t) (i = 1, . . . , p) of degree

M − 1 defined by

(1.4) ui(t) =
∑

|k|<M

a
(i)
k eikLt, i = 1, . . . , p.

As the following result demonstrates, the product of p-periodic trigonometric poly-

nomials of degree M − 1 has degree p(M − 1).

Lemma 1.2. For i = 1, . . . , p, let ui be the 2π/L-periodic trigonometric polyno-

mials of degree M − 1 with expansion (1.4). The Fourier expansion of the product

u1u2 . . . up satisfies

(1.5) u1(t)u2(t) . . . up(t) =
∑

|k|6p(M−1)

(a(1) ∗ a(2) ∗ . . . ∗ a(p))ke
ikLt.

In other words, the function u1u2 . . . up is a trigonometric polynomial of degree

p(M − 1).

P r o o f. Let k ∈ Z be such that k = k1 + . . .+ kp for some k1, . . . , kp ∈ Z with

|ki| < M (i = 1, . . . , p). Hence,

k = k1 + . . .+ kp ∈ {−p(M − 1), . . . , p(M − 1)},

and therefore |k| 6 p(M − 1). We conclude that

u1(t)u2(t) . . . up(t) =
∑

k∈Z

(a(1) ∗ a(2) ∗ . . . ∗ a(p))ke
ikLt

=
∑

|k|6p(M−1)

(a(1) ∗ a(2) ∗ . . . ∗ a(p))ke
ikLt.

�

We are ready to state the goal of the present paper.

Statement of the problem: Given p finite sequences of Fourier/Chebyshev

coefficients {a
(i)
k }|k|<M (i = 1, . . . , p) combine interval arithmetic, the fast Fourier
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transform (FFT) and Banach algebras to obtain rigorous component-wise enclosures

for the discrete convolution

(1.6) (a(1) ∗ a(2) ∗ . . . ∗ a(p))k =
∑

k1+k2+...+kp=k
|ki|<M

a
(1)
k1

a
(2)
k2

. . . a
(p)
kp

for |k| 6 p(M − 1).

The statement of the problem comes from the rather common need in rigorous

numerics to compute interval enclosures for terms of the form (1.6) (see e.g. [5], [4],

[6], [10], [31], [32]). While the FFT algorithm [29] is a fantastic tool to evaluate

quickly discrete convolutions (see e.g. Section 2), it often fails to recover the geomet-

ric/algebraic decay of the tail (i.e. the terms in (1.6) corresponding to M 6 |k| 6

p(M − 1)) of a convolution (see e.g. the example in Section 5.1) due to round-off er-

rors. This property implies that the weighted ℓ1-norms of the discrete convolutions

may blow-up for geometrically growing weights (e.g. when ωk = ν|k| for some ν > 1)

(see Tables 4 and 5). This is a major hurdle in obtaining the CAPs in the cate-

gory of analytic functions, as sometimes taking ν rather large is necessary to obtain

a contraction mapping. In order to fix this issue in the tail, we use the fundamental

property of a given Banach algebra (X, ∗) (i.e. ‖x∗y‖X 6 ‖x‖X‖y‖X for all x, y ∈ X)

to obtain the proper decay in the tail. This has the effect of stabilizing the sensitivity

of the ℓ1-norms in obtaining the rigorous bounds for the computer-assisted proofs.

Before proceeding any further, we urge to mention that the present work is by no

means the first time that the FFT algorithm and interval arithmetic are combined

to rigorously compute discrete convolutions (see e.g. [3], [11], [14], [9]). However, we

believe that our new proposed approach of combining the FFT algorithm, interval

arithmetic and theoretical Banach algebra estimates to obtain rigorous component-

wise enclosure (1.6) is new, and that it could benefit the rigorous numerics commu-

nity.

R em a r k 1.3. The idea introduced in this paper can be generalized to rigorously

enclose components of discrete convolutions of multidimensional sequences in the

Banach space

(1.7) ℓ1ω
def
= {a = {aα}α∈Zd : aα ∈ C and ‖a‖ω < ∞},

where d ∈ N is the dimension of the space on which solutions of the differential equa-

tions are defined, ‖a‖ω
def
=

∑
α∈Zd

|aα|ωα and ω = {ωα}α∈Zd is a sequence of positive

weights satisfying the sub-multiplicative property ωα+β 6 ωαωβ for all α, β ∈ Z
d. It

can be shown that ℓ1ω is a Banach algebra under the discrete convolution defined by

(a ∗ b)α =
∑

β+γ=α

β,γ∈Z
d

aβbγ =
∑

β∈Zd

aβbα−β.
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The paper is organized as follows. In Section 2, we present the background of how

to use the FFT to compute discrete convolutions. In Section 3, we present how to

use the Banach algebra property of the Banach space ℓ1ω to obtain an alternative

method to compute interval enclosures for terms of the form (1.6), which recover

a similar decay rate in the tail as the one of the inputs. In Section 4, we combine the

two approaches of Sections 2 and 3 to refine the rigorous enclosures of the discrete

convolutions. Finally in Section 5, we introduce some application examples, where

we compute rigorously discrete convolutions of degree 3, 20 and 100, and present

a rigorous aposteriori error analysis for a steady state in the quintic Swift-Hohenberg

PDE.

2. Convolution enclosures via the FFT and interval arithmetic

In this section, denote byM and p the order of the Fourier series and the power of

the nonlinearity, respectively. Following closely the presentation of [11], we introduce

the theory to compute discrete convolutions of the form (1.6) with the discrete Fourier

transform (DFT). Once this is done, we combine the FFT algorithm (an efficient

implementation of the DFT) and interval arithmetic to compute rigorous enclosures

of discrete convolutions of the form (1.6).

Definition 2.1. Given b = (b0, . . . , b2M−2) ∈ C
2M−1, define its discrete Fourier

transform F(b) ∈ C
2M−1 by

ak = Fk(b)
def
=

2M−2∑

j=0

bje
−2πijk/(2M−1) for k = −M + 1, . . . ,M − 1.

Definition 2.2. Given a = (ak)|k|<M = (a−M+1, . . . , aM−1) ∈ C
2M−1, define

its inverse discrete Fourier transform F−1(a) ∈ C
2M−1 by

bj = F−1
j (a)

def
=

M−1∑

k=−M+1

ake
2πijk/(2M−1) for j = 0, . . . , 2M − 2.

Given a(i) = (a
(i)
k )|k|<M ∈ C

2M−1, we extend it to eliminate the so-called aliasing

error (see the second term in (2.4)). Hence, define ã(i) ∈ C
2pM−1 by

(2.1) ã
(i)
j =

{
a
(i)
j for |j| < M,

0 for M 6 |j| 6 pM − 1,
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that is we pad the vector a(i) with (p − 1)M zeros before and after. Then define

b̃(i) = (b
(i)
0 , . . . , b

(i)
2pM−2) ∈ C

2pM−1 component-wise by

(2.2) b̃
(i)
j

def
= F−1

j (ã(i)) =

pM−1∑

k=−pM+1

ã
(i)
k e2πijk/(2pM−1) for j = 0, . . . , 2pM − 2.

Define b̃(1) ∗̂ . . . ∗̂ b̃(p) to be the component-wise product of the vectors b̃(1), . . . , b̃(p),

that is

(2.3) (b̃(1) ∗̂ . . . ∗̂ b̃(p))j
def
= b̃

(1)
j . . . b̃

(p)
j , j = 0, . . . , 2pM − 2.

Hence, for k = −pM + 1, . . . , pM − 1,

Fk(b̃
(1) ∗̂ . . . ∗̂ b̃(p)) =

2pM−2∑

j=0

b̃
(1)
j . . . b̃

(p)
j e−2πijk/(2pM−1)

=

2pM−2∑

j=0

p∏

i=1

pM−1∑

ki=−pM+1

ã
(i)
ki
e2πijki/(2pM−1) e−2πijk/(2pM−1).

Letting

Sk(j)
def
=

p∏

i=1

pM−1∑

ki=−pM+1

ã
(i)
ki
e2πijki/(2pM−1) e−2πijk/(2pM−1)

=
∑

k1+...+kp=k
|ki|<M

a
(1)
k1

. . . a
(p)
kp

+

p∑

l=1

∑

k1+...+kp=k±l(2pM−1)
|ki|<M

a
(1)
k1

. . . a
(p)
kp

+
∑

k1+...+kp /∈{k±l(2pM−1) : l=0,...,p}
|ki|<M

a
(1)
k1

. . . a
(p)
kp

e2πij(k1+...+kp−k)/(2pM−1),

we obtain that

(2.4) Fk(b̃
(1) ∗̂ . . . ∗̂ b̃(p)) =

2pM−2∑

j=0

Sk(j) = (2pM − 1)
∑

k1+...+kp=k
|ki|<M

a
(1)
k1

. . . a
(p)
kp

+ (2pM − 1)

p∑

l=1

∑

k1+...+kp=k±l(2pM−1)
|ki|<M

a
(1)
k1

. . . a
(p)
kp

+
∑

k1+...+kp /∈{k±l(2pM−1) : l=0,...,p}
|ki|<M

a
(1)
k1

. . . a
(p)
kp

2pM−2∑

j=0

e2πi
k1+...+kp−k

2pM−1
j .

224



Euler’s formula gives that for k1 + . . .+ kp − k 6≡ 0 (mod 2pM − 1),

2pM−1∑

j=0

e2πij(k1+...+kp−k)/(2pM−1) = 0.

Hence, the third sum in (2.4) is zero. As far as the second sum in (2.4) is concerned,

observe that |k1|, . . . , |kp| < M and that |k| 6 p(M − 1), and therefore

k1 + . . .+ kp − k ∈ {−2p(M − 1), . . . , 2p(M − 1)}.

Hence, for the equality k1 + . . .+ kp = k ± l(2pM − 1) to be satisfied for a choice of

l ∈ {1, . . . , p}, one must have that

l(2pM − 1) = k1 + . . .+ kp − k ∈ {−2p(M − 1), . . . , 2p(M − 1)},

which is impossible, because 2pM − 1 > 2p(M − 1). Hence, the second sum of (2.4)

is zero. Therefore, we can conclude that

(2.5)
∑

k1+...+kp=k
|k1|,...,|kp|<M

a
(1)
k1

. . . a
(p)
kp

=
1

2pM − 1
· Fk(b̃

(1) ∗̂ . . . ∗̂ b̃(p)) ∀ |k| 6 p(M − 1).

R em a r k 2.3. In [11], we padded the vectors a(i) as

ã
(i)
j =

{
a
(i)
j for |j| < M,

0 for M 6 |j| 6 δpM − 1,

where

δp
def
=






p+ 1

2
if p is odd,

p+ 2

2
if p is even,

because we only considered the cases |k| < M in (1.6).

The inverse discrete Fourier transforms and the discrete Fourier transforms re-

quired in the computations of (2.2) and (2.5) can be computed efficiently and rig-

orously using the FFT algorithm (see e.g. [2]) and interval arithmetic (e.g. [20]) for

instance using the function verifyfft.m in INTLAB [22].
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3. Convolution enclosures via Banach algebras

We begin this section by defining the notion of a Banach algebra.

Definition 3.1. A Banach algebra is a Banach space X with a multiplication

operation ∗ : X ×X → X that satisfies

x ∗ (y ∗ z) = (x ∗ y) ∗ z,

(x+ y) ∗ z = x ∗ z + y ∗ z, x ∗ (y + z) = z ∗ y + x ∗ z,

α(x ∗ y) = (αx) ∗ y = x ∗ (αy),

‖x ∗ y‖ 6 ‖x‖‖y‖,(3.1)

for all x, y, z ∈ X and all scalars α. The Banach algebra is commutative if x∗y = y∗x,

for all x, y ∈ X .

Recall the definition of the Banach space ℓ1ω in (1.1) endowed with the norm ‖·‖ω

defined in (1.2), and the definition of the discrete convolution in (1.3).

The following definition introduces a property about the weight ω which makes

ℓ1ω a commutative Banach algebra under discrete convolutions.

Definition 3.2. A sequence of positive real numbers ω = {ωk}k∈Z is an admis-

sible sequence of weights if ωn+k 6 ωnωk for all n, k ∈ Z.

Lemma 3.3. Given ω an admissible sequence of weights, denote by ∗ the discrete

convolution. Then the pair (ℓ1ω, ∗) is a commutative Banach algebra.

P r o o f. We only demonstrate that ‖a∗b‖ω 6 ‖a‖ω‖b‖ω for all a, b ∈ ℓ1ω. Indeed,

‖a ∗ b‖ω =
∑

k∈Z

|(a ∗ b)k|ωk =
∑

k∈Z

∣∣∣∣
∑

k1∈Z

ak1
bk−k1

∣∣∣∣
ωk

ωk−k1

ωk−k1

6
∑

k∈Z

∑

k1∈Z

|ak1
||bk−k1

|ωk1
ωk−k1

6
∑

k1∈Z

|ak1
|ωk1

∑

k2∈Z

|bk2
|ωk2

= ‖a‖ω‖b‖ω.

�

E x am p l e 3.4. Consider a geometric decay rate ν > 1 and an algebraic decay

rate s > 0. Let ω = {ωk}k∈Z be the sequence of positive real numbers defined

component-wise by

(3.2) ωk
def
= (|k|+ 1)sν|k|.
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Then ω is an admissible sequence of weights. Indeed, for any n, k ∈ Z,

ω
1/s
n+k = (|n+ k|+ 1)ν|n+k|/s

6 (|n||k|+ |n|+ |k|+ 1)ν|n|/sν|k|/s

= (|n|+ 1)ν|n|/s · (|k|+ 1)ν|k|/s = ω1/s
n ω

1/s
k = (ωnωk)

1/s,

which implies that ωn+k 6 ωnωk, since the function f(x)
def
= x1/s is strictly monotone

increasing on (0,∞) for any s > 0.

The following consequence of Lemma 3.3 allows to obtain rigorous theoretical

bounds on any component of a discrete convolution.

Corollary 3.5. Fix p ∈ N. Let a(1), . . . , a(p) ∈ ℓ1ω. Then for any k ∈ Z

(3.3) |(a(1) ∗ a(2) ∗ . . . ∗ a(p))k| 6 ‖a(1)‖ω‖a
(2)‖ω . . . ‖a(p)‖ω

1

ωk
.

P r o o f. Fix k ∈ Z. Then by Lemma 3.3,

|(a(1) ∗ a(2) ∗ . . . ∗ a(p))k|ωk 6
∑

j∈Z

|(a(1) ∗ a(2) ∗ . . . ∗ a(p))j |ωj

= ‖a(1) ∗ a(2) ∗ . . . ∗ a(p)‖ω 6 ‖a(1)‖ω‖a
(2)‖ω . . . ‖a(p)‖ω.

�

4. Rigorous convolution enclosures: a refinement

We are now ready to present a refinement of the rigorous enclosures of the discrete

convolutions presented in Section 2. Note that in practice, the method of Section 2

is essentially used for the finite part (i.e. |k| < M), while the method of Section 3 is

essentially used for the tail part (i.e. for M 6 |k| 6 p(M − 1)).

Combining the FFT algorithm with interval arithmetic (see e.g. the function

verifyfft.m in INTLAB [22]), we can use formula (2.5) to compute a rigorous enclo-

sure B
(FFT)
k ∈ C such that

(4.1)
∑

k1+k2+...+kp=k
|ki|<M

a
(1)
k1

a
(2)
k2

. . . a
(p)
kp

=
1

2pM − 1
· Fk(b̃

(1) ∗̂ . . . ∗̂ b̃(p)) ∈ B
(FFT)
k

for all k = −p(M − 1), . . . , p(M − 1), where the vectors b̃(1), . . . , b̃(p) are defined

in (2.2).
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Now, choose an admissible sequence of weights ω
def
= {ωk}k∈Z. For all integers

k = −p(M − 1), . . . , p(M − 1), let

(4.2) βk
def
= ‖a(1)‖ω‖a

(2)‖ω . . . ‖a(p)‖ωω
−1
k ,

and set

(4.3) B
(ω)
k

def
= {z ∈ C : |z| 6 βk}.

From Corollary 3.5, we get that

(4.4)
∑

k1+k2+...+kp=k
|ki|<M

a
(1)
k1

a
(2)
k2

. . . a
(p)
kp

∈ B
(ω)
k .

R em a r k 4.1. We see from (4.4) that the quality of the enclosure of B
(ω)
k de-

pends on the choice of the admissible sequence of weights ω
def
= {ωk}k∈Z. In practice,

we may know in advance that the type of functions we are approximating is analytic,

in which case setting s = 0 and ν > 1 in the weights (3.2) is most suitable. A least

square fit can be used to determine the optimal geometric decay rate ν > 1 fitting

the data. Once this choice has been identified, set ωk = ν|k|, compute βk using (4.2)

and define B
(ω)
k . Similarly, we may know in advance that the type of functions we

are approximating is only Cs, in which case setting s > 0 and ν = 1 in the weights

(3.2) is most suitable. A least square fit can be used to determine the optimal al-

gebraic decay rate s > 1 fitting the data. Once this choice has been identified, set

ωk = (|k|+ 1)s, compute βk using (4.2) and define B
(ω)
k .

For each k ∈ Z such that |k| 6 p(M − 1), we refine the enclosure of the discrete

convolution by setting

(4.5) Bk
def
= B

(FFT)
k ∩ B

(ω)
k .

5. Examples

In this final section, we show case how the refinement (4.5) of Section 4 helps

to stabilize computing ℓ1ω norms of discrete convolutions of the form (1.6). We

present four application examples. We compute rigorously convolutions of degree 3

(Section 5.1), 20 (Section 5.2) and 100 (Section 5.3), and demonstrate how our

new approach improves dramatically the standard method of Section 2. Finally in
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Section 5.4, we present a rigorous aposteriori error analysis for a steady state in the

quintic Swift-Hohenberg PDE, and again compare the two approaches.

5.1. Cubic discrete convolutions. Let us consider a vector of Fourier/Cheby-

shev coefficients {ak}|k|<M with a prescribed geometric decay rate ̺ > 1. We want

to compute a rigorous enclosure for cubic discrete convolutions of the form

(5.1) (a3)k = (a ∗ a ∗ a)k =
∑

k1+k2+k3=k
|ki|<M

ak1
ak2

ak3
for |k| 6 3(M − 1).

Fix p = 3, M = 30 and ̺ = 4. Consider a symmetric vector {āk}|k|<M such that

ā−k = āk and āk ∈ R. For the coefficients āk (k = 0, . . . , 29), we consider āk =

αk̺
−k, where αk ∈ [−1, 1] are chosen randomly. We compute rigorous component-

wise bounds of (ā3)k given in (5.1) for all |k| 6 3(M − 1) = 87 using the standard

approach of Section 2 (rigorous FFT only) and the refinement of Section 4 (rigorous

FFT intersected with the Banach algebra bounds). In Figure 1 on the left, we

show the plot of both rigorous component-wise enclosures for ln(|(ā3)k|) for |k| 6

p(M − 1) = 3(29) = 87. In Table 1, we consider the interval vectors B(FFT) and

B
def
= B(FFT) ∩ B(ω) (having each 87 interval components) and compute a rigorous

upper bound for their norm in ℓ1ω with ω = {ν|k|}|k|687 for different values of ν > 1.

We also compare the bounds with the theoretical upper bound ‖ā3‖ω 6 ‖ā‖3ω.
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Figure 1. Two rigorous component-wise enclosures for: (left) ln(|(ā3)k|) for |k| 6 87; (right)
ln(|(ā20)k|) for |k| 6 980.

5.2. Discrete convolution of degree 20. We now want to compute a rigorous

enclosure for discrete convolutions of degree 20 of the form

(5.2) (a20)k = (a ∗ . . . ∗ a︸ ︷︷ ︸
20 times

)k =
∑

k1+...+k20=k
|ki|<M

ak1
. . . ak20

for |k| 6 20(M − 1).
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ν ‖B(FFT)‖ω ‖B(FFT) ∩ B(ω)‖ω ‖ā‖3ω
1 9.9559× 10−2 9.9559× 10−2 1.6643× 10−1

1.25 1.8288× 10−1 1.8287× 10−1 3.9832× 10−1

1.5 2.5805× 100 2.7271× 10−1 8.7256× 10−1

1.6 5.6391× 102 2.7271× 10−1 1.1745× 100

1.7 1.0032× 105 4.0439× 10−1 1.5701× 100

1.8 1.3436× 107 4.9123× 10−1 2.0881× 100

1.9 1.3926× 109 5.9573× 10−1 2.7661× 100

2 1.1450× 1011 7.2135× 10−1 3.6548× 100

2.5 2.5847× 1019 1.8758× 100 1.4778× 101

3 1.8058× 1026 1.4199× 101 6.8826× 101

3.5 1.1272× 1032 2.8576× 103 5.5624× 102

4 1.1936× 1037 1.9558× 106 2.8233× 104

Table 1. Three different upper bounds for ‖ā3‖ω . In the second and third columns,

rigorous upper bounds for the ℓ1ω norms of the interval vectors B(FFT) and

B
def
= B(FFT) ∩ B(ω) (having each 87 interval components) with ω = {ν|k|}|k|687

for different values of ν > 1. In the fourth column, we compare the bounds with
the theoretical upper bound ‖ā3‖ω 6 ‖ā‖3ω.

Fix p = 20, M = 50 and ̺ = 3. Consider a symmetric vector {āk}|k|<M such

that ā−k = āk and āk ∈ R. For the coefficients āk (k = 0, . . . , 49), we consider

āk = αk̺
−k, where αk ∈ [−1/2, 1/2] are chosen randomly. We compute rigorous

component-wise bounds of (ā20)k given in (5.2) for all |k| 6 p(M − 1) = 980 using

the standard approach of Section 2 and the refinement of Section 4. In Figure 1 on the

right, we show the plot of both rigorous component-wise enclosures for ln(|(ā20)k|)

for |k| 6 p(M − 1) = p(M − 1) = 980. As in Section 5.1, we provide comparisons in

Table 2.

ν ‖B(FFT)‖ω ‖B(FFT) ∩ B(ω)‖ω ‖ā‖20ω
1 3.6095× 10−11 3.6095× 10−11 2.7979× 10−2

1.05 2.0193× 10−3 4.7327× 10−11 3.3327× 10−2

1.1 6.6628× 1016 6.3808× 10−11 3.9653× 10−2

1.2 3.9165× 1053 1.2718× 10−10 5.5972× 10−2

1.5 1.8339× 10148 2.0877× 10−6 1.5603× 10−1

1.7 2.7672× 10201 1.0043× 100 3.1316× 10−1

Table 2. Three different upper bounds for ‖ā20‖ω. In the second and third columns,

rigorous upper bounds for the ℓ1ω norms of the interval vectors B(FFT) and

B
def
= B(FFT)∩B(ω) (having each 980 interval components) with ω = {ν|k|}|k|6980

for different values of ν > 1. In the fourth column, we compare the bounds with
the theoretical upper bound ‖ā20‖ω 6 ‖ā‖20ω .
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5.3. Discrete convolutions of degree 100. We now compute a rigorous enclo-

sure for discrete convolutions of degree 100 of the form

(5.3) (a100)k = (a ∗ . . . ∗ a︸ ︷︷ ︸
100 times

)k =
∑

k1+...+k100=k
|ki|<M

ak1
. . . ak100

for |k| 6 100(M − 1).

Fix p = 100, M = 11 and ̺ = 30. Consider a symmetric vector {āk}|k|<M

such that ā−k = āk and āk ∈ R. For the coefficients āk (k = 0, . . . , 1000), we

consider āk = αk̺
−k, where αk ∈ [−1, 1] are chosen randomly. We compute rigorous

component-wise bounds of (ā100)k given in (5.2) for all |k| 6 p(M − 1) = 1000 using

the standard approach of Section 2 and the refinement of Section 4. We provide

comparisons in Table 3.

ν ‖B(FFT)‖ω ‖B(FFT) ∩ B(ω)‖ω ‖ā‖20ω
1 4.0676× 10−31 4.0676× 10−31 1.2570× 10−1

1.1 3.1261× 10−2 4.7431× 10−31 1.2812× 10−1

1.2 1.0476× 1036 5.5291× 10−31 1.3060× 10−1

1.3 4.3735× 1070 6.6089× 10−31 1.3315× 10−1

1.4 5.4031× 10102 2.4845× 10−29 1.3576× 10−1

1.5 4.2542× 10132 2.3256× 10−26 1.3845× 10−1

1.6 4.0393× 10160 1.0333× 101 1.4121× 10−1

Table 3. Three different upper bounds for ‖ā100‖ω.

5.4. Aposteriori error analysis in the quintic Swift-Hohenberg PDE.

The quintic Swift-Hohenberg PDE (see e.g. [13], [24]) defined on a bounded interval

with even periodic boundary conditions is given by

(5.4) ut = (λ− 1)u− 2uxx − uxxxx + µu3 − u5 in Ω = [0, 2π/L],

u(x, t) = u(x+ 2π/L, t), u(x, t) = u(−x, t) on ∂Ω.

The solutions can be expressed via the Fourier expansion

(5.5) u(x, t) =

∞∑

k=−∞

ak(t)e
ikLx = a0 + 2

∞∑

k=1

ak(t) cos(kLx),

where ak ∈ R and a−k = ak. Plugging (5.5) in (5.4) results in the infinite set of

ODEs given by

(5.6) ȧk = Fk(a)
def
= (λ− (1− k2L2)2)ak + µ(a3)k − (a5)k,
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where a3 = a∗a∗a and a5 = a∗a∗a∗a∗a are cubic and quintic discrete convolutions,

respectively. Since a−k = ak, hence F−k = Fk. Looking for equilibria of the Swift-

Hohenberg PDE (5.4) is equivalent to computing solutions of F (a) = 0 in ℓ1ω, for

some admissible sequence of weights ω with geometric growth ωk = ν|k| for some

ν > 1. As in [13], we consider the parameter values L = 0.1, µ = 3 and λ < 0. In

particular, we fix λ = −1/2. Equilibria u = u(x) of (5.4) correspond to solutions

of F (a) = 0, where a = (ak)k∈Z is the infinite sequence of Fourier coefficients and

F = (Fk)k∈Z is given component-wise by (5.6). We consider a Galerkin projection

of (5.6) of dimension M = 230 and apply Newton’s method to find a numerical

approximation ā = {āk}|k|<230 ∈ R
459 (ā−k = āk) such that F (ā) ≈ 0 (see Figure 2).

Applying a least square fit, we compute that the numerical solution ā has a geometric

decay rate of about 1.213, that is |āk| 6 C/1.213|k|.
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Figure 2. Steady state of the quintic Swift-Hohenberg equation (5.4) at parameter values
L = 0.1, µ = 3, and λ = −1/2, where M = 230 Fourier coefficients are used to
represent the solution.

One of the approaches in the field of rigorous numerics is called the radii poly-

nomial approach [7], [15] and its goal is to demonstrate the existence (and local

uniqueness) of solutions of some infinite dimensional nonlinear problems F (a) = 0

posed on a given Banach space X . The idea, based on a Newton-Kantorovich type

argument, is to prove that a certain Newton-like operator T (a) = a − AF (a) is

a contraction mapping on a carefully chosen ball centered at a numerical approx-

imation ā ∈ X , where A is an approximate inverse for DF (ā) in the sense that

‖I −ADF (ā)‖B(X) ≪ 1. In the works [8], [15], [26], [27], [28], the radii polyno-

mial approach is applied on the Banach space ℓ1ω, and in the process, the quantity

‖AF (ā)‖ω has to be bounded rigorously. The bound for ‖AF (ā)‖ω is often denoted

by Y0. In Table 4, we present a list of rigorous upper bounds for ‖F (ā)‖ω with

ω = {ωk}k∈Z = {ν|k|}k∈Z for different values of ν > 1, where the rigorous computa-

tion of F (ā) is performed using the two approaches presented in this paper (1. FFT
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alone as introduced in Section 2; and 2. FFT and Banach algebras as introduced in

Section 4). We do a similar comparison for Y0 satisfying ‖AF (ā)‖ω 6 Y0 in Table 5.

In these two tables, the refinement enclosure of Section 4 is a dramatic improve-

ment over the standard approach. As ‖T (ā) − ā‖ω = ‖AF (ā)‖ω 6 Y0, the bounds

presented in Table 5 are rigorous aposteriori error bounds for a steady state in the

quintic Swift-Hohenberg PDE (5.4).

ν ‖F (ā)‖ω (FFT only) ‖F (ā)‖ω (FFT + Banach algebras)

1 7.9453× 10−10 2.3107× 10−10

1.01 4.4067× 10−6 1.2869× 10−9

1.02 1.7514× 10−1 1.1573× 10−8

1.03 8.3728× 103 1.3328× 10−7

1.04 4.0427× 108 1.7290× 10−6

1.05 1.8729× 1013 2.3820× 10−5

1.06 8.1458× 1017 3.3840× 10−4

1.07 3.2908× 1022 4.8769× 10−3

1.08 1.2279× 1027 7.0628× 10−2

1.09 4.2188× 1031 1.0221× 100

Table 4. Two different upper bounds for ‖F (ā)‖ω. In the second column, a rigorous upper
FFT and interval arithmetic whereas in the third column, the bound is obtained
using the refinement of Section 4.

ν Y0 (FFT only) Y0 (FFT + Banach algebras)

1 1.8068× 10−6 1.8068× 10−6

1.02 2.2227× 10−6 2.2227× 10−6

1.04 2.5844× 100 2.7805× 10−6

1.05 1.1736× 105 3.1380× 10−6

1.1 8.0385× 1027 2.7180× 10−5

1.11 2.3253× 1032 2.9418× 10−4

1.12 6.1836× 1036 3.9776× 10−3

1.13 1.5120× 1041 5.4766× 10−2

Table 5. Two different upper bounds for Y0 satisfying ‖AF (ā)‖ω 6 Y0. In the second
column, a rigorous upper FFT and interval arithmetic whereas in the third column,
the bound is obtained using the refinement of Section 4.
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