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On the mappings ZA and ℑA in intermediate rings of C(X)

Mehdi Parsinia

Abstract. In this article, we investigate new topological descriptions for two well-
known mappings ZA and ℑA defined on intermediate rings A(X) of C(X). Using
this, coincidence of each two classes of z-ideals, ZA-ideals and ℑA-ideals of A(X)
is studied. Moreover, we answer five questions concerning the mapping ℑA raised
in [J. Sack, S. Watson, C and C∗ among intermediate rings, Topology Proc. 43
(2014), 69–82].
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1. Introduction

Throughout this article all topological spaces are assumed to be Tychonoff.
For a given topological space X , C(X) denotes the algebra of all real-valued con-
tinuous functions on X and C∗(X) denotes the subalgebra of C(X) consisting
of all bounded elements. A subring of C(X) containing C∗(X) is called an in-
termediate ring. An intermediate ring which is isomorphic with C(Y ) for some
Tychonoff space Y is called an intermediate C-ring. The reader is referred to
[5] for undefined terms and notations concerning C(X). For each element f
of an intermediate ring A(X), we set SA(f) = {p ∈ βX : (fg)∗(p) = 0, ∀g ∈
A(X)}. As stated in [11], we could easily observe that SA(fg) = SA(f) ∪ SA(g),
SA(f

2+ g2) = SA(f)∩SA(g) and SA(f
n) = SA(f) for each f, g ∈ A(X) and each

n ∈ N. Also, SC(f) = clβXZ(f) for each f ∈ C(X) and SC∗(f) = Z(fβ) for each
f ∈ C∗(X). Moreover, clβXZ(f) ⊆ SA(f) ⊆ Z(f∗) and thus SA(f) ∩X = Z(f)
for each f ∈ A(X). For each p ∈ βX , we use Mp

A (or Op
A) to denote the set

{f ∈ A(X) : p ∈ SA(f)} ({f ∈ A(X) : p ∈ intβXSA(f)}, respectively). Evi-
dently, Mp

C = Mp (or Op
C = Op) and Mp

C∗ = M∗p (Op
C∗ = O∗p, respectively).

Moreover, we can see that intβXSA(f) = intβXclβXZ(f) for each f ∈ A(X) and
thus Op

A = Op ∩ A(X) for each p ∈ βX . An ideal I of a commutative ring
R is called a z-ideal if Mf (R) ⊆ I whenever f ∈ I in which Mf(R) denotes
the intersection of all the maximal ideals of R containing f . It is well-known
that Mf (C(X)) = {g ∈ C(X) : Z(f) ⊆ Z(g)} for each f ∈ C(X). Also, from
[9, Proposition 2.7], it follows that Mf (A(X)) = {g ∈ A(X) : SA(f) ⊆ SA(g)}
for each element f of an intermediate ring A(X). Therefore, an ideal I in C(X)
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(or in an intermediate ring A(X)) is a z-ideal if and only if whenever Z(f) ⊆ Z(g)
(or SA(f) ⊆ SA(g)), where f ∈ I and g ∈ C(X) (g ∈ A(X), respectively), then
g ∈ I. The aim of this paper is to answer the five basic questions concerning
the mapping ℑA which have been raised in [13]. This is done by investigating
new topological descriptions for two well-known mappings ZA and ℑA defined on
intermediate rings of C(X). This paper consists of 3 sections. Section 1, which
is already noticed, is the introduction. In Section 2, we study the mapping ZA

which was first introduced in [12] and more studied in [3]. Moreover, coincidence
of z-ideals of A(X) with ZA-ideals and zA-ideals is studied. In Section 3, we
study the mapping ℑA which was first introduced in [8] and further studied in
[14] and [13]. We establish a topological description for this mapping. Coinci-
dence of ℑA-ideals with z-ideals and ZA-ideals are studied. Moreover, the five
questions concerning the mapping ℑA raised in [13] are answered.

2. The mapping ZA

The mapping ZA was first introduced in [12] on an intermediate ring A(X) as
follows: for each element f of A(X),

ZA(f) = {E ∈ Z(X) : ∃ g ∈ A(X), fg|
X\E

= 1}.

By the following statement we provide a new topological description for ZA.

Theorem 2.1. For each element f of an intermediate ring A(X), we have

ZA(f) = {E ∈ Z(X) : SA(f) ⊆ intβXclβXE}.

Proof: If E ∈ ZA(f), then there exists g ∈ A(X) such that fg|X\E = 1. Thus,
(fg)∗|clβX (X\E) 6= 0. This means that SA(f)∩clβX(X \E) = ∅ and thus SA(f) ⊆
βX \ clβX(X \E) = βX \ clβX(βX \ clβXE) ⊆ clβXE; i.e., SA(f) ⊆ intβXclβXE.
For the reverse inclusion, let E ∈ Z(X) be such that SA(f) ⊆ intβXclβXE.
Thus, SA(f) ∩ (βX \ intβXclβXE) = ∅. Hence, there exists some h ∈ C∗(X)
such that hβ(SA(f)) = {1} and (βX \ intβXclβXE) ⊆ Z(hβ). These imply that
SA(f) ∩ SA(h) = ∅ and X \ E ⊆ X \ intXE ⊆ Z(h). Therefore, SA(f

2 + h2) =
SA(f) ∩ SA(h) = ∅ which implies that there exists some k ∈ A(X) such that
(f2 + h2)k = 1. Thus, clearly fk ∈ A(X) and (f2k)|X\E = ((f2 + h2)k)|X\E = 1;
i.e., E ∈ ZA(f). �

The following properties of the mapping ZA follow from Theorem 2.1. Note
that for each two z-filters F and F ′, we denote by F ∧ F ′ and F ∨ F ′ the meet
and join on the lattice of z-filters, respectively.

Proposition 2.2. The following statements hold for each two elements f, g of an

intermediate ring A(X) and each n ∈ N.

(a) If 0 ≤ f ≤ g, then ZA(f) ⊆ ZA(g).
(b)

⋂
ZA(f) = Z(f).
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(c) ZA(fg) = ZA(f) ∧ ZA(g).
(d) ZA(f + g) ⊆ ZA(f) ∨ ZA(g).
(e) ZA(f

2 + g2) = ZA(f) ∨ ZA(g).
(f) ZA(f

n) = ZA(f).

Proof: Parts (c) through (f) easily follow from Theorem 2.1.
(a) It suffices to show that SA(g) ⊆ SA(f). Let p /∈ SA(f). Thus, f /∈ Mp

A and
hence g /∈ Mp

A, i.e., p /∈ SA(g), since 0 ≤ f ≤ g and from [3, Theorem 2.5] it follows
that every maximal ideal in A(X) is a convex ideal. Therefore, SA(g) ⊆ SA(f).

(b) It is evident that Z(f) ⊆ E for each E ∈ ZA(f). Thus, Z(f) ⊆
⋂
ZA(f).

Let x ∈ X and x /∈ Z(f). Hence, x /∈ SA(f) and thus there exists a zero-set
E such that x /∈ clβXE and SA(f) ⊆ intβXclβXE. It follows that E ∈ ZA(f),
however, x /∈ E. This implies that

⋂
ZA(f) ⊆ Z(f) and the equality follows. �

It is shown in [8, Theorem 1.2] that the mapping ZA could characterize C∗(X)
among intermediate rings. The following statement shows that the mapping ZA

could also characterize C(X) among intermediate rings in the case that X is
a P -space.

Theorem 2.3. Let A(X) be an intermediate ring of C(X). Then ZA(f) =
(Z(f)) for each f ∈ A(X) if and only if X is a P -space and A(X) = C(X).

Proof: (⇒) As ZA(f) = (Z(f)) for each f ∈ A(X), we have Z(f) ∈ ZA(f)
and thus SA(f) ⊆ intβXclβXZ(f). This implies that SA(f) = clβXZ(f) =
intβXclβXZ(f) for each f ∈ A(X). Hence, X is a P -space and, by [10, The-
orem 2.3], A(X) = C(X)

(⇐) It is clear that ZC(f) ⊆ (Z(f)). If E ∈ (Z(f)), then, Z(f) ⊆ E and
as X is a P -space, we have SC(f) = clβXZ(f) ⊆ intβXclβXE. Thus, (Z(f)) ⊆
ZC(f). �

For an ideal I of an intermediate ring A(X), we denote by ZA(I) the set⋃
f∈I ZA(f). Also, for a z-filter F on X we denote by Z−1

A (F) the set {f ∈

A(X) : ZA(f) ⊆ F}. It is clear that I ⊆ Z−1
A ZA(I) and ZAZ

−1
A (F) ⊆ F . We

call an ideal I in A(X) a ZA-ideal, if Z
−1
A ZA(I) = I. Also, a z-filter F on X

is called a ZA-filter, if ZAZ
−1
A (F) = F . Evidently, Z−1

A ZA(M
p
A) = Mp

A. Hence,
every maximal ideal in A(X) is ZA-ideal.

Remark 2.4. It easily follows from Theorem 2.1 that ZA(M
p
A) = ZA(O

p
A) for

each p ∈ βX . Moreover, Z−1
A (Up) = Mp

A for each p ∈ βX . Also, one can easily
prove that ZA(M) is contained in a unique z-ultrafilter for each maximal ideal
M in A(X). These provide a new approach to [3, Theorem 3.2].

It easily follows from Theorem 2.1 that every ZA-ideal of an intermediate ring
A(X) is a z-ideal. However, the converse of this fact does not hold, in general. For
example, let X = R and A(X) = C∗(X) = C∗(R) and p ∈ X ; then Op

A ( Mp
A,

easily verifiable. It follows that Op
A is not a ZA-ideal in A(X), however, it is

clearly a z-ideal. In [7, Theorem 2.14] it is stated that whenever every ideal of
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an intermediate ring A(X) is a ZA-ideal, then X is a P -space. The next theorem
shows that even when every z-ideal is a ZA-ideal, then we have A(X) = C(X).
Note that we call an ideal I in A(X) a zA-ideal, if whenever Z(f) ⊆ Z(g) where
f ∈ I and g ∈ A(X), then g ∈ I. It is easy to see that the ideals Op

A and
Mp∩A(X), for each p ∈ βX , are zA-ideals in A(X). Also, the ideal Mp

A, for each
p ∈ βX \ υAX , is a maximal ideal in A(X) which is not a zA-ideal, refer to [2],
[1], and [10] for more details.

Theorem 2.5. The following statements are equivalent for an intermediate ring

A(X).

(a) Every z-ideal in A(X) is a ZA-ideal.

(b) Every zA-ideal in A(X) is a ZA-ideal.

(c) X is a P -space and A(X) = C(X).

Proof: (a) ⇒ (c) The proof is straightforward by using [7, Theorem 2.5 and
Theorem 3.10].

(c) ⇒ (a) By our hypothesis and Theorem 2.3, ZC(f) = (Z(f)) for each f ∈
C(X). This clearly implies that every z-ideal in C(X) is a ZC -ideal.

(b) ⇒ (c) As Op
A, for each p ∈ βX , is a zA-ideal, by our hypothesis, Op

A would

be a ZA-ideal. Hence, Op
A = Z−1

A ZA(O
p
A) = Z−1

A ZA(M
p
A) = Mp

A. This means
that A(X) is a regular ring. Thus, by [7, Theorem 2.5 and Theorem 3.3], X is
a P -space and A(X) = C(X).

(c) ⇒ (b) It is evident that whenever A(X) = C(X), then zA-ideals coincide
with z-ideals in A(X). Moreover, as X is a P -space, by [4, Theorem 3.13], every
zA-ideal is a ZA-ideal. �

3. The mapping ℑA

The mapping ℑA on an intermediate ring A(X) was first introduced in [8] as
follows: for each f ∈ A(X)

ℑA(f) = {E ∈ Z(X) : for all zero-sets H ⊆ X \ E, ∃ g ∈ A(X), fg|H = 1}.

The following statement provides a new topological description to the mapping
ℑA which could be proved similar to Theorem 2.1.

Theorem 3.1. Let A(X) be an intermediate ring of C(X). For each f ∈ A(X)
we have

ℑA(f) = {E ∈ Z(X) : ∀H ∈ Z(X) and H ⊆ X \E, SA(f) ⊆ intβXclβX(X \H)}.

The following question concerning the basic properties of the mapping ℑA has
been raised in [13].

Question 1. Let f, g ∈ A(X). Which properties analogous to those of Proposi-
tion 2.2 hold with ℑA in place of ZA?
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The answer to Question 1 will be given by the next statement which is an easy
consequence of Theorem 3.1.

Proposition 3.2. For each two elements f, g of an intermediate ring A(X), the
following statements hold.

(a) If 0 ≤ f ≤ g, then ℑA(f) ⊆ ℑA(g).
(b)

⋂
ℑA(f) = Z(f).

(c) ℑA(fg) = ℑA(f) ∧ ℑA(g).
(d) ℑA(f + g) ⊆ ℑA(f) ∨ ℑA(g).
(e) ℑA(f

2 + g2) = ℑA(f) ∨ ℑA(g).
(f) ℑA(f

n) = ℑA(f) for each n ∈ N.

It is stated in [3, Lemma 1.3] that for a z-filter F and f ∈ A(X), we have
limFfg = 0 for each g ∈ A(X) if and only if F ⊆ ZA(f). Note that for a z-filter
F on X and f ∈ C(X), we use limFf to denote the limit of the filter base f(F).
The following question has been raised in [13].

Question 2. Let f ∈ A(X) and F be a z-filter on X . Is it the case that
ℑA(f) ⊆ F if and only if limFfg = 0 for every g ∈ A(X)?

Answer to Question 2: As stated in [13], if ℑA(f) ⊆ F , then limFfg = 0
for every g ∈ A(X). We show that the converse of this statement does not hold,
in general. Take X = R, f(x) = x for each x ∈ R and F be the z-filter of
all zero set neighbourhood of 0 in R. Then for all h ∈ C(R), limFfh = 0 but
ℑC(f) = {Z ∈ Z[X ] : 0 ∈ Z} which contains F properly.

In [7, Theorem 2.8] it is stated that a topological space X is a P -space if
and only if, for every intermediate ring A(X), we have ℑA(M

p
A) = ℑA(O

p
A) for

each p ∈ X . The next theorem extends this fact for each p ∈ βX . We use the
following lemma which could be proved by a little modification of the arguments
of [7, Proposition 2.7] and exploiting the complete regularity of βX .

Lemma 3.3. Let A(X) be an intermediate ring of C(X). Then ℑA(O
p
A) =

ZA(M
p
A) for each p ∈ βX .

Theorem 3.4. A topological space X is a P -space if and only if for every inter-

mediate ring A(X) we have ℑA(M
p
A) = ℑA(O

p
A) for each p ∈ βX .

Proof: (⇒) This easily follows from [7, Theorem 2.8].
(⇐) By our hypothesis, ℑC(M

p) = ℑC(O
p). Hence, Z(Mp

A) = ℑC(O
p) =

Z(Op) for each p ∈ βX which clearly implies that X is a P -space. �

For an ideal I of an intermediate ring A(X), we denote by ℑA(I) the set⋃
f∈I ℑA(f). Moreover, for a z-filter F on X , we use ℑ−1

A (F) to denote the

set {f ∈ A(X) : ℑA(f) ⊆ F}. An ideal I in A(X) is called a ℑA-ideal, if
ℑ−1

A ℑA(I) = I. Also, a z-filter F on X is called a ℑA-filter, if ℑAℑ
−1
A (F) = F .

It easily follows from Theorem 2.1 and Theorem 3.1 that every ZA-ideal in A(X)
is a ℑA-ideal and every ℑA-ideal in A(X) is a z-ideal. However, the converse of
these facts does not hold, in general, see the next example.
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Example 3.5. (a) Whenever X is not a P -space, then there exists p ∈ βX such
that Op 6= Mp. Hence, Op is clearly a z-ideal and thus is a ℑC -ideal in C(X),
however, it is not a ZC -ideal, since, Z

−1
C ZC(O

p) = Mp.
(b) Let X = N and A(X) = C∗(N). It is clear that there exists p ∈ βN such

that Mp
A 6= Op

A. By Theorem 3.4, ℑA(M
p
A) = ℑA(O

p
A) for each p ∈ βN. Thus,

ℑ−1
A ℑA(O

p
A) = ℑ−1

A ℑA(M
p
A) = Mp

A 6= Op
A which means that Op

A is not a ℑA-ideal,
however, it is evidently a z-ideal.

The following theorem shows that coincidence of zA-ideals with ℑA-ideals char-
acterizes C(X) among intermediate rings.

Theorem 3.6. Let A(X) be an intermediate ring of C(X). Then every ℑA-ideal

in A(X) is a zA-ideal if and only if A(X) = C(X).

Proof: (⇒) Since A(X) 6= C(X), there exists f ∈ C(X) \ A(X). Take g =
1/(1 + |f |), then g is a non-unit of A(X). Consequently, g ∈ Mp

A for some p ∈ βX .
It is clear that, since Z(g) = ∅, Mp

A is not a zA-ideal in A(X), but Mp
A being

a maximal ideal is a ℑA-ideal in A(X).
(⇐) This is evident, since, ℑC -ideals of C(X) are nothing other than z-ideals.

�

Remark 3.7. It is stated in [7, Theorem 2.14] that whenever every ideal of an
intermediate ring A(X) is a ℑA-ideal, then X is a P -space. We show that this
condition implies A(X) = C(X). It is evident that whenever every ideal in A(X)
is a ℑA-ideal, then every ideal in A(X) is a z-ideal and thus, by [6, Theorem 1.2],
A(X) is a regular ring. Hence, we have A(X) = C(X), since, otherwise, there
exists f ∈ A(X) such that Z(f) = ∅ and SA(f) 6= ∅. Hence, if we choose some
p ∈ SA(f), then Mp∩A(X) 6= Mp

A which means that Mp ∩A(X) is a prime ideal
in A(X) which is not a maximal ideal and thus A(X) is not a regular ring. Other
than this, in the proof of this theorem in [7] it is stated that ℑ−1

A ZA(M
p
A) = Mp

A for
each p ∈ X . We claim that this equality does not hold, in general. For example,
if we let A(X) = C(X) where X is not a P -space, then there exists f ∈ C(X) and
p ∈ X such that f ∈ Mp \ Op. Also, we clearly have ℑ−1

C (F) = Z−1(F) for each

z-filter F . It follows that ℑ−1
C ZC(M

p) = Z−1ZC(M
p) = Z−1Z(Op) = Op 6= Mp.

Recall that ZA(M
p
A) = ZA(O

p
A) and ZA(M

p
A) = {E ∈ Z(X) : p ∈ intβXclβXE}.

Hence, ZC(M
p) = Z(Op) for each p ∈ βX .

The following question has been raised in [13].

Question 3. Is it the case that if F is a z-filter on X , then ℑ−1
A (F) is an ideal

in A(X)?

We answer Question 3 by using Proposition 3.2.

Answer to Question 3: Let F be a z-filter onX , f, g ∈ ℑ−1
A (F) and h ∈ A(X).

Then, ℑA(fh) = ℑA(f) ∧ ℑA(h) ⊆ F , since, f ∈ ℑ−1
A (F). Hence, fh ∈ ℑ−1

A (F).

Moreover, ℑA(f + g) ⊆ ℑA(f) ∨ ℑA(g) ⊆ F , since, f, g ∈ ℑ−1
A (F). Thus, f + g ∈

ℑ−1
A (F). Therefore, ℑ−1

A (F) is an ideal in A(X) for each z-filter F on X .
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The following question also has been raised in [13].

Question 4: Is it the case that A(X) = C(X) if and only if ℑA(M) is a z-ul-
trafilter for every maximal ideal M?

Answer to Question 4. If A(X) = C(X), then for each maximal ideal M of
A(X), ℑA(M) = Z(M) is a z-ultrafilter on X . On the other hand, it is easily
inferred from [7, Theorem 2.10] that if X is a non pseudocompact P -space, then
there exists an intermediate ring B(X) ( C(X) for which for any maximal ideal
M of B(X), ℑB(M) is a z-ultrafilter on X .

The following question has been raised in [13].

Question 5. Is it the case that A(X) = C(X) if and only if every z-filter on X
is a ℑA-filter?

The answer to Question 5 is negative as it could be inferred from [7, Exam-
ple 2.13].

Acknowledgment. The author would like to express his deep gratitude to the
well-informed referee for giving useful suggestions on this article.
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