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THE AFFINE APPROACH TO HOMOGENEOUS GEODESICS
IN HOMOGENEOUS FINSLER SPACES

Zdeněk Dušek

Abstract. In the recent paper [Yan, Z.: Existence of homogeneous geodesics
on homogeneous Finsler spaces of odd dimension, Monatsh. Math. 182,1,
165–171 (2017)], it was claimed that any homogeneous Finsler space of odd
dimension admits a homogeneous geodesic through any point. However, the
proof contains a serious gap. The situation is a bit delicate, because the
statement is correct. In the present paper, the incorrect part in this proof is
indicated. Further, it is shown that homogeneous geodesics in homogeneous
Finsler spaces can be studied by another method developed in earlier works
by the author for homogeneous affine manifolds. This method is adapted for
Finsler geometry and the statement is proved correctly.

1. Introduction

Let M be either a pseudo-Riemannian manifold (M, g), or a Finsler space (M,F ),
or an affine manifold (M,∇). If there is a connected Lie group G which acts
transitively on M as a group of isometries, respectively, of affine diffeomorphisms,
then M is called a homogeneous manifold. It can be naturally identified with the
homogeneous space G/H, where H is the isotropy group of the origin p ∈M .

A geodesic γ(s) through the point p is homogeneous if it is an orbit of a
one-parameter group of isometries, respectively, of affine diffeomorphisms. More
explicitly, if s is an affine parameter and γ(s) is defined in an open interval J , there
exists a diffeomorphism s = ϕ(t) between the real line and the open interval J and
a nonzero vector X ∈ g such that γ(ϕ(t)) = exp(tX)(p) for all t ∈ R. The vector
X is called a geodesic vector. The diffeomorphism ϕ(t) may be nontrivial only for
null geodesics in a properly pseudo-Riemannian manifold or for geodesics in affine
manifolds.

A homogeneous Riemannian manifold (M, g) or a homogeneous Finsler space
(M,F ) is always a reductive homogeneous space: We denote by g and h the Lie
algebras of G and H respectively and consider the adjoint representation Ad: H ×
g → g of H on g. There exists a reductive decomposition of the form g = m + h
where m ⊂ g is a vector subspace such that Ad(H)(m) ⊂ m. For a fixed reductive
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decomposition g = m + h there is the natural identification of m ⊂ g = TeG with
the tangent space TpM via the projection π : G→ G/H = M . Using this natural
identification and the scalar product or the Minkovski norm on TpM , we obtain
the invariant scalar product 〈 , 〉 or the invariant Minkowski norm denoted again
by F and its fundamental tensor g on m. It will be clear from the context whether
g means the pseudo-Riemannian metric on the manifold or the fundamental tensor
on m coming from the Finsler metric. In the second case, it is used usually with
the subscript in the form gX . In the pseudo-Riemannian reductive case, geodesic
vectors are characterized by the following geodesic lemma:

Lemma 1 ([10], [8], [6]). Let (G/H, g) be a reductive homogeneous pseudo-Riemann-
ian manifold and X ∈ g. Then the curve γ(t) = exp(tX)(p) is geodesic with respect
to some parameter s if and only if
(1) 〈[X,Z]m, Xm〉 = k〈Xm, Z〉
for all Z ∈ m and for some constant k ∈ R. If k = 0, then t is an affine parameter
for this geodesic. If k 6= 0, then s = e−kt is an affine parameter for the geodesic.
The second case can occur only if the curve γ(t) is a null curve in a properly
pseudo-Riemannian space.

In the above formula, the subscript m refers to the m-component of vectors from
g. The Finslerian version of this lemma was proved in [11]:

Lemma 2 ([11]). Let (G/H,F ) be a homogeneous Finsler space. The vector X ∈ g
is a geodesic vector if and only if it holds
(2) gXm([X,Z]m, Xm) = 0
for all Z ∈ m.

Another possible approach is to study the manifold M using a more fundamental
affine method, which was proposed by the present author, O. Kowalski and Z.
Vlášek in [3] and [7]. It is based on the well known fact that a homogeneous
manifold M with the origin p admits n = dimM fundamental vector fields (Killing
vector fields) which are linearly independent at each point of some neighbourhood
of p. It is well known that, in a homogeneous space M = G/H with an invariant
affine connection ∇, each regular orbit of a 1-parameter subgroup gt ⊂ G on M is
an integral curve of an affine Killing vector field on M .

Lemma 3 ([7]). The integral curve γ of a nonvanishing Killing vector field Z on
M = (G/H,∇) is geodesic if and only if

∇Zγ(t)Z = kγ · Zγ(t)(3)
holds along γ, where kγ ∈ R is a constant. If kγ = 0, then t is the affine parameter
of geodesic γ. If kγ 6= 0, then the affine parameter of this geodesic is s = ekγt.

In the paper [9], O. Kowalski and J. Szenthe proved that any homogeneous
Riemannian manifold admits a homogeneous geodesic through the origin. The
proof is using the reductive decomposition of the Lie algebra of the isometry
group and Lemma 1. The generalization to the pseudo-Riemannian (reductive and
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nonreductive) case was obtained by the present author in [4] in the framework of
a more general result, which says that any homogeneous affine manifold (M,∇)
admits a homogeneous geodesic through the origin. Here the affine method from [7]
and [3], based on the study of integral curves of Killing vector fields and Lemma 3,
was used. The proof is also using differential topology, namely smooth mappings
Sn → Sn.

Recently, in the paper [12] by Z. Yan, the existence of a homogeneous geodesic
in homogeneous Finsler space of odd dimension was claimed. In the proof, the same
steps as in [9] were followed and Lemma 2 was used. Unfortunately, the step in
generalization to the Finslerian situation was wrong.

In the present paper, the wrong part from the proof in [12] is indicated. It is
further shown how the affine method developed in [4], [3] and [7] can be adapted
to the Finslerian setting and the short proof of the statement in odd dimension is
provided.

We should mention also the recent developments in the topic. The affine method
presented in this paper was further refined by the author in the paper [5] and the
existence of a homogeneous geodesic was proved in any homogeneous Berwald space
and any reversible Finsler space. In the recent paper [13] by Z. Yan and L. Huang,
the situation was studied in full generality. Using some ideas from the original
paper [9] by O. Kowalski and J. Szenthe and a purely Finslerian construction, it
was proved that any homogeneous Finsler space admits a homogeneous geodesic.

2. Basic settings

Recall that a Minkowski norm on the vector space V is a nonnegative function
F : V→ R which is smooth on V \ {0}, positively homogeneous (F (λy) = λF (y)
for any λ > 0) and whose Hessian gij = ( 1

2F
2)yiyj is positively definite on V \ {0}.

Here (yi) are the components of a vector y ∈ V with respect to a fixed basis B
of V and putting yi to a subscript means the patrial derivative. Then the pair
(V, F ) is called the Minkowski space. The tensor gy with components gij(y) is the
fundamental tensor. The Cartan tensor Cy has components Cijk(y) = ( 1

4F
2)yiyjyk .

A Finsler metric on the smooth manifold M is a function F on TM which is smooth
on TM \{0} and whose restriction to any tangent space TxM is a Minkowski norm.
Then the pair (M,F ) is called the Finsler space. On a Finsler space, functions gij
and Cijk depend smoothly on x ∈M and on o 6= y ∈ TxM .

Further, we recall that the slit tangent bundle TM0 is defined as TM0 = TM\{0}.
Using the restriction of the natural projection π : TM →M to TM0, we naturally
construct the pullback vector bundle π∗TM over TM0, as indicated in the following
diagram:

π∗TM

��

TM

π

��
TM0

π // M

For a given local coordinate system (x1, . . . , xn) on U ⊂ M , at any x ∈ M , one
has a natural basis { ∂

∂x1 , . . . ,
∂
∂xn } of TxM . It is natural to express tangent vectors
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y ∈ TxM with respect to this basis. Then (xi, yi) is the natural coordinate system
on TU0. The Chern connection is the unique linear connection on the vector bundle
π∗TM which is torsion free and almost g-compatible, see some monograph, for
example [1] by D. Bao, S.-S. Chern and Z. Shen or [2] by S. Deng for details. If
we fix a nowhere vanishing vector field V on M , we obtain an affine connection
∇V on M . In the local chart, it is expressed with respect to arbitrary vector fields
W1 = W i

1
∂
∂xi and W2 = W i

2
∂
∂xi by the formula

(4) ∇VW1
W2|x =

[
W1(W i

2) +W j
2W1

kΓijk(x, V )
] ∂
∂xi

,

where Christoffel symbols Γijk(x, V ) are determined by the Finsler metric. The
affine connection ∇V on M is torsion free and almost metric compatible, which
means

∇VW1
W2 −∇VW2

W1 = [W1,W2] ,

WgV (W1,W2) = gV (∇VWW1,W2) + gV (W1,∇VWW2)

+ 2CV (∇VWV,W1,W2) ,(5)

for arbitrary vector fields W , W1, W2. Using the affine connection ∇V , we define
the derivative along a curve γ(t) with velocity vector field T . Let W1, W2 be vector
fields along γ, we define

(6) DW1W2 = ∇T
′

W ′1
W ′2 ,

where the vector fields T ′, W ′1 and W ′2 on the right-hand side are smooth extensions
of T , W1 and W2 to the neighbourhood of γ(t). The definition above does not
depend on the particular extension. A regular smooth curve γ with tangent vector
field T is a geodesic if DT ( T

F (T ) ) = 0. In particular, a geodesic of constant speed
satisfies DTT = 0.

3. Wrong part in [12]

In the paper [12], the existence of a homogeneous geodesic in a homogeneous
Finsler space (M,F ) of odd dimension is proved using the method from [9]. The
reductive decomposition g = h + m and the Killing form K of g are considered.
The case rad(K) = m is rather easy, so the case rad(K) ( m is of interest.

For each unit vector X ∈ Sn−1 ⊂ m (with respect to an invariant scalar product
on m), the operator αX : m→ m is defined by the formula

gX(αXU, V ) = K(U, V ) ∀U, V ∈ m .

If there was a vector X̄ ∈ m such that the eigenvector Y X̄ of the operator αX̄
corresponding to a nonzero eigenvalue λX̄ satisfies Y X̄ = X̄, we could use similar
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steps as in [9]. We could write

gX̄(X̄, [X̄, Z]m) = gX̄(Y X̄ , [X̄, Z]m) = 1
λX̄

gX̄(αX̄(Y X̄), [X̄, Z]m)

= 1
λX̄

gX̄(αX̄(X̄), [X̄, Z]m) = 1
λX̄

K(X̄, [X̄, Z]m)

= 1
λX̄

K(X̄, [X̄, Z]) = 1
λX̄

K([X̄, X̄], Z]) = 0 ∀Z ∈ m

and X̄ would be a geodesic vector. The crucial step here are the first equality and
the third equality, where the vector X̄ and the eigenvector Y X̄ are exchanged. For
the construction of the vector X̄ with the desired property Y X̄ = X̄, in the paper
[12], the mapping v : Sn−1 → Sn−1 is constructed in the following way: For each
unit vector X ∈ Sn−1 ⊂ m as above, define v(X) as the eigenvector of the operator
αX corresponding to the eigenvalue with the maximal absolute value. The mapping
v is claimed to be continuous on the definition domain Sn−1 and the fixed point
theorem is used. However, this part of the proof is not well justified. In general, for
the family of operators αX , the assignment X 7→ v(X) as above is not a continuous
mapping.

We demonstrate this fact with a counterexample. Consider the one-parameter
family of operators α(t) represented by the diagonal matrices with (1− t, t) on the
diagonal, for 0 < t < 1. Clearly, the eigenvalues of these operators are λ1(t) = 1− t
and λ2(t) = t. For t = 1/2, we obtain λ1 = λ2 = 1/2 and any vector in the plane
is the eigenvector of the operator α(1/2). The image of the mapping v defined as
above is the vector (1, 0) for t < 1/2 and the vector (0, 1) for t > 1/2. At t = 1/2,
v is a multivalued mapping and it is not continuous. This is a serious gap in the
proof, because there is not an obvious way how to correct it.

4. Affine method adapted to Finsler spaces

We are now going to adapt the affine method, developed in the papers [7], [4]
and [3] for affine homogeneous manifold, to Finsler geometry. We shall prove the
existence of a homogeneous geodesic in a homogeneous Finsler space (M,F ) of
odd dimension using this method. First, let us formulate simple observations which
follow from homogeneity of the Finsler metric F .

Proposition 4. Let (M,F ) be a homogeneous Finsler space, g be the corresponding
fundamental tensor, G be a group of isometries acting transitively on M , X∗ be a
Killing vector field generated by a vector X ∈ g, φ(t) = exp(tX) and γ(t) be the
integral curve of X∗ through p ∈M . Along the curve γ(t), it holds

φ(t)(p) = γ(t) ,
φ(t)∗(X∗(p)) = X∗(γ(t))(7)

and

F (φ(t)(p), φ(t)∗V ) = F (p, V ) ,
g(γ(t),X∗(γ(t)))(φ(t)∗U, φ(t)∗V ) = g(p,X∗(p))(U, V ) ,(8)
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for all t ∈ R and for all U, V ∈ TpM .

Proposition 5. With the same assumptions as in Proposition 4, along the curve
γ(t), it holds
(9) g(γ(t),X∗(γ(t))(DX∗X

∗∣∣
γ(t), φ(t)∗U) = g(p,X∗(p))(DX∗X

∗∣∣
p
, U) ,

for all t ∈ R and for all U ∈ TpM . Consequently, if
(10) DX∗X

∗∣∣
p

= 0 ,

then the curve γ(t) is a homogeneous geodesic.

We shall now give a correct proof for odd dimension.

Theorem 6. Let (M,F ) be a homogeneous Finsler space of odd dimension and
p ∈M . Then M admits a homogeneous geodesic through p.

Proof. Let us consider the Killing vector fields K1, . . . ,Kn which are linearly
independent at each point of some neighbourhood U of p and denote by B the
basis {K1(p), . . . ,Kn(p)} of TpM . Any tangent vector X ∈ TpM has coordinates
(x1, . . . xn) with respect to the basis B. These coordinates determine the Killing
vector field X∗ = x1K1 + · · ·+ xnKn and an integral curve γ of X∗ through p. We
are going to show that there exists a vector X̄ ∈ TpM such that the integral curve
γ of X̄∗ through p is geodesic.

Let us consider the sphere Sn−1 of vectors X ∈ TpM whose coordinates
(x1, . . . , xn) with respect to B have the norm equal to 1 with respect to the
standard Euclidean scalar product 〈, 〉 on Rn. In other words, the scalar product
〈, 〉 is chosen in a way that the above basis B is orthonormal. We stress that this
scalar product does not come from any Finslerian product g used so far. For each
X ∈ Sn−1, we denote by v(X) the derivative DX∗

γ(t)
X∗|t=0. Further, we denote by

t(X) the vector v(X) − 〈v(X), X〉X. Then, for each X ∈ Sn−1, t(X) ⊥ X with
respect to the above Euclidean scalar product. Clearly, the map X 7→ t(X) defines
a smooth tangent vector field on the sphere Sn−1. If n is odd, according to a well
known fact from differential topology, there is a vector X̄ such that t(X̄) = 0.

To finish the proof, we use formula (5) and the standard fact that
CX∗(X∗, X∗, X∗) = 0 .

We observe that, for each X ∈ Sn−1 ⊂ TpM , it holds
g(p,X)(v(X), X) = g(p,X)(DX∗

γ(t)
X∗
∣∣
t=0, X

∗
p ) = 0

and hence v(X) lies in the orthogonal complement of X in TpM with respect to
the scalar product g(p,X). The vector t(X) is the projection of v(X) to another
complementary subspace to span(X) in TpM and hence v(X) = 0 if and only if
t(X) = 0. If follows that

DX̄∗X̄
∗∣∣
p

= v(X̄) = 0 .
Now we see, using Proposition 5 and formula (10), that the integral curve of the
vector field X̄∗ through p is a homogeneous geodesic. �
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