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Abstract. A subgroup H of a finite group G is weakly-supplemented in G if there exists
a proper subgroup K of G such that G = HK. In the paper, we extend one main result of
Kong and Liu (2014).
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1. Introduction

All groups considered in this paper are finite groups. LetG be a group. A subgroup

H of G is complemented in G if there exists a subgroup K of G such that G = HK

and H ∩ K = 1. Such a subgroup K of G is called a complement to H in G. It

is quite clear that the existence of complements for certain subgroups of a finite

group gives a lot of useful information about its structure. For instance, Hall in 1937

proved that a finite group is solvable if and only if every Sylow subgroup of G is

complemented, see [2]. Arad and Ward in [1] proved that a finite group is solvable if

and only if every Sylow 2-subgroup and every Sylow 3-subgroup are complemented.

In particular, Hall in [3] proved that a finite G is supersolvable with elementary

abelian Sylow subgroups if and only if every subgroup of G is complemented in G.

In a recent paper, Kong and Liu in [4] studied finite groups for which every minimal

subgroup is weakly-supplemented. A subgroup H of G is weakly-supplemented in G
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if there exists a proper subgroup K of G such that G = HK. The authors proved

that every minimal subgroup of G is weakly-supplemented in G if and only if G

is a supersolvable group and all Sylow subgroups of G are elementary abelian. In

addition, they also proved the following result:

Theorem 1.1. Let R be a formation containing F , the class of supersolvable

groups. Let H be a normal subgroup of a solvable group G such that G/H ∈ R.

If every minimal subgroup of the Fitting subgroup F (G′ ∩H) of G′ ∩H is weakly-

supplemented in G, then G belongs to R.

In this note, we further investigate the influence of weakly-supplemented subgroups

on the structure of finite groups along the above direction. It is significant to weaken

the hypothesis that the G is solvable in Theorem 1.1. Our main result is the following:

Theorem 1.2. Let R be a formation containing F , the class of supersolvable

groups. Let H be a solvable normal subgroup of a group G such that G/H ∈ R.

If every minimal subgroup of the Fitting subgroup F (G′ ∩H) of G′ ∩H is weakly-

supplemented in G, then G belongs to R.

Remark 1.3. Since F (G′∩H) = G′∩F (H) = (G′∩P1)×(G′∩P2)×. . .×(G′∩Pk),

we know that every minimal subgroup of F (G′ ∩ H) in [4], Theorem 3.7, is still

a minimal subgroup of some G′ ∩ Pi, where Pi is the Sylow pi-subgroup of F (H) for

some prime pi.

2. Preliminary results

In this section, we give some results that are needed in this paper.

Lemma 2.1 ([5], Lemma 2.6). Let N , N 6= 1, be a solvable normal subgroup

of G. If every minimal normal subgroup ofG which is contained inN is not contained

in Φ(G) (the Frattini subgroup of G), then the Fitting subgroup F (N) of N is the

direct product of minimal normal subgroup of G which is contained in N .

Lemma 2.2 ([4], Lemma 2.6). Let N be a minimal normal subgroup of G. If

every minimal subgroup of N is weakly-supplemented in G, then N is cyclic of prime

order.
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3. The proof of main result

P r o o f of Theorem 1.2. Assume that the theorem is false and let G be a coun-

terexample of the smallest order. Since G/G′ is abelian and F ⊆ R, we have

G/G′ ∈ R, and so G/(H ∩ G′) ∈ R. Thus, we can prove our theorem by replacing

G′ ∩H by H and assume that H 6 G′.

We first claim that Φ(G) ∩ H = 1. In fact, if Φ(G) 6= 1, then there is a minimal

subgroup A of G such that A 6 Φ(G) ∩H . Noticing that Φ(G) ∩H 6 F (H), then

by the hypothesis of the theorem there exists a subgroup K of G such that G = AK

and K < G. It follows from G = AK and A 6 Φ(G) that G = K, in contradiction

to K < G. Thus Φ(G) ∩H = 1 and our claim is established.

Next, by applying Lemma 2.1, we deduce that

F (H) = N1 × . . .×Nt

where each Nj is a minimal normal subgroup of G, j = 1, 2, . . . , t. Since every

minimal subgroup of Nj is weakly-supplemented in G, by Lemma 2.2 Nj is a cyclic

group of prime order j = 1, 2, . . . , t. Then it follows that G/CG(Nj) is an abelian

group and therefore G′ 6 CG(Nj). Hence H 6 G′ 6 CG(F (H)). The solvability of H

implies that H 6 CH(F (H)) 6 F (H). Hence, H is an abelian group and H = F (H).

Now consider the quotient group G/Nj . Since H = F (H), we may prove that

G/Nj ∈ R, j = 1, 2, . . . , t by using arguments similar to the ones in the proof of

Theorem 3.7 in [4]. Hence we may assume that H = N1 is a minimal subgroup.

Finally, by the hypothesis, there is a subgroup K of G such that G = HK and

K < G. By the above we know H ∩K = 1. Since CG(H) = CG(N1) > H = N1, we

have CG(H) = H(CG(H) ∩K). It is easy to see that CG(H) ∩K is normal in G. If

CG(H)∩K = 1, then CG(H) = H , and therefore, K ≃ G/H = G/CG(H) is a cyclic

group. This shows that G is supersolvable, and therefore, G ∈ R, a contradiction.

If CG(H) ∩ K 6= 1, then we consider the quotient group G/(CG(H) ∩ K). Since

G/CG(H) is a cyclic group and CG(H)/(CG(H)∩K) ≃ H is also a cyclic group, we

see that G/(CG(H) ∩K) is supersolvable, and therefore, G/(CG(H) ∩K) ∈ R. It

follows that

G ≃ G/(H ∩ (CG(H) ∩K)) ∈ R,

the final contradiction. Thus, the proof of the theorem is complete. �
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