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Abstract. We give an estimation for the arithmetic genus of an integral space curve which
is not contained in a surface of degree k−1. Our main technique is the Bogomolov-Gieseker
type inequality for P3 proved by Macr̀ı.
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1. Introduction

A classical problem, which goes back to Halphen in [7], is to determine, for given

integers d and k, the maximal genus G(d, k) of a smooth projective space curve of

degree d not contained in a surface of degree less than k. This problem is actually

very natural, and has been investigated by many people (see [5], [6], [9], [11], [8]).

In this paper, we consider the same problem for an integral space curve. Our main

result is:

Theorem 1.1. Let C be an integral complex projective curve in P3 of degree d.

Let pa(C) be its arithmetic genus. If C is not contained in a surface of degree less

than k, then

pa(C) 6







2

3

d2

k
+

1

3
d(k − 6) + 1 if k2 < d,

d
(
√
d− 2

)

+ 1 if k2 > d.
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For the case of k 6 2, this inequality has also been obtained by Macr̀ı in [13],

Corollary 4.1. When k2 < d, our bound is weaker than that of Castelnuovo, Harris

and Gruson-Peskine for smooth space curves, but still nontrivial. Our bound can be

reached in some cases, when k2 > d. For example, the arithmetic genus of a complete

intersection of two surfaces of degree k is

k2(k − 2) + 1 = d
(
√
d− 2

)

+ 1.

The idea of the proof of Theorem 1.1 is to establish the tilt-stability of IC via
computing its walls; then the Bogomolov-Gieseker type inequality for P3 proved

by Macr̀ı in [13] implies Theorem 1.1. This Bogomolov-Gieseker type inequality

naturally appears in the construction of Bridgeland stability conditions on threefolds

(cf. [4], [3], [2]). There are also some other interesting applications of the Bogomolov-

Gieseker type inequality in [1] and [14].

Our tilt-stability of IC also gives a version of the Halphen speciality theorem:

Theorem 1.2. Let C ⊂ P3 be an integral complex projective degree d curve

not contained in any surface of degree < k. Then h2(IC(l)) = h1(OC(l)) = 0 if

l > 2d/k − 4 when k2 < d, or l > 2
√
d− 4 when k2 > d.

Our paper is organized as follows. In Section 2, we review basic properties of tilt-

stability, the conjectural inequality proposed in [3], [2] and variants of the classical

Bogomolov-Gieseker inequality satisfied by tilt-stable objects. Then in Section 3 the

tilt-stability of IC is established via computing its walls. Finally, we show the proof
of Theorems 1.1 and 1.2 in Section 4.

Notation. In this paper, we will always denote by C an integral projective curve

in the three dimensional complex projective space P3 and by IC its ideal sheaf in P3.

We let pa(C) := h1(C,OC) be the arithmetic genus of C. By X we denote a complex

smooth projective threefold and by Db(X) its bounded derived category of coherent

sheaves.

2. Preliminaries

In this section, we review the notion of tilt-stability for threefolds introduced

in [3], [2]. Then we recall the Bogomolov-Gieseker type inequality for tilt-stable

complexes proposed there.

Let X be a smooth projective threefold over C, and let H be an ample divisor

on X . Let α > 0 and β be two real numbers. We write chβ(E) = e−βH ch(E) to
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denote the Chern character twisted by βH . More explicitly, we have

chβ0 = ch0 = rank, chβ2 = ch2 −βH ch1 +
β2

2
H2 ch0,

chβ1 = ch1 −βH ch0, chβ3 = ch3 −βH ch2 +
β2

2
H2 ch1 −

β3

6
H3 ch0 .

Slope-stability. We define the slope µβ of a coherent sheaf E ∈ Coh(X) by

µβ(E) =







∞ if chβ0 (E) = 0,

H2 chβ1 (E)

H3 chβ0 (E)
otherwise.

Definition 2.1. A coherent sheaf E on X is slope-(semi)stable (µβ-(semi)stable)

if, for all nonzero subsheaves F →֒ E, we have

µβ(F ) < µβ(E/F )
(

µβ(F ) 6 µβ(E/F )
)

.

Harder-Narasimhan filtrations (HN-filtrations, for short) with respect to slope-

stability exist in Coh(X): given a nonzero sheaf E ∈ Coh(X), there is a filtration

0 = E0 ⊂ E1 ⊂ . . . ⊂ En = E

such that Gi := Ei/Ei−1 is slope-semistable, and µβ(G1) > . . . > µβ(Gn). We set

µ+
β (E) := µβ(G1) and µ−

β (E) := µβ(Gn).

Tilt-stability. There exists a torsion pair (Tβ ,Fβ) in Coh(X) defined as follows:

Tβ = {E ∈ Coh(X) : µ−

β (E) > 0},
Fβ = {E ∈ Coh(X) : µ+

β (E) 6 0}.

Equivalently, Tβ and Fβ are the extension-closed subcategories of Coh(X) generated

by slope-stable sheaves of positive and nonpositive slope, respectively.

Definition 2.2. We let Cohβ(X) ⊂ Db(X) be the extension-closure

Cohβ(X) = 〈Tβ ,Fβ[1]〉.

By the general theory of torsion pairs and tilting [10], Cohβ(X) is the heart of

a bounded t-structure on Db(X); in particular, it is an abelian category.

1081



Now we can define the following slope function on Cohβ(X): for an object E ∈
Cohβ(X), we set

να,β(E) =







∞ if H2 chβ1 (E) = 0,

H chβ2 (E) − 1
2α

2H3 chβ0 (E)

H2 chβ1 (E)
otherwise.

Definition 2.3. An object E ∈ Cohβ(X) is tilt-(semi)stable (να,β-(semi)stable)

if for all nontrivial subobjects F →֒ E we have

να,β(F ) < να,β(E/F )
(

να,β(F ) 6 να,β(E/F )
)

.

Lemma 3.2.4 in [3] shows that the Harder-Narasimhan property holds with respect

to να,β-stability, i.e., for any E ∈ Cohβ(X) there is a filtration in Cohβ(X)

0 = E0 ⊂ E1 ⊂ . . . ⊂ En = E

such that Fi := Ei/Ei−1 is να,β-semistable with να,β(F1) > . . . > να,β(Fn).

Definition 2.4. In the above filtration, we call E1 the να,β-maximal subobject of
E ∈ Cohβ(X). If E is να,β-semistable, we say E itself is its να,β-maximal subobject.

Bogomolov-Gieseker type inequality. We now recall the Bogomolov-Gieseker

type inequality for tilt-stable complexes proposed in [3], [2].

Definition 2.5. We define the generalized discriminant

∆
β

H := (H2 chβ1 )
2 − 2H3 chβ0 (H chβ2 ).

A short calculation shows ∆
β

H = (H2 ch1)
2 − 2H3 ch0(H ch2). Hence the general-

ized discriminant is independent of β.

Theorem 2.6 ([3], Theorem 7.3.1). Assume E ∈ Cohβ(X) is να,β-semistable.

Then

(2.1) ∆
β

H(E) > 0.

Conjecture 2.7 ([2], Conjecture 4.1). Assume E ∈ Cohβ(X) is να,β-semistable.

Then

(2.2) α2∆
β

H(E) + 4(H chβ2 (E))2 − 6H2 chβ1 (E) chβ3 (E) > 0.
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Such an inequality was proved by Macr̀ı in [13] in the case of the projective

space P3:

Theorem 2.8. The inequality (2.2) holds for να,β-semistable objects in Db(P3).

3. Tilt-stability of ideal sheaves of space curves

In this section, we establish the tilt-stability of ideal sheaves of space curves via

computing their walls. Then from Theorem 2.8 we can deduce a Castelnuovo type

inequality for integral curves in P3.

Throughout this section, let C be an integral projective curve in P3 of degree d not

contained in a surface of degree< k, and let IC be the ideal sheaf of C in P3. We keep

the same notation as that in the previous section for X = P3 and H = a plane of P3.

To simplify, we directly identify H3−i chβi (E) = chβi (E) for E ∈ Db(P3). The tilted

slope becomes:

να,β =
chβ2 − 1

2α
2 chβ0

chβ1
=

ch2 −β ch1 +
1
2 (β

2 − α2) ch0

ch1 −β ch0
.

The following lemma is a key observation for us to establish the tilt-stability of IC .

Lemma 3.1. Let E be the να,β-maximal subobject of IC ∈ Cohβ(P3) for some

(α, β) ∈ R>0 × R. If 2α2 + β2 > 4d, then ch0(E) = 1.

P r o o f. By the long exact sequence of cohomology sheaves induced by the short

exact sequence

0 → E → IC → Q → 0

in Cohβ(P3), one sees that E is a torsion free sheaf with ch0(E) > 1. If IC is
να,β-semistable, then E = IC by our definition. Hence ch0(E) = 1.

Now we assume that IC is not να,β-semistable. One deduces

να,β(E) =
chβ2 (E)− 1

2α
2 ch0(E)

chβ1 (E)
> να,β(IC) =

1
2 (β

2 − α2)− d

−β
,

i.e.,

(3.1) chβ2 (E) >
1
2 (β

2 − α2)− d

−β
chβ1 (E) +

1

2
α2 ch0(E).
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By Theorem 2.6, we obtain

(3.2)
(chβ1 (E))2

2 ch0(E)
> chβ2 (E).

Combining (3.1) and (3.2), one sees that

α2(ch0(E))2 +
β2 − α2 − 2d

−β
chβ1 (E) ch0(E)− (chβ1 (E))2 < 0.

This implies

(3.3) ch0(E) <

(

β2 − α2 − 2d

β
+

√

(β2 − α2 − 2d

β

)2

+ 4α2

)

chβ1 (E)

2α2
.

Since E is a subobject of IC in Cohβ(P3), by the definition of Cohβ(P3) we deduce

that

0 < chβ1 (E) 6 chβ1 (IC) = −β.

From (3.3) it follows that

(3.4) ch0(E) <
(α2 − β2 + 2d) +

√

(β2 − α2 − 2d)2 + 4α2β2

2α2
.

On the other hand, since 2α2 + β2 > 4d, a direct computation shows

(α2 − β2 + 2d) +
√

(β2 − α2 − 2d)2 + 4α2β2

2α2
6 2.

Therefore, by (3.4) we conclude that ch0(E) < 2, i.e., ch0(E) = 1. �

We now compute the walls of IC . See [12] for the surface case.

Lemma 3.2. Let E be a subobject of IC in Cohβ(P3) with

(ch0(E), ch1(E), ch2(E)) = (r, θ, c).

Then να,β(E)
{

6

<

}

να,β(IC) if and only if

θ

2
(α2 + β2)− (c+ rd)β + θd

{

6

<

}

0.
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P r o o f. Since E is a subobject of IC in Cohβ(P3), one has

0 < chβ1 (E) = θ − rβ 6 chβ1 (IC) = −β,

i.e., rβ < θ 6 (r − 1)β 6 0.

Hence

να,β(E) =
r
2 (β

2 − α2)− βθ + c

θ − rβ

{

6

<

}

να,β(IC) =
1
2 (β

2 − α2)− d

−β

is equivalent to

−β
(r

2
(β2 − α2)− βθ + c

){

6

<

}

(θ − rβ)
(1

2
(β2 − α2)− d

)

,

i.e.,
θ

2
(α2 + β2)− (c+ rd)β + θd

{

6

<

}

0.

�

Proposition 3.3. If k2 < d, then IC is να,β-semistable for any α > 0 and

β = −2d/k.

P r o o f. We let α0 be an arbitrary positive real number, β0 = −2d/k, and let E

be the να0,β0
-maximal subobject of IC ∈ Cohβ0(P3).

Since k2 < d, one sees that 2α2
0 + β2

0 > β2
0 > 4d. Hence, by Lemma 3.1, one has

ch0(E) = 1, and E is a subsheaf of IC . We can write E = IW (−l), where W ⊂ P3

is a scheme of dimension 6 1 and l > 0. The Chern characters of IW (−l) are

(ch0(IW (−l)), ch1(IW (−l)), ch2(IW (−l))) =
(

1,−l,
1

2
l2 + ch2(IW )

)

.

Since IW (−l) is a subobject of IC in Cohβ0(P3), one deduces

0 < chβ0

1 (IW (−l)) = −l − β0 6 chβ0

1 (IC) = −β0,

i.e.,

(3.5) 0 6 l < −β0.

If C ⊆ W , then ch2(IW ) 6 ch2(IC) = −d. Thus one sees that

− l

2
(α2

0 + β2
0)−

(1

2
l2 + ch2(IW ) + d

)

β0 − ld 6 − l

2
β2
0 −

(1

2
l2 − d+ d

)

β0

= −β0l

2
(l + β0) 6 0.
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By Lemma 3.2, we conclude that να0,β0
(IW (−l)) 6 να0,β0

(IC). Therefore the να0,β0
-

maximal subobject of IC in Cohβ0(P3) is IC itself. Namely, IC is να0,β0
-semistable.

If C * W , then IW (−l) ⊂ IC implies OP3(−l) ⊂ IC . Thus l > k. One deduces

by (3.5) that

− l

2
(α2

0 + β2
0)−

(1

2
l2 + ch2(IW ) + d

)

β0 − ld(3.6)

< − l

2
β2
0 −

(1

2
l2 + d

)

β0 − ld

= − l

2

(

β2
0 +

(

l +
2d

l

)

β0 + 2d
)

= − l

2
(β0 + l)

(

β0 +
2d

l

)

= − l

2
(β0 + l)

(2d

l
− 2d

k

)

6 0.

Lemma 3.2 yields that IC is also να0,β0
-semistable in this case. �

Proposition 3.4. If k2 > d, then IC is να,β-semistable for any α > 0 and

β = −2
√
d.

P r o o f. The proof is almost the same as that of Proposition 3.3. We let α0

be an arbitrary positive real number, β0 = −2
√
d, and let E be the να0,β0

-maximal

subobject of IC ∈ Cohβ0(P3).

By Lemma 3.1, the assumption β0 = −2
√
d makes sure that ch0(E) = 1. We can

still write E = IW (−l) as in the proof of Proposition 3.3. When C ⊆ W , the same

proof of Proposition 3.3 shows that IC is να0,β0
-semistable.

In the case of C * W , one sees that l > k. Thus it follows from (3.6) and (3.5)

that

− l

2
(α2

0 + β2
0)−

(1

2
l2 + ch2(IW ) + d

)

β0 − ld < − l

2
(β0 + l)

(

β0 +
2d

l

)

6 − l

2
(β0 + l)

(2d

k
− 2

√
d
)

.

The assumption k2 > d guarantees that the left hand side of the above inequality is

negative. Therefore we are done by Lemma 3.2. �

1086



4. The proof of the main theorems

Now we can prove Theorems 1.1 and 1.2 easily.

P r o o f of Theorem 1.1. Since C is an integral curve, one sees that

chβ3 (IC) = −1

6
β3 + dβ + 2d− χ(OC).

If IC is να,β-semistable, then Theorem 2.8 implies that

α2∆
β

H(IC) + 4(H chβ2 (IC))2 − 6H2 chβ1 (IC) chβ3 (IC)

= 2α2d+ 4d2 + β4 − 4β2d− 6(−β)
(

−1

6
β3 + dβ + 2d− χ(OC)

)

= 2α2d+ 4d2 + 2β2d+ 6β(2d− χ(OC)) > 0,

i.e.,

(4.1) h1(OC)− 1 = −χ(OC) 6
2d2 + (α2 + β2)d

3(−β)
− 2d.

By Propositions 3.3 and 3.4, one can substitute (α, β) = (0,−2d/k) and (α, β) =
(

0,−2
√
d
)

into (4.1) respectively to obtain our desired conclusion. �

P r o o f of Theorem 1.2. The short exact sequence

0 → IC(m) → OP3(m) → OC(m) → 0

induces a long exact sequence

H1(OP3(m)) → H1(OC(m)) → H2(IC(m)) → H2(OP3(m)).

Since H1(OP3(m)) = H2(OP3(m)) = 0, we deduce h2(IC(m)) = h1(OC(m)).

Now we assume

Assumption 4.1. m > 2d/k, k2 < d and β0 = −2d/k.

One sees that

chβ0

1 (OP3(−m)) = −m+
2d

k
< 0.

Thus OP3(−m)[1] ∈ Cohβ0(P3). It turns out that

να0,β0
(OP3(−m)[1]) =

− 1
2 (m+ β0)

2 + 1
2α

2
0

m+ β0
< να0,β0

(IC) =
1
2 (β

2
0 − α2

0)− d

−β0
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is equivalent to

−β0

(

−1

2
(m+ β0)

2 +
1

2
α2
0

)

< (m+ β0)
(1

2
(β2

0 − α2
0)− d

)

,

i.e.,

α2
0 + β2

0 +
(

m+
2d

m

)

β0 + 2d < 0.

Assumption 4.1 implies

β2
0 +

(

m+
2d

m

)

β0 + 2d = (β0 +m)
(

β0 +
2d

m

)

= (β0 +m)
(2d

m
− 2d

k

)

< (β0 +m)
(

k − 2d

k

)

< 0.

Thus we can find an α0 > 0 such that να0,β0
(OP3(−m)[1]) < να0,β0

(IC). On the
other hand, by [3], Proposition 7.4.1, and Proposition 3.3, one deduces that both

OP3(−m)[1] and IC are να0,β0
-semistable. We conclude that

HomDb(P3)(IC ,OP3(−m)[1]) = 0.

By the Serre duality theorem, one obtains h2(IC(m−4)) = 0. Therefore we conclude

that h2(IC(l)) = h1(OC(l)) = 0 if l > 2d/k − 4 and k2 < d.

Similarly, one can show h2(IC(l)) = h1(OC(l)) = 0 if l > 2
√
d− 4 and k2 > d. �
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