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Abstract. An even factor of a graph is a spanning subgraph in which each vertex has
a positive even degree. Let G be a bridgeless simple graph with minimum degree at least 3.
Jackson and Yoshimoto (2007) showed that G has an even factor containing two arbitrary
prescribed edges. They also proved that G has an even factor in which each component
has order at least four. Moreover, Xiong, Lu and Han (2009) showed that for each pair of
edges e1 and e2 of G, there is an even factor containing e1 and e2 in which each component
containing neither e1 nor e2 has order at least four. In this paper we improve this result
and prove that G has an even factor containing e1 and e2 such that each component has
order at least four.
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1. Introduction

We use [1] for terminology and notation. A spanning subgraph of a graph G =

(V (G), E(G)) is called a factor of G. An even factor of G is a factor of G, in which

each vertex has even positive degree. A 2-factor (1-factor) of G is a factor of G

such that every vertex has degree 2 (degree 1). The set of components of G and the

minimum order of components of G are denoted by C(G) and σ(G), respectively.

In 2007, Jackson and Yoshimoto proved the following theorem in a bridgeless graph

with minimum degree at least 3.

Theorem 1.1 (Jackson and Yoshimoto, [2]). Every bridgeless simple graph with

δ(G) > 3 has an even factor in which every component has order at least four.
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In 2009, they also proved the next theorem.

Theorem 1.2 (Jackson and Yoshimoto, [3]). If G is a bridgeless graph with

δ(G) > 3, then for each pair of edges e1 and e2 of G, there is an even factor of G

containing e1 and e2.

It is shown in [5] that the following result extends Theorem 1.1.

Theorem 1.3 (Xiong, Lu and Han, [5]). Let G be a bridgeless simple graph with

δ(G) > 3. Then for each given edge e, G has an even factor F in which every

component has order at least four such that F does not contain e.

Now, if G is a bridgeless simple graph with at most two vertices of degree two,

then we can add a new edge e connecting these two vertices and by Theorem 1.3, we

have the following corollary.

Corollary 1.1. If G is a bridgeless simple graph with at most two vertices of

degree two, then G has an even factor in which every component has order at least

four.

There is another result for even factors of a bridgeless simple graph containing

two given edges.

Theorem 1.4 (Xiong, Lu and Han, [5]). Let G be a bridgeless simple graph with

δ(G) > 3. Then for each pair of edges e1 and e2 of G, there is an even factor of G

containing e1 and e2 in which every component containing neither e1 nor e2 has order

at least four.

As our main result we improve the above result and prove the following theorem.

Theorem 1.5. Let G be a bridgeless simple graph with δ(G) > 3. Then for each

pair of edges e1 and e2 of G, there is an even factor F of G containing e1, e2 in which

σ(F ) > 4.

The set of edges incident to a vertex v of G, and the set of vertices which are joined

to the vertex v are denoted by EG(v) and NG(v), respectively. Let e = vx and f = vy

be two incident edges of G. The graph obtained from G − {e, f} by adding a new

vertex v′ and new edges v′x and v′y is denoted by Gef
v . For a connected subgraph H

of G, the graph obtained from G by contracting every edge of H is denoted by

G/H . Similarly, G/e is defined for an edge e of G. In the graph G/H the vertex

corresponding to H is denoted by h∗. A bond of a graph is a minimal edge cut.

To prove our main theorem we need the following two lemmas.
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Lemma 1.1 (Jackson and Yoshimoto, [2]). Let G be a 2-edge-connected graph,

v ∈ V (G) with d(v) > 4 and e1 ∈ E(v). Then

(a) there exists an edge e2 ∈ E(v)− e1 such that G
e1e2
v is 2-edge-connected;

(b) if d(v) = 4, then there exists at most one edge e3 ∈ E(v) − e1 such that G
e1e3
v

is not 2-edge-connected.

Lemma 1.2 (McKee, [4]). Every bond of any even factor contains an even number

of edges.

2. Proof of main theorem

To prove our main theorem we will prove eleven claims. In Claims 2.3, 2.4 and 2.5

we will use some ideas of the proof of Theorem 1.1 in [2]. Note that in all these

claims we construct some new graphs and choose suitable edges e′
1
and e′

2
of these

graphs instead of e1 and e2, respectively. Actually, each edge of G corresponds to

one edge on these graphs.

P r o o f. First, assume on the contrary that G is a counterexample to the state-

ment such that ∆(G) is minimized and subject to the condition that the number of

vertices of G with degree ∆(G) is minimized. Therefore, G has two edges e1 and e2
such that there is no even factor of G containing e1 and e2 in which every component

has order at least four.

Claim 2.1. The edges e1 and e2 are not adjacent.

P r o o f. We prove by contradiction. Let e1 = ux and e2 = uy. By Theorem 1.3,

we have dG(u) 6= 3. If G1 = Ge1e2
u + uu′ is a bridgeless graph, then by Theo-

rem 1.3, G1 has an even factor F
′ containing e1 and e2 such that σ(F

′) > 4, since

d(u′) = 3. The even factor F ′ can be converted to a desired even factor F of G.

Thus G1 has a bridge e
′. It is clear that e′ = uu′. Let H1 and H2 be the components

of G1 − e′. By Corollary 1.1, H1 has an even factor F1 in which σ(F1) > 4 and simi-

larly H2 has an even factor F2 such that σ(F2) > 4. We can suppose that u′ ∈ V (H1)

and e1, e2 ∈ E(H1). Since dH1
(u′) = 2, e1, e2 ∈ E(F1). By replacing u

′ with u in F1,

F = F1 ∪ F2 is a desired even factor of G, contrary to the assumption. �

Claim 2.2. G is not a cubic graph.

P r o o f. Proceed by contradiction and let G be a cubic graph. By Theorem 1.2,

G has a 2-factor F such that e1, e2 ∈ E(F ). Therefore, F contains a component

T = abca of order three. Let G2 = G/T . Each edge of G − T corresponds to one

edge of G2.
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Figure 1. G and G2

It is obvious that G − F is a 1-factor and G2 is a cubic bridgeless graph. By

Claim 2.1, it suffices to consider for e1 and e2 the following two cases:

(1) {e1, e2} ∩ E(T ) = ∅. In this case suppose that e′1 = e1 and e′2 = e2.

(2) {e1, e2} ∩ E(T ) = {e1} = {ab}. Consider e′
1
= uc′ and e′

2
= e2 when e2 6= cc′,

and consider e′2 = uc′ and e′1 = ua′ when e2 = cc′.

Then G2 has a desired 2-factor F ′ containing e′
1
and e′

2
. By symmetry, we can

suppose that ua′, uc′ ∈ E(F ′). Then F = (F ′ − {ua′, uc′}) ∪ {aa′, ab, bc, cc′} is

a desired 2-factor of G. �

By Claim 2.2 we have∆(G) > 4. Assume that v is a vertex of G with degree∆(G).

If G is a complete graph, then it is clear that G has a hamiltonian cycle containing e1
and e2. Otherwise, the induced subgraph of G by NG(v) is not a complete graph,

since G is a connected graph with maximum degree ∆(G). Therefore, there are two

edges e = vw and f = vx such that wx /∈ E(G).

Claim 2.3. ∆(G) = 4.

P r o o f. Suppose on the contrary that ∆(G) > 5. Consider Gef
v and let G3 be the

graph obtained by removing v′ from Gef
v and adding wx. Each edge of G corresponds

to one edge of G3 (e and f correspond to wx). By Claim 2.1, there are the following

two cases:

(1) If {e, f} ∩ {e1, e2} = ∅, then e′
1
= e1 and e′

2
= e2.

(2) If {e, f} ∩ {e1, e2} = {e1}, then e′1 = wx and e′2 = e2.

If G3 is a bridgeless graph, then G3 has a required even factor containing e
′

1
and e′

2
.

It is easy to convert this even factor to a desired even factor of G containing e1
and e2. Thus, G3 and hence G

ef
v has a bridge e0. Let G

′

1
and G′

2
be the components

of Gef
v − e0. We may suppose that w, x, v

′ ∈ V (G′

1) and v ∈ V (G′

2). By symmetry,

we can suppose that w is not incident with e0. By Lemma 1.1, there is an edge

h = vz such that Geh
v is bridgeless. We have z ∈ V (G′

2) and hence wz /∈ E(G).

Let G′

3
the graph obtained from Geh

v by removing v′ and adding wz. Then G′

3
is
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a bridgeless simple graph and we can apply the preceding method for G′

3
to prove

Claim 2.3, as above. �

Claim 2.4. There are z ∈ NG(v)−w and h = vz ∈ E(G)− e such that Geh
v + vv′

is a bridgeless simple graph and wz /∈ E(G).

P r o o f. The proof is similar to the proof of Claim 2 in [2]. We repeat this proof

with a few changes.

According to the preceding discussion, Gef
v +vv′ is simple. Suppose that Gef

v +vv′

has a bridge e0. It is clear that e0 = v′v, and hence Gef
v is disconnected. Let G

′

1

and G′

2 be the components of G
ef
v . Since G is bridgeless, we may suppose that

w, x, v′ ∈ V (G′

1
) and v ∈ V (G′

2
). Choose h = vz ∈ EG(v) with z ∈ V (G′

2
). By

Lemma 1.1 (b), Geh
v is bridgeless. Clearly, wz /∈ E(G) and Geh

v is simple. �

Relabelling f and h if necessary, G′ = Gef
v + vv′ is a bridgeless simple graph

and wx /∈ E(G). Let NG(v) = {w, x, y, z}. We can find two edges e′
1
and e′

2
of G′

corresponding to e1 and e2 of G, respectively. The graph G′ has an even factor F ′

with σ(F ′) > 4 such that e′
1
, e′

2
∈ E(F ′). If vv′ /∈ E(F ′), then F ′ is easily converted

to a desired even factor of G containing e1 and e2. Hence, vv
′ ∈ E(F ′). Since G is

a counterexample and F ′/vv′ is an even factor of G, there is D ∈ C(F ′) such that

vv′ ∈ V (D) and D is a 4-cycle. Without loss of generality we may suppose that

T = D/vv′ = vwyv is a triangle in G. Let H be the subgraph induced by {w, x, y, z}

and Hc be the complement of H .

Claim 2.5. Hc has a 1-factor.

P r o o f. Suppose on the contrary that Hc has no 1-factor. We already have

wx ∈ E(Hc). According to the assumption, yz /∈ E(Hc) and hence yz ∈ E(G).

Moreover, we have yw ∈ E(G). Now, consider two cases:

(A) xy ∈ E(G). In this case dG(y) = dG(v) = 4 and the edge vy is a chord in the

4-cycle vzywv of G. Thus, G − vy is a bridgeless simple graph and δ(G − vy) > 3.

If vy /∈ {e1, e2}, then G − vy, and hence G has a desired even factor. Therefore,

vy ∈ {e1, e2}. Consider e1 = vy. Since e1 and e2 are not adjacent, e2 6= yz.

Consider e′1 = yz and e′2 = e2. The graph G − vy has an even factor F1 such that

e′
1
, e′

2
∈ E(F1) and σ(F1) > 4. Since dF1

(v) is even, dF1
(v) = 2. Hence vv0 /∈ E(F1)

for some v0 ∈ {x, z, w}. Then {v, v0, y} induces a triangle T ′ in G, and e2 /∈ E(T ′)

since e1 and e2 are not adjacent. Since vv0, vy /∈ E(F1), we obtain a desired even

factor F of G such that E(F ) = E(F1) △ E(T ′), where △ denotes the symmetric

difference.

(B) xy /∈ E(G). In this case xy ∈ E(Hc). Since Hc has no 1-factor, wz /∈

E(Hc), and so wz ∈ E(G). Hence, the induced subgraph by {v, w, y, z} in G is
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isomorphic to K4. Since G is a bridgeless graph, there is a vertex u ∈ {w, y, z}

adjacent to a vertex s ∈ V (G) − {v, w, y, z}. Let v1, v2, v3 ∈ NG(v) such that

{v1, v2, v3} = {w, y, z} and u = v3. Then dG(v) = dG(v3) = 4. The graph G − vv3
is a bridgeless graph and δ(G − vv3) > 3. If vv3 /∈ {e1, e2}, then according to our

hypotheses, G − vv3 and hence G has a desired even factor F1, a contradiction.

Thus vv3 ∈ {e1, e2}. Assume that e1 = vv3, and then consider e
′

1
= v2v3 and

e′
2
= e2. Note that e2 /∈ {vv1, vv2, v1v3, v2v3}, since e1 and e2 are not adjacent

in G. The graph G − vv3 has an even factor F1 containing e′
1
and e′

2
. If there

exists e− ∈ {vv1, vv2, v1v3, v2v3} \ E(F1), then we can find a triangle T
′ of G such

that e−, vv3 ∈ E(T ′). Since e− 6= e2, we obtain a desired even factor F such that

E(F ) = E(F1)△E(T ′). Hence {vv1, vv2, v1v3, v2v3} ⊆ E(F1). If v1v2 is also an edge

of F1, then (F1 − {vv2, v2v3}) ∪ {vv3} is a desired even factor of G. On the other

hand, if v1v2 /∈ E(F1), then (F1 − {vv1, v2v3}) ∪ {vv3, v1v2} is a desired even factor

of G. �

By Claim 2.5 and relabelling if necessary, we may assume that wx, yz /∈ E(G) and

T = vwyv is a triangle of G.

Claim 2.6. wy ∈ {e1, e2}.

P r o o f. By contradiction suppose that yw /∈ {e1, e2}. We consider two cases for

the edges e′
1
and e′

2
of G4 = (G− v) ∪ {yz, wx}:

(1) If {e1, e2} ∩ {vx, vy, vz, vw} = {e1}, then consider e′1 = wx and e′
2
= e2.

(2) If {e1, e2} ∩ {vx, vy, vz, vw} = ∅, then consider e′
1
= e1 and e′

2
= e2.

The graph G4 has an even factor F4 containing e
′

1 and e
′

2 such that σ(F4) > 4. In

the case (1), wx ∈ E(F4). If yz ∈ E(F4), then F = F4 − {yz, wx} ∪ {vy, vw, vx, vz}

is a required even factor of G, and if yz /∈ E(F4), then F = F4 − {wx} ∪ {vw, vx}

is a required even factor of G. In the case (2), if zy, xw ∈ E(F4), then similarly

to the case (1), F = F4 − {zy, xw} ∪ {vy, vw, vx, vz} is a desired even factor of G.

Then zy, xw /∈ E(F4). If wy /∈ E(F4), then F = F4 ∪ {vy, wy, vw} is a required

even factor of G. Otherwise, F = (F4 −wy)∪ {vy, wv} is a desired even factor of G,

a contradiction. Therefore wy ∈ {e1, e2}. �

G G5 G4

v

z

x

v′

y

w

v

z

x

y

w x w

yz

Figure 2. G, G5 and G4
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By Claim 2.6, we can assume that e1 = wy. Suppose that h = vz and f = vx.

Let G5 = Gfh
v + vv′. If G5 is a bridgeless graph, then G5 has an even factor F5

with σ(F5) > 4 such that e′
1
, e′

2
∈ E(F5). Hence, F = F5 (by replacing v′ with v)

or F = F5/vv
′ is an even factor of G containing e1 and e2 in which σ(F ) > 4, since

wy ∈ E(F5). Therefore, G5 has a bridge e0. It is obvious that e0 = vv′ and v is

a cut vertex of G.

Each vertex of G with degree ∆(G) = 4 is similar to v and the following claim

holds.

Claim 2.7. If u ∈ V (G) and dG(u) = 4, then u is a cut vertex and the subgraph

induced byNG(u) ofG has at least one edge and the complement of subgraph induced

by NG(u) has a 1-factor.

u

Figure 3. The vertex u of G with dG(u) = 4.

Now, we continue the proof using these features of vertices with degree 4 of G.

Claim 2.8. If u is a vertex with degree 4 of G such that u1, u2 ∈ NG(u) and

u1u2 ∈ E(G), then u1u2 ∈ {e1, e2}.

P r o o f. This claim follows from Claims 2.6 and 2.7. �

Claim 2.9. The vertices y and w do not have any common neighbour other than v.

P r o o f. By contradiction, suppose that y and w have a common neighbour r

other than v. There are two cases:

(1) dG(r) = 3.

v

y

w

z

x

r t

Figure 4. dG(r) = 3

According to Claims 2.7 and 2.8, dG(y) = dG(w) = 3. Let C be the 4-cycle vyrwv

and G6 = G/C.

c
∗

z

x

t

Figure 5. G6
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Since e1 and e2 are not adjacent and e1 = wy, we have e2 ∈ E(G6). Consider

e′1 = c∗t and e′2 = e2. It is possible that e
′

1 = e′2. The graph G6 has an even factor F6

containing e′
1
and e′

2
and σ(F6) > 4. We may assume that tc∗, xc∗ ∈ E(F6). Thus,

F = (F6 − {c∗t, xc∗}) ∪ {xv, vw,wy, ry, rt} is a required even factor of G.

(2) dG(r) = 4.

v

y

w

z

x

r

t

p

Figure 6. dG(r) = 4

If xz, pt ∈ E(G), then we can consider pt 6= e2 (or xz 6= e2). According to

Claim 2.8, it is a contradiction. Therefore, xz or pt does not belong to E(G). We

may assume that pt /∈ E(G). In this case consider the graph G7 = (G−{v, r, y, w})∪

{zt, px}. By considering e′1 = zt and a suitable edge e′2, the graph G7 has an even

factor F7 containing e
′

1
and e′

2
such that σ(F7) > 4. By Lemma 1.2, tz, px ∈ E(F7).

Therefore F = (F7 − {tz, px}) ∪ {rt, rp, wy, vy, vw, vz, vx} is an even factor of G

containing e1 and e2 and σ(F ) > 4, because pt /∈ E(G) and e2 6= ry, rw. �

Claim 2.10. xz ∈ E(G) and e2 = xz.

P r o o f. First, suppose that xz /∈ E(G). Since v is a cut vertex, it is clear that

xy, wz /∈ E(G) and G4 = (G − v) ∪ {yz, xw} is a bridgeless graph. If we consider

e′2 = e2 and e′1 = yz, then G4 has an even factor F4 in which σ(F4) > 4 and

e′
2
, e′

1
∈ E(F4).

x w

yz

Figure 7. G4

By Lemma 1.2, yz, wx ∈ E(F4). Let F = F4 − {yz, wx} ∪ {vy, vw, vx, vz} be

the even factor of G corresponding to F4. If yw ∈ E(F ), then F is a required even

factor of G. Otherwise, since y and w have no common neighbour other than v and

xz /∈ E(G), (F −{vy, vw})∪wy is a required even factor of G. It is a contradiction.

Hence, xz ∈ E(G) and by Claim 2.8, it is clear that e2 = xz. �

Now, according to all the above discussions, we have the following note:

Note 2.1. Each vertex v with degree 4 of the counterexample G is a cut ver-

tex and if NG(v) = {x, y, w, z}, then we can assume that yz, wx /∈ E(G) and

wy, xz ∈ E(G). Moreover, y and w have no common neighbour other than v and

similarly z and x have no common neighbour other than v and e1 = wy and e2 = xz.
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v

y

w

z

x

e1e2

Figure 8. G and the edges e1 and e2

Claim 2.11. G has only one vertex v with degree 4.

P r o o f. There is only one choice for e1 and e2 and by Note 2.1, they join two

neighbours of one vertex of degree 4, see Figure 8. Now, the claim is clear. �

According to Claim 2.11, we have dG(x) = dG(y) = dG(z) = dG(w) = 3. Now,

consider G′′ = (G− {v, z, x, y, w}) ∪ {y′z′, w′x′} such that xx′, yy′, zz′, ww′ ∈ E(G)

(Since v is a cut vertex, y′z′, w′x′ /∈ E(G) and since x, y, z, w have no common

neighbour, z′ 6= x′ and y′ 6= w′).

v

y

w

e1

z

x

e2

z′

x′

y′

w′

y′

w′

z′

x′

G G′′

Figure 9. G and G
′′

The graph G′′ is a bridgeless simple graph with δ(G) > 3 and ∆(G′′) < ∆(G).

Therefore, G′′ has an even factor F ′′ in which σ(F ′′) > 4 and NG′′(z′) − {y′z′} ⊆

E(F ′′), since G is a counterexample to the statement such that ∆(G) is mini-

mized. Then y′z′ /∈ E(F ′′) and by Lemma 1.2, w′x′ /∈ E(F ′′). Hence, F =

F ′′∪{xz, vz, vx, vy, vw, yw} is an even factor ofG containing e1 and e2 and σ(F ) > 4.

It is a contradiction and we are done. �
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References

[1] J.A. Bondy, U. S. R.Murty: Graph Theory with Applications. American Elsevier Pub-
lishing, New York, 1976. zbl MR doi

[2] B. Jackson, K.Yoshimoto: Even subgraphs of bridgeless graphs and 2-factors of line
graphs. Discrete Math. 307 (2007), 2775–2785. zbl MR doi

[3] B. Jackson, K.Yoshimoto: Spanning even subgraphs of 3-edge-connected graphs. J.
Graph Theory 62 (2009), 37–47. zbl MR doi

1113

https://zbmath.org/?q=an:1226.05083
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0411988
http://dx.doi.org/10.1007/978-1-349-03521-2
https://zbmath.org/?q=an:1127.05080
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2362962
http://dx.doi.org/10.1016/j.disc.2006.11.023
https://zbmath.org/?q=an:1180.05057
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2547846
http://dx.doi.org/10.1002/jgt.20386


[4] T.A.McKee: Recharacterizing Eulerian: Intimations of new duality. Discrete Math. 51
(1984), 237–242. zbl MR doi

[5] L.Xiong, M.Lu, L.Han: The structure of even factors in claw-free graphs. Discrete
Math. 309 (2009), 2417–2423. zbl MR doi

Authors’ addresses: N a s t a r a n H a g h p a r a s t, D a r i u s h K i a n i (corresponding
author), Department of Mathematics and Computer Sciences, Amirkabir University of Tech-
nology, Tehran, Iran, e-mail: nhaghparast@aut.ac.ir, dkiani@aut.ac.ir.

1114

https://zbmath.org/?q=an:0547.05043
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0762316
http://dx.doi.org/10.1016/0012-365X(84)90004-9
https://zbmath.org/?q=an:1214.05139
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2509009
http://dx.doi.org/10.1016/j.disc.2008.05.020

		webmaster@dml.cz
	2020-07-03T23:21:34+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




