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DYNAMIC COVERAGE CONTROL DESIGN
OF MULTI-AGENT SYSTEMS
UNDER ELLIPSE SENSING REGIONS

Longbiao Ma, Fenghua He, Long Wang, Denggao Ji, and Yu Yao

This paper studies the dynamic coverage control problem for cooperative region reconnais-
sance where a group of agents are required to reconnoitre a given region. The main challenge
of this problem is that the sensing region of each agent is an ellipse. This modeling results in
asymmetric(directed) interactions among agents. First, the region reconnaissance is formulated
as a coverage problem, where each point in the given region should be surveyed until a preset
level is achieved. Then, a coverage control law is designed that minimizes coverage performance
index by finite switches between nominal control laws and perturbation control law. Finally,
numerical simulations are provided to indicate the efficiency of the proposed control law.

Keywords: coverage, multi-agent systems, region reconnaissance, ellipse sensing region

Classification: 49J20, 93C05

1. INTRODUCTION

In the past decade, there has been growing interest in reconnaissance problem with mo-
bile sensor platforms in two-dimensional space. In [2], a class of region reconnaissance
problem was proposed, which the search area need to be cover repeatedly to maxi-
mize the probability of detection of the region. In [17, 20], the target reconnaissance
problem was considered. In [9], a problem that each small area in the polygon area
needed to be re-covered every time has been considered and a cleaning problem was
raised to solve a region reconnaissance problem in [12]. In [6], authors detailed studied
of region reconnaissance issues which has been defined as the fact that multiple agents
to cover the area, while ensuring that the search interval for all small areas is mini-
mized and a feasible solution was given. However, region reconnaissance problem, in the
sense of active exploration of an unknown domain, is an open problem in the field of
Unmanned Aerial Vehicle (UAV) networks in three-dimensional space.

As an important research direction in cooperative control, cooperative coverage prob-
lems of multiple agents have drawn much attention to the researchers in recent years, in
which a group of agents cooperatively monitor and achieve some certain tasks in a static
or dynamical environment. The coverage control of multiple agents has many practi-
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cal applications in such as search and rescuer, environmental exploration, surveillance,
environmental monitor, fire spread control and so on, especially in sensor [23] or robot
network areas [4, 14]. Meanwhile, a few of coverage problems have been considered
in applications involving UAV and Autonomous Underwater Vehicle (AUV). Extensive
research has been conducted in the field of area search by UAVs equipped with cameras
[1, 3]. Also, the coverage control problem for underwater applications using a fleet of
cooperative submarines with vision-based cameras has been studied in [19]. Based on
the assumption that the fleet was operating in a plane perpendicular to the direction of
gravity (i. e., no vertical motion), a gradient descent control law was designed so that
the coverage goal was achieved. Coverage control can be broadly classified as region
coverage, boundary coverage and target coverage [10]. Up to now, there are differ-
ent optimization formulations are proposed for region coverage problem. For example,
Voronoi partition was adopted in [5, 8], where the authors introduced the locational cost
function as an index to optimize sensor locations. [22] considered the sweep coverage of
discrete time multi-robot networks with general topologies and provided a decentralized
coverage algorithm, which incorporates two operations: workload partition and sweep-
ing. [18] designed the ant robot, which uses smell traces to mark the covered areas and
help navigation. By this method, complete coverage of the region can be achieved even
if the environment changes. In addition, a coverage error function was proposed to for-
mulate the dynamic coverage problem in [11], and centralized control laws were designed
to minimize the coverage error function. In [16], the authors provided more insight on
some technical issues regarding the derivative of the coverage error function introduced
in [11], and control laws were proposed to solve the dynamic coverage problem for agents
with affine nonlinear dynamics.

However, one common thread in the earlier works on coverage control is the consid-
eration of circular sensing region for each agent. Although this model is suitable for
agent carrying sensors such as laser rang finder, it is not realistic for agents equipped
with Charge Coupled Device (CCD) camera. Generally, the sensing region of the CCD
camera is an ellipse [21], which is the instantaneous detection area of the CCD camera.
This modeling results in asymmetric(directed) interactions among agents. Meanwhile,
the overlapping between the ellipse sensing regions of different agents is not considered.

This article studies the dynamic coverage problem for a group of UAVs in three-
dimensional space, which is motivated by region reconnaissance application using CCD
camera to reconnoitre a given region until each point in the given region is surveyed to
a certain preset level. The main challenge of this problem is that the sensing region of
UAV is an ellipse so that the orientation with respect to the yaw axis of UAV is needed to
be considered. This work is an extension of our previous work [13] from circular sensing
region to ellipse sensing region. The UAVs are assumed to have downwards facing CCD
camera with a conical field of view, which creates an ellipse sensing region on the ground.
The ellipse sensing region is dependent on the altitude of UAV. UAVs at higher altitude
can cover more region but the reconnaissance ability is lower compared to UAVs at lower
altitude. In order to avoid overlapping between the ellipse sensing regions of different
agents, a novel coverage performance index is addressed and a reconnaissance ability-
based sensed region partitioning is given. Then, a coverage control law is designed
based on sensed region partitioning to drive the agent network to minimize the coverage
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performance index and guarantee all the agents remaining within a predefined altitude
range. To verify the effectiveness of proposed control law, some simulations are carried
out.

The rest of this paper is organized as follows. In Section 2, the region reconnaissance
is formulated as a coverage problem. In Section 3, a coverage control law is designed and
its convergence is proved . Simulation results are provided to illustrate the performance
of the proposed control law in Section 4. Section 5 concludes the paper and describes
directions for future work.

2. PROBLEM FORMULATION

In this section, the region reconnaissance is formulated as a dynamic coverage problem.
First, a simplified dynamics model of agent is given. Then, the reconnaissance ability
of an agent is described by a function with respect to its altitude. Finally, a coverage
performance index is constructed.

2.1. Dynamics model of each agent

In this paper, we consider a scenario in which a group of agents cooperatively reconnoitre
a given region using their vision sensors. Before our problem formulation, a global
coordinate frame OXY Z is given shown in Figure 1.

For simplicity, each agent is considered to be a point mass. We consider a group of n
agents, and the i−th agent is denoted by Ai. The dynamic model of Ai is described by

ẋi = ui,x,
ẏi = ui,y,
żi = ui,z,

θ̇i = ui,θ,

(1)

where i ∈ In = {1, · · · , n}, Xi = [xi, yi, zi]
T is the position vector of agent Ai, θi is an

orientation with respect to the yaw axis, ui,x, ui,y and ui,z are the control inputs of Ai
along the axis of OX, OY and OZ, which are assumed to be bounded, i. e., ‖ui,x‖ ≤
umax
i,x ,‖ui,y‖ ≤ umax

i,y and ‖ui,z‖ ≤ umax
i,z , ui,θ is the control input of the orientation θi, zi

denotes the altitude of Ai where the altitude is within a constraint. The minimum and
maximum altitude of Ai are denoted by zimin and zimax, respectively, i. e., zi ∈ [zimin, z

i
max],

i ∈ In. It is assumed that zimin and zimax are the same for all agents, i. e., zimin = zmin and
zimax = zmax. The minimum altitude zmin is assumed zmin > 0 to ensure all the agents
will fly above ground obstacles, whereas the maximum altitude zmax is determined by
the reconnaissance ability of Ai.

2.2. Reconnaissance ability function

Let qi = [xi, yi]
T be the projection position of the center of Ai in the OXY plane. An

illustration of cooperative reconnaissance of n agents can be shown in Figure 1, where
Xi is the position vector of Ai, Ω denotes the given region under reconnaissance in the
plane OXY . Si is ellipse sensing region of Ai in the OXY plane, Ci is the centre of the
ellipse Si, θi is the orientation with respect to the yaw axis.
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Fig. 1. Reconnaissance coverage concept.

First, a base sensing region of Ai is considered. Without loss of generality, we define a
base sensing region as the region surveyed by an agent positioned at Xi0 = [xi,0, yi0, zi0]T

with an orientation θi = 0 and zi0 = zi shown in Figure 2. In Figure 2, Si0 is the base
sensing region of Ai, Xi0 is the position of base agent Ai0 and qi0 is the projection of Xi0

on the ground, Ci0 = Ci is the centre of the region Si0, the line Xi0Ci0 is the detection
range of the sensing cone of Ai0, α is the horizontal line-of-sight angle which is shown
as ∠AXi0B, γ is the vertical angle of sight which is shown as ∠CXi0D, σ the angle of
pitch of each CCD camera which is fixed. Let (xCi0 , yCi0) is the coordinate of centre of
the ellipse Si0. The region Si0 can be expressed as (2)

Si0(Xi0) =

{
x′, y′| (x

′ − xCi0)2

a2
i

+
(y − yCi0)2

b2i
≤ 1

}
(2)

where

ai =
zi tan(0.5α)

sin(σ + 0.5γ)

is minor semi-axis,

bi =
1

2
zi[tan(0.5π − σ)− tan(0.5π − σ − γ)]

is major semi axis.
Then, the sensing region of an agent located at Xi = [xi, yi, zi]

T with an orientation
θi can be derived by rotating around the base sensing region Si0(Xi0), which is given as
follows

Si(Xi, θi) = {x, y|(x, y)T = R(θi)(x
′, y′)T, (x′, y′) ∈ Si0}, (3)

where R(θi) is the 2× 2 rotation matrix.
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Fig. 2. Base sensing region of Ai.

Last, a function g(zi) : [zmin, zmax] → [0, 1] is defined to describe reconnaissance
ability of Ai, which is dependent on the altitude constraints zmin ,zmax of Ai. The
function g(zi) is required to have the following properties:

(i) The reconnaissance ability with respect to Ai should be zero outside Si(Xi, θi),
i. e., g(zi) = 0 if q /∈ Si;

(ii) Due to the decrease of reconnaissance ability while the increase of its altitude,
g(zi) should be a decreasing function of zi;

(iii) Since the altitude zi is within a constraint zmin ≤ zi ≤ zmax, thus, g(zi) = 1 when
zi = zmin and g(zi) = 0 when zi = zmax;

(iv) g(zi) is first order differentiable with respect to zi.

(v) ∂g(zi)
∂zi

exists within Si(Xi, θi). The integrals over some part of ∂Si(Xi, α) are not
zero.

The definition of the reconnaissance ability function is not unique. In this paper, the
simplest reconnaissance ability function is selected, which is the uniform one, i. e. the
reconnaissance ability function is the same for all points in Si(Xi, θi). In this paper, we
define the function g(zi) as follows:

g(zi) =

{
E2
z−(zi−zmin)2

E2
z

, if q ∈ Si;
0, if q /∈ Si.

(4)

where Ez = zmax − zmin.
The derivative ∂g(zi)

∂zi
: [zmin, zmax]→ [gmin

d , 0] is as follows

gd(zi) ,
∂g(zi)

∂zi
=

{
−2(zi−zmin)

E2
z

, if q ∈ Si;
0, if q /∈ Si.

(5)

where gmin
d = − 2

Ez
.
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Fig. 3. (a)Reconnaissance ability function, (b)the derivative of

reconnaissance ability function.

The function g(zi) is shown in Figure 3(a) and the derivative of this function can
be seen in Figure 3(b). As shown in Figure 3(a), this function has the property that
g(zmin) = 1 and g(zmax) = 0. In addition, g(zi) is first order differentiable with respect

to zi, or ∂g(zi)
∂zi

exists within Si, which is required in the control law design in Section 3.
It should be noted that g(zi) and fd(zi) are continuous functions of zi.

2.3. Coverage performance index

The aim of the region reconnaissance problem under consideration is to cover a given
region using the sensing region of multi-agent such that all the points in the region are
surveyed until a preset level is achieved.

Each agent reconnoitres points within the given region Ω and collect useful informa-
tion using its visual sensor. For a fixed point, the information collected by the visual
sensor of the agent increases as the time increases. Thus, the effective coverage achieved
by Ai surveying one point in the region Ω from an initial time t0 = 0 to time t is defined
as follows

Υi(q, t) =

∫ t

0

g(zi(τ))dτ. (6)

From (6), it can be seen that the accumulation of information is proportional to time.
When a fixed point within the given region Ω is reconnoitred by multiple agents, in order
to avoid overlapping between the ellipse sensing regions of different agents, the agent
with the highest reconnaissance capability is selected as the effective reconnaissance
agent to reconnoitre the fixed point, which can be described as (7).

ΥIn(q, t) =

∫ t

0

max
i∈In

g(zi(τ)) dτ. (7)

From (7), it can be seen that the accumulation of information also increases with the
increase of time.
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Let C∗(q) be the desired effective coverage level of each point in region Ω. The
definition of effective coverage of all points in the region Ω by n agents is given as
follows:

Definition 2.1. We say that the effective coverage of all the points in region Ω can be
achieved by the multi-agent networks, if ΥIn(q, t) = C∗(q) at some time t for ∀q ∈ Ω .

Let q denote one point in Ω. A space density function Φ : Ω → R+ is assigned
to describe the probability that some event takes place over Ω. Then, the coverage
performance index for region reconnaissance by multi-agent networks can be described
as

H(t) =

∫
Ω

h(C∗(q)−ΥIn(q, t))Φ(q) dq, (8)

where h(x) is a penalty function that is positive definite, twice differentiable, strictly
convex on (0, C∗(q)] and satisfies h(x) = h′(x) = 0, for all x ≤ 0. Positive definite and
strict convexity here refer to that h(x) = h′(x) = h

′′
(x) > 0, for all x ∈ (0, C∗(q)].

This definition for h(x) is chosen to prevent a negative contribution to the coverage
performance index at the points q|ΥIn(q, t) > C∗(q). H(t) can be regard as a measure
of how better the coverage provided by the agents network in R3 is. As H(t)→ 0 means
that each point in region Ω has been covered effectively. Then H(t) = 0, means that
the mission is accomplished. Thus we are interested in minimizing H(t) by designing
control law of each agent in the next section.

3. CONTROL LAW DESIGN

In this section, a coverage control law is proposed which consists of nominal control laws
and a perturbation control law. Under the nominal control laws, Ai can be driven to a
condition where all points in its sensing region are fully covered. However, the coverage
performance index function H(t) is not driven to zero. Meanwhile, the sensing region of
each agent is an ellipse so that the orientation with respect to the yaw axis of an agent
is needed to be considered. Hence, the perturbation control law is designed which can
drive Ai to a desired angle to guarantee driving the system away from the condition
where all points in its sensing region are fully covered.

Before designing the control law, a region partitioning method is developed. Based
on the region partitioning method, a coverage control law is designed.

3.1. Sensed region partitioning

In order to avoid overlapping between sensing regions of different agents, a partitioning
scheme is given based on the reconnaissance ability. The partitioning scheme is achieved
in a manner similar to [15], where only the subset of Ω sensed by all the agents is
partitioned. It means that ∪ni Si is partitioned by (9) and Ai is assigned a cell

Wi , {q ∈ Ω : g(zi) ≥ g(zj), i 6= j} (9)

with the equality holding true only zi = zj , so that the cells Wi comprise a complete
tessellation of the sensed region ∪ni Si.
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First, the general case of ∂Wj ∩∂Wi is considered. ∂Wj ∩∂Wi is either an arc of ∂Si
if zi < zj or of ∂Sj if zi > zj . An example of partitioning with this case illustrated can
be seen in Figure 4, where the black dashed lines denote the major axis of each ellipse
sensing region , the boundaries of the sensing regions ∂Si are composed of blue dashed
lines and solid line with different colours. A1, A2 and A3 illustrate the general case.
Then, the case where zi = zj is considered. Two situations are included: (i) if ∂Wj and
∂Wi have two intersection points, ∂Wj ∩ ∂Wi is chosen arbitrarily as the line segment
defined by the two intersection points of ∂Si and ∂Sj ; (ii) if ∂Wj and ∂Wi have four
intersection points, ∂Wj ∩ ∂Wi is chosen arbitrarily as the line segment defined by the
four intersection points of ∂Si and ∂Sj . Hence, the resulting cells consist of circular arcs
and line segments; The illustration of this case can be seen in Figure 4, where A4 and
A5 are at the same altitude and ∂W4 and ∂W5 have two intersection points, A6 and A7

are at the same altitude and ∂W6 and ∂W7 have four intersection points. Last, if the
sensing region of Ai is contained within the sensing region of Aj , j 6= i, i. e. Si∩Sj = Si,
then Wi = Si and Wj = Sj \ Si. The illustration of this case can be seen in Figure 4,
where the sensing region of A9 contains the sensing region of A8.

qq

q

q

q

q

q

q

q

Fig. 4. Region partitioning examples.

Remark 3.1. The aforementioned partitioning is a complete tessellation of the sensed
region ∪ni Si. However it is not a complete tessellation of Ω. The resulting cells Wi are
compact but they are not always convex. It is also possible that a cell Wi consists of
multiple disjoint regions, such as the cell of A5 shown in red in Figure 4. The given
region not assigned by the partitioning scheme is denoted as O = Ω\ ∪ni Si.

3.2. Nominal control law

Let ui,q = [ui,x, ui,y]T ∈ R2. Then, ui,q, ui,z and ui,θ are the corresponding control inputs
for Ai. The coverage control law consists of nominal control laws and a perturbation
control law. In this subsection, the nominal control laws of Ai are designed. Let ūi,q, ūi,z
and ūi,θ denote the nominal control laws of Ai. Based on the agent’s dynamics (1), the
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reconnaissance ability (4) and the coverage performance index (8), the nominal control
laws are presented as follows.

ūi,q =− ki,q{
∫
∂Wi∩O

Γiinih
′(C∗(q)−ΥIn(q, t))g(zi)Φ(q) dq

+
∑
j 6=i

∫
∂Wi∩∂Wj

Γiinih
′(C∗(q)−ΥIn(q, t))(g(zi)− g(zj))Φ(q) dq

(10)

ūi,z =− ki,z
∫
∂Wi∩O

ziinih′(C∗(q)−ΥIn(q, t))g(zi)Φ(q) dq

− ki,z
∑
j 6=i

∫
∂Wi∩∂Wj

ziinih(C∗(q)−ΥIn(q, t))(g(zi)− g(zj))Φ(q) dq

− ki,z
∫
Wi

h′(C∗(q)−ΥIn(q, t))gdΦ(q) dq

(11)

ūi,θ =− ki,θ
∫
∂Wi∩O

kiinih′(C∗(q)−ΥIn(q, t))g(zi)Φ(q) dq

− ki,θ
∑
j 6=i

∫
∂Wi∩∂Wj

kiinih′(C∗(q)−ΥIn(q, t))(g(zi)− g(zj))Φ(q) dq
(12)

where Γii, zii and kii are the Jacobian matrix of the points q ∈ ∂Wi with respect to qi,
zi and θi defined in Appendix, ni is the outward pointing normal vector of Wi defined
in Appendix, kqi , kzi and ki,θ are positive constants.

Before proceeding, the following condition is introduced.

Condition 3.2. C∗(q) = ΥIn(q, t),∀q ∈Wi, i ∈ In.

This condition describes a coverage condition where all points in the sensing region
of Ai are satisfactorily covered. The nominal control laws (10), (11) and (12) result in
Condition 3.2 satisfaction. Then the lemma is given as follows.

Lemma 3.3. Consider the agent’s dynamics (1) and the reconnaissance ability (4), the
nominal control laws (10), (11) and (12) drive each agent converge to Condition 3.2.

P r o o f . Consider the function
V (t) = −Ḣ(t) (13)

where

Ḣ(t) = −
∫

Ω

h′(C∗(q)−ΥIn(q, t)) max
i∈In

g(zi)Φ(q) dq. (14)

In terms of the properties of g(zi), we have g(zi) 6= 0 if q ∈ Si and g(zi) = 0 if q /∈ Si.
Thus, Ḣ(t) can be rewritten as

Ḣ(t) = −
∫
∪ni Si

h′(C∗(q)−ΥIn(q, t)) max
i∈In

g(zi)Φ(q) dq. (15)
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By utilizing partitioning scheme (9), the function V (t) can be written as

.V (t) =
∑
i∈In

∫
Wi

h′(C∗(q)−ΥIn(q, t))g(zi)Φ(q) dq. (16)

Then, the time derivative of V (t) can be obtained as follows

V̇ (t) =−
∑
i∈In

∫
Wi

h′′(C∗(q)−ΥIn(q, t))g(zi)
2Φ(q) dq

+
∑
i∈In

[
∂V (t)

∂qi
q̇i +

∂V (t)

∂zi
żi +

∂V (t)

∂θi
θ̇i

]
.

(17)

By using the Leibniz integral rule [7], we obtain

∂V (t)

∂qi
=
∑
i∈In

[

∫
∂Wi

Γiinih
′(C∗(q)−ΥIn(q, t))g(zi)Φ(q) dq

+

∫
Wi

h′(C∗(q)−ΥIn(q, t))
∂g(zi)

∂qi
Φ(q) dq]

(18)

where Γii denotes the Jacobian matrix with respect to qi of the points q ∈ ∂Wi,

Γii =
∂q

∂qi
, q ∈ ∂Wi, i ∈ In.

According to its constituent components, ∂V (t)
∂qi

can be rewritten as

∂V (t)

∂qi
=

∫
∂Wi

Γiinih
′(C∗(q)−ΥIn(q, t))g(zi)Φ(q) dq

+

∫
Wi

h′(C∗(q)−ΥIn(q, t))
∂g(zi)

∂qi
Φ(q) dq

+
∑
j 6=i

[

∫
∂Wj

Γijnjh
′(C∗(q)−ΥIn(q, t))g(zj)Φ(q) dq

+

∫
Wj

h′(C∗(q)−ΥIn(q, t))
∂g(zj)

∂qi
Φ(q) dq].

(19)

Since
∂g(zj)
∂qi

= ∂g(zi)
∂qi

= 0, we obtain

∂V (t)

∂qi
=

∫
∂Wi

Γiinih
′(C∗(q)−ΥIn(q, t))g(zi)Φ(q) dq∑

j 6=i

∫
∂Wj

Γijnjh
′(C∗(q)−ΥIn(q, t))g(zj)Φ(q) dq

(20)

whose two terms indicate how a movement of Ai affects the boundary of its cell and the
boundaries of the cells of other agents. It is clear that only the cells Wj which have a
common boundary with Wi will be affected and only at that common boundary.
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∂Wi = {Wi ∩ ∂Ω} ∪ {∂Wi ∩ ∂O} ∪ {∪j 6=i(∂Wi ∩ ∂Wj)}. (21)

These sets represent the parts of ∂Wi that lie on the boundary of Ω, the boundary of

iq

jq

kq

iW

i
k

W
W

i
W

i

j

W
W

Fig. 5. Boundary decomposition into disjoint sets.

the agent’s sensing region and the parts that are between the boundary of the cell of Ai
and ∂Wj . For instance, the decomposition of ∂Wi can be seen in Figure 5 with the sets
∂Wi ∩ ∂Ω, ∂Wi ∩ ∂O and ∪j 6=i(∂Wi ∩ ∂Wj) appearing in solid red.

For q ∈ ∂Ω, it holds that Γii = 02×2 since the region Ω is static. Additionally, since
the common boundary ∂Wi ∩Wj , Wi ∩∂Wj and ∂Wi ∩O are affected by the movement

of Ai,
∂V (t)
∂qi

can be simplified as

∂V (t)

∂qi
=

∫
∂Wi∩O

Γiinih
′(C∗(q)−ΥIn(q, t))g(zi)Φ(q) dq

+
∑
j 6=i

∫
∂Wj∩∂Wi

Γijnjh
′(C∗(q)−ΥIn(q, t))g(zj)Φ(q) dq

+
∑
j 6=i

∫
∂Wi∩∂Wj

Γiinih
′(C∗(q)−ΥIn(q, t))g(zi)Φ(q) dq.

(22)

Because the boundary ∂Wi ∩ ∂Wj is common among Ai and Aj , it holds true that
Γii = Γij when evaluated over it. Also, it is true that nj = −ni when q ∈ ∂Wi ∩ ∂Wj .
Finally, the sums and the integrals within them can be combined, producing the final
form of the planar control law

∂V (t)

∂qi
=

∫
∂Wi∩O

Γiinih
′(C∗(q)−ΥIn(q, t))g(zi)Φ(q) dq

+
∑
j 6=i

∫
∂Wj∩∂Wi

Γiinih
′(C∗(q)−ΥIn(q, t))(g(zi)− g(zj))Φ(q) dq.

(23)
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Similarly, ∂V (t)
∂zi

is given as follows,

∂V (t)

∂zi
=
∑
i∈In

[ ∫
∂Wi

ziinih′(C∗(q)−Υi(q, t))Φ(q)g(zi) dq

+

∫
Wi

h′(C∗(q)−Υi(q, t))
∂g(zi)

∂zi
Φ(q) dq

(24)

and (24) can rewritten as

∂V (t)

∂zi
=

∫
∂Wi

ziinih′(C∗(q)−ΥIn(q, t))Φ(q)g(zi) dq

+

∫
Wi

h′(C∗(q)−ΥIn(q, t))
∂g(zi)

∂zi
Φ(q) dq

+
∑
j 6=i

[

∫
∂Wj

zijnjh′(C∗ −ΥIn(q, t))Φ(q)g(zj) dq

+

∫
Wj

h′(C∗(q)−ΥIn(q, t))
∂g(zj)

∂zi
Φ(q) dq]

(25)

where zij denotes the Jacobian matrix with respect to zi of the points q ∈ ∂Wj .

Since
∂g(zj)
∂zi

= 0, we have

∂V (t)

∂zi
=

∫
∂Wi

ziinih′(C∗(q)−ΥIn(q, t))Φ(q)g(zi) dq

+

∫
Wi

h′(C∗(q)−ΥIn(q, t))
∂g(zi)

∂zi
Φ(q) dq

+
∑
j 6=i

∫
∂Wj

zijnjh′(C∗(q)−ΥIn(q, t))g(zj)Φ(q) dq.

(26)

It is easy to find that zij = zii if q ∈ ∂Wi ∩ ∂Wj . Also, it is true that nj = −ni when
q ∈ ∂Wi ∩ ∂Wj . Then, the altitude control law (26) can be rewritten as

∂V (t)

∂zi
=

∫
∂Wi∩O

ziinih′(C∗(q)−ΥIn(q, t))g(zi)Φ(q) dq

+
∑
j 6=i

∫
∂Wi∩∂Wj

ziinih(C∗(q)−ΥIn(q, t))(g(zi)− g(zj))Φ(q) dq

+

∫
Wi

h′(C∗(q)−ΥIn(q, t))
∂g(zi)

∂zi
Φ(q) dq.

(27)

Similarly, using the boundary decomposition (21) and the fact that ∂g(zi)
∂θi

= 0, we
obtain

∂V (t)

∂θi
=

∫
∂Wi∩O

kiinih′(C∗(q)−ΥIn(q, t))g(zi)Φ(q) dq

+
∑
j 6=i

∫
∂Wi∩∂Wj

kiinih′(C∗(q)−ΥIn(q, t))(g(zi)− g(zj))Φ(q) dq.
(28)
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Compare the forms of the nominal control laws of Ai with (23), (27) and (28) we
have

ūi,q = −kqi
∂V (t)

∂qi
, ūi,z = −kzi

∂V (t)

∂zi
, ūi,θ = −kθi

∂V (t)

∂θi
. (29)

Substituting (29) into (17), we can obtain

V̇ (t) =−
∑
i∈In

∫
Wi

h′′(C∗(q)−ΥIn(q, t))g(zi)
2Φ(q) dq

− kqi(
∂V (t)

∂qi
)2 − kzi(

∂V (t)

∂zi
)2 − kθi(

∂V (t)

∂θi
)2.

(30)

It is clear that V̇ (t) ≤ 0. The equality holding true only C∗(q) = ΥIn(q, t),∀q ∈Wi, i ∈
In and V (t) ≥ 0 and V (t) = 0 if and only if C∗(q) = ΥIn(q, t),∀q ∈ Wi, i ∈ In. Thus,
Condition 3.2 is achieved under the control laws (10), (11) and (12).

�

Remark 3.4. For the initial locations of Ai, one of the following statements holds:

i) the interior of sensing region of different agents intersects with the boundary of
∂Ω, i. e., ∂Si ∩ ∂Ω 6= ∅, ∀i ∈ In; or

ii) the sensing region is inside the given region Ω.

Note that if i) and ii) are violated, the control law (10), (11) and (12) will be zero all
the time.

3.3. Perturbation control law

Note that the satisfaction of Condition 3.2 does not necessarily imply the convergence of
the coverage performance index H(t) to the neighborhood of zero. When Condition 3.2
holds, the control effort of the nominal control law (10), (11) and (12) remain zero. Thus,
a perturbation control law is needed to be designed to guarantee driving the system away
from Condition 3.2.

Let ts be the time at which Condition 3.2 holds and H(ts) > 0. That is, ts is the
time of entering into Condition 3.2 with H(ts) 6= 0. Define the following set:

Ωq(ts) = {q ∈ Ω : 0 < ΥIn(q, t) < C∗}. (31)

Let Ω̄q(ts) be the closure of Ωq(ts). For Ai, let Ωiθ(ts) denote the set of angle between
~Ciq and ~OX for all the points in Ω̄q(ts), that is,

Ωiθ(ts) = {θ̂i : θ̂i =< ~Ciq, ~OX >, q ∈ Ω̄q(ts)}. (32)

Let θi(ts) denote the angle when Condition 3.2 holds, Ω̂iθ(ts) denote the set of angles in
Ωiθ(ts) that minimize the included angle between θi(ts) and Ωiθ(ts), that is,

Ω̂iθ(ts) = {θ∗i (ts) ∈ Ωiθ(ts) : θ∗i (ts) = argminθ̂i∈Ω̂iθ(t)‖θi(ts)− θ̂i(ts)‖}. (33)
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Note that the set Ω̂iθ(ts) may include two angles. In this case, a rule can be assigned to
pick up an angle θ∗i (ts). This rule is that we choose a clockwise angle between the two
angles. Consider a simple perturbation control law shown as

ûi,θ(t) = −k̂θi
(
θi(t)− θ∗i (ts)

)
, t > ts. (34)

According to linear systems theory, the feedback control law (34) will result in having
θ∗i (ts), for some i ∈ In. When Condition 3.2 holds and H(t) > 0, this control law will
drive Ai towards its associated angle θ∗i (ts).

Remark 3.5. Note that the projection of the centre of an agent is outside of its ellipse
sensing region. Thus, if perturbation control law is designed similar to [19] to drive the
projection of the centre of an agent to a point in Ω with unsatisfactory coverage level,
it may lead to some points in the given region are not effective coverage. Meanwhile,
the given region Ω is a bounded region on the OXY plane, it is difficult to obtain the
desired point for zi outside of the OXY plane. To sum up, perturbation control laws
for ui,z and ui,q are not designed.

3.4. Overall control strategy

Under the control laws (10), (11) and (12), all agents in the system are in continuous mo-
tion as long as the state described in Condition 3.2 is avoided. Whenever Condition 3.2
holds with H(t) 6= 0, the system has to be perturbed by switching to (34) that en-
sures violating Condition 3.2. Once away from Condition 3.2, the controller is switched
back to the nominal control in (10), (11) and (12). Only when both Condition 3.2 and
H(t) = 0 are satisfied, the switch is not needed.

To sum up, we can present the main result.

Theorem 3.6. Consider the agent’s dynamics (1) and their reconnaissance ability (4),
the control laws

ui,θ =

{
ūi,θ, if Condition 3.2 does not hold;
ûi,θ, if Condition 3.2 holds;

(35)

ui,z = ūi,z (36)

ui,q = ūi,q (37)

drive the H(t)→ 0 as t→∞.

P r o o f . Under the nominal control laws, the Ai is driven to the state described in Con-
dition 3.2. Whenever Condition 3.2 holds and the coverage performance index function
H(t) is not driven to a neighborhood of zero, Ai is perturbed from Condition 3.2 by
switching to the perturbation control law (34). Once away from Condition 3.2, the con-
troller is switched back to the nominal control laws (10), (11) and (12). This procedure
is repeated until the set Ωq(t) is empty. When the set Ωq(t) is empty, via the definition
of Ωq(t), one has:

lim
t→∞

ΥIn(q, t) ≥ C∗,∀q ∈ Ω. (38)
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It implies that ∀q ∈ Ω, h(C∗(q)−ΥIn(q, t)) = 0. Then, we have H(t)→ 0 as t→∞.

Next, we prove that switching between the nominal control laws and the perturbation
control law is finite. Consider the following function

H(t) =

∫
Ω

h(C∗(q)−ΥIn(q, t))Φ(q) dq ≥ 0 (39)

Ḣ(t) = −
∫

Ω

h′(C∗(q)−ΥIn(q, t)) max
i∈In

g(zi)Φ(q) dq ≤ 0. (40)

When the nominal control laws ūi,q and ūi,z are employed, Ḣ(t) < 0 always holds since
Condition 3.2 is not satisfied. Thus, the function H(t) decreases by an amount of non-
zero value during the applications of ūi,q, ūi,z and ūi,θ. It implies that a region of
measure larger than zero is covered after every single switch (from ûi,θ to ūi,θ) and since
the region Ω is compact, there will be no infinite switch. Thus, finite switching will be
performed to guarantee that the set Ωq(t) is empty. Clearly, if Ω is open or unbounded,
there is no guarantee that after each switch the nonzero measure region covered by the
formation will eventually cover the entire region. This is the main reason for requiring
that Ω be compact. �

Remark 3.7. Note that if Condition 3.2 holds, the control law ûi,θ is in effect. Once
it converges to θ∗i , and H(t) = 0, then the goal is met and the control converges to
ûi,θ = 0. If H(t) 6= 0, the controller switches back to ūi,q, ūi,z and ūi,θ. Switching will
recur until H(t) = 0.

4. NUMERICAL SIMULATIONS

In this section, some simulations are carried out to demonstrate the effectiveness of the
proposed control law. In order to show the advantage of the proposed control law, we
consider the following two different cooperative region reconnaissance scenarios.

The given region Ω is a square region of side length d = 1.7 units length, the desired
effective coverage level C∗ = 0.3, the control gains in the control laws (35),(36) and (37)

are set to be kqi = 0.8, kzi = 1.2, kθi = 1.0 and k̂qi = 0.22. It is assume that zmin = 0.4,
zmax = 2.7, α = 1

9π, γ = 2
9π and σ = 1

6π for all agents.

First, we need to execute region sensed partitioning method to obtain construction of
cell Wi, and then agent begins to execute its control laws to obtain ui,q, ui,z and ui,θ. In
order to implement the partitioning method and control laws in an algorithmic manner,
the region Ω and cells Wi need to be approximated by polygons. In order to calculate
the value of the control law, several line integrals have to be calculated numerically as
well as one double integral. The line integrals are calculated as sums, each term of
which is evaluated on arc ∂Wi , ∂Wi

⋂
∂Wj or ∂Wi

⋂
O. The double integral is just

the area of the corresponding cell Wi and can be calculated simply as the area of the
polygonal approximation of that cell. Meanwhile, a simple first order Euler scheme is
used to integrate with respect to time.

Case 4.1. Four agents are considered to reconnoitre the given region Ω.
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In this example, four agents are considered to reconnoitre the given region Ω. In
the example, the space density function Φ(q) is set equal to unity. The trajectories of
four agents and their projections on Ω is shown in Figure 6(a). The initial positions
of the agents are marked by squares and their final positions by circles. It can be
seen that guarantees all the agents remain within a predefined altitude range [0.2,2.0].
As it can be seen in Figure 6(b), each agent is approximated as a point mass and
final network configuration is given. Figure 6(c) shows the H(t) with switching control
converge to zero. However, the addition of more agents may result in better convergence
rate of coverage performance index. Thus, in the Case 2, seven agents is considered to
reconnoitre the given region Ω.
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)
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Fig. 6. (a) The trajectories of four agents and their projections on Ω;

(b) Final network configuration of four agents and (c) The change of

coverage performance index H(t) with respect to time.

Case 4.2. Seven agents are considered to reconnoitre the given region Ω.

In this example, seven agents are considered to reconnoitre the given region Ω. The
space density function Φ(q) is set equal to unity which is identical to the Case 1. The
trajectories of seven agents in three-dimensional space and their projections on OXY
are shown in Figure 7(a). The initial positions of the agents are marked by squares and
their final positions by circles. It can be seen that guarantees all the agents remain
within a predefined altitude range [0.2,2.8]. As it can be seen in Figure 7(b), each agent
is approximated as a point mass and final network configuration is shown. Figure 7(c)

shows the H(t) with switching control converge to zero. Compare the convergence rate
of coverage performance index of Case 2 with that of Case 1, the convergence rate of
coverage performance index of Case 2 is faster than that of Case 1 shown in Figure 7(c).
It is easy to find that the addition of more agents will result in significantly better
convergence rate of coverage performance index.

5. CONCLUSIONS

A region reconnaissance problem of multi-agent systems is considered in this manuscript
in which a group of agents reconnoitre a given region until each point in the given region
is surveyed to a certain preset level. The region reconnaissance of multi-agent systems is
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Fig. 7. (a) The trajectories of seven agents and their projections on

Ω; (b) Final network configuration of seven agents and (c) The

changes of coverage performance index H(t) with respect to time.

formulated as a coverage problem. The sensing region is described as an ellipse and the
reconnaissance ability function of each agent is expressed by a function of the altitude
of agent. A novel coverage performance index is addressed to avoid overlapping between
sensing regions of different agents. Based on reconnaissance ability-based sensed region
partitioning scheme, a coverage control law is proposed which minimizes the coverage
performance index and guarantees all the agents remaining within a predefined altitude
range. Simulation studies are carried out to validate the efficiency of the proposed
control law.

For future investigation, there are still some interesting questions:

i) The region reconnaissance in geometrically complex environment need to be con-
sidered, such as the urban areas and mountainous.

ii) Theoretical analysis on the relationship between number of the agents and conver-
gence rate of the coverage performance index is needed.

APPENDIX

The parametric equation of the boundary of Si defined in (3) is

ρi(k) :

[
x
y

]
= R(θi)

[
xi0 − zi tan(π2 − σ −

γ
2 ) + ai cos ki

yi0 + bi sin ki

]
=

[
xi
yi

]
+ R(θi)

[
−zi tan(π2 − σ −

γ
2 ) + ai cos ki

bi sin ki

] (41)

where R(θi) =

[
cos θi − sin θi
sin θi cos θi

]
is the rotation matrix, ki ∈ [0, 2π], θi ∈ [0, 2π].
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The outward pointing normal vector ni is given by

ni =
1√

x2

a4i
+ y2

b4i

R(θi)

[
x
a2i
y
b2i

]
. (42)

It can be shown that

Γii =

[
∂x
∂xi

∂x
∂yi

∂y
∂xi

∂y
∂yi

]
=

[
1 0
0 1

]
= I2×2 (43)

and similarly that

zii =
∂q

∂zi
=

[
∂x
∂zi
∂y
∂zi

]
= R(θi)

[
− tan(π2 − σ −

γ
2 ) + cos ki

tan(0.5α)
sin(σ+0.5γ)

sin ki
1
2 [tan(0.5π − σ)− tan(0.5π − σ − γ)]

]
, (44)

where q ∈ ∂Wi. And

kii =
∂q

∂θi
=

[
∂x
∂θi
∂y
∂θi

]
=

[
− tan(π2 − σ −

γ
2 ) sin θi + ai cos ki sin θi + bi sin ki cos θi

tan(π2 − σ −
γ
2 ) cos θi − ai cos ki cos θi + bi sin ki sin θi

]
,

(45)
where q ∈ ∂Wi.
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