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Abstract. The paper deals with the existence of a Kneser solution of the n-th order
nonlinear differential inclusion

x
(n)(t) ∈ −A1(t, x(t), . . . , x

(n−1)(t))x(n−1)(t)− . . .−An(t, x(t), . . . , x
(n−1)(t))x(t)

for a.a. t ∈ [a,∞),

where a ∈ (0,∞), and Ai : [a,∞) × R
n
→ R, i = 1, . . . , n, are upper-Carathéodory map-

pings. The derived result is finally illustrated by the third order Kneser problem.

Keywords: asymptotic n-th order vector problems; Rδ-set; inverse limit technique;
Kneser problem

MSC 2010 : 34A60, 34B15, 34B40

1. Introduction

The problem of the existence of Kneser solutions has been widely studied since

the 1800’s when the pioneering work about monotone solutions for the second-order

differential equations on the half-line was published by Kneser [22]. The Kneser-type

results were afterwards followed e.g. by Thomas [28], Fermi [13] who investigated the

distribution of electrons in heavy atoms, and by many others (cf. e.g. [9], [18], [20],

[21], [23] and the references quoted therein). The Kneser-type problems belong to

boundary value problems on infinite intervals that appear in many practical prob-

lems, for example in linear elasticity, nonlinear fluid flow, and foundation engineering

(see e.g. [1], [17] and the references therein).
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The Kneser-type problems have been studied during last 120 years in detail, from

the recent papers dealing with this topic, let us mention e.g. [10], [26], [27]. In

the mentioned publications various generalizations of classical results have been ob-

tained, including delay differential equations or differential equations with regularly

varying coefficients. In the present paper, one of the first attempts of studying

Kneser-type problems for differential inclusions is presented.

The stimulation for studying Kneser-type problems for differential inclusions

comes e.g. from asymptotic control problems

x(n)(t) = f(t, x(t), . . . , x(n−1)(t), u(t)), t ∈ [a,∞), u ∈ U,

x(a) = c0, (−1)ix(i)(t) > 0 ∀ i = 0, . . . , n− 1, and t ∈ [a,∞),

where u = u(t) ∈ U are control parameters. Defining the multivalued mapping

F (t, x1, . . . , xn) := {f(t, x1, . . . , xn, u)}u∈U ,

the solutions of the original problem coincide with those of

x(n)(t) ∈ F (t, x(t), . . . , x(n−1)(t)), t ∈ [a,∞), u ∈ U,

x(a) = c0, (−1)ix(i)(t) > 0 ∀ i = 0, . . . , n− 1, and t ∈ [a,∞).

The n-th order differential inclusions (and their associated boundary value prob-

lems) are also generated by the single-valued problems with discontinuous right-hand

side (cf. e.g. [14]). Such problems also arise when dealing with functions satisfying

a differential equation to within required accuracy, i.e. when

‖x(n)(t)− f(t, x(t), . . . , x(n−1)(t))‖ 6 ε,

or when solving problems including differential inequalities.

The paper is organized as follows. First, the basic properties of multivalued map-

pings and the continuation principle for the n-th order asymptotic boundary value

problems developed in [6] are recalled. The principle is afterwards applied in order

to obtain the existence of a solution of the n-th order nonlinear Kneser-type problem

with multivalued r.h.s.























x(n)(t)∈−A1(t, x(t), . . . , x
(n−1)(t))x(n−1)(t)− . . .

−An(t, x(t), . . . , x
(n−1)(t))x(t) for a.a. t ∈ [a,∞),

x(a) = c0,

(−1)ix(i)(t) > 0 ∀ i = 0, . . . , n− 1, and t ∈ [a,∞),
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where a ∈ (0,∞), and Ai : [a,∞) × R
n → R, i = 1, . . . , n, are upper-Carathéodory

mappings. Finally, the obtained result is illustrated by the third order Kneser prob-

lem.

2. Preliminaries

First, let us recall some geometric notions of subsets of metric spaces; in particular,

of compact absolute retracts, compact contractible sets andRδ-sets. For more details,

see, e.g., [4], [11], [16].

For a subset A ⊂ X of a metric space X = (X, d) and ε > 0, we define the set

Nε(A) := {x ∈ X : ∃a ∈ A : d(x, a) < ε}, i.e. Nε(A) is an open neighborhood of

the set A in X. A subset A ⊂ X is called a retract of X if there exists a retraction

r : X → A, i.e. a continuous function satisfying r(x) = x, for every x ∈ A.

We say that a metric space X is an absolute retract (AR-space) if, for each metric

space Y and every closed A ⊂ Y, each continuous mapping f : A→ X is extendable

over Y. Let us note that X is an AR-space if and only if it is a retract of some

normed space. Moreover, if X is a retract of a convex set in a Fréchet space, then

it is an AR-space, too. So, in particular, for an arbitrary interval J ⊂ R and

k, n ∈ N, the spaces C(J,Rk), Cn(J,Rk), ACn
loc(J,R

k) are AR-spaces as well as

their convex subsets. The foregoing symbols denote, as usual, the spaces of functions

f : J → R
k which are continuous, have continuous n-th derivatives, and locally

absolutely continuous n-th derivatives, respectively, endowed with the respective

topologies.

We say that a nonempty subset A of a metric space X is contractible if there

exist a point x0 ∈ A and a homotopy h : A × [0, 1] → A such that h(x, 0) = x

and h(x, 1) = x0 for every x ∈ A. A nonempty set A ⊂ X is called an Rδ-set if

there exists a decreasing sequence {An}∞n=1 of compact AR-spaces (or, despite of the

hierarchy (2.1) below, compact, contractible sets) such that

A =

∞
⋂

n=1

An.

Note that any Rδ-set is nonempty, compact and connected. The following hierarchy

holds for nonempty compact subsets of a metric space:

(2.1) compact+convex ⊂ compact AR-space ⊂ compact+contractible ⊂ Rδ-set

⊂ compact+acyclic ⊂ compact+connected,

and all the above inclusions are proper.
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We also employ the following definitions and statements from the multivalued

analysis in the sequel. Let X and Y be arbitrary metric spaces. We say that F is

a multivalued mapping from X to Y (written F : X ⊸ Y ) if for every x ∈ X,

a nonempty subset F (x) of Y is prescribed. We associate with F its graph ΓF , the

subset of X × Y, defined by

ΓF := {(x, y) ∈ X × Y : y ∈ F (x)}.

If X ∩ Y 6= ∅ and F : X ⊸ Y, then a point x ∈ X ∩ Y is called a fixed point of F

if x ∈ F (x). The set of all fixed points of F will be denoted by Fix(F ), i.e.

Fix(F ) := {x ∈ X : x ∈ F (x)}.

A multivalued mapping F : X ⊸ Y is called upper semicontinuous (shortly, u.s.c.)

if for each open U ⊂ Y, the set {x ∈ X : F (x) ⊂ U} is open in X. Every upper

semicontinuous map with closed values has a closed graph.

Let Y be a separable metric space and (Ω,U , ν) ameasurable space, i.e. a nonempty

set Ω equipped with a suitable σ-algebra U of its subsets and a countably addi-

tive measure ν on U . A multivalued mapping F : Ω ⊸ Y is called measurable if

{ω ∈ Ω: F (ω) ⊂ V } ∈ U for each open set V ⊂ Y.

We say that a mapping F : J × R
m ⊸ R

n, where J ⊂ R, is upper-Carathéodory

if the map F (·, x) : J ⊸ R
n is measurable on every compact subinterval of J for all

x ∈ R
m, the map F (t, ·) : R

m ⊸ R
n is u.s.c. for almost all t ∈ J, and the set F (t, x)

is compact and convex for all (t, x) ∈ J × R
m.

In the sequel, we will employ the following selection statement and the subsequent

convergence result.

Lemma 2.1 (cf., e.g., [7]). Let F : [a, b]× R
m ⊸ R

n be an upper-Carathéodory

mapping satisfying |y| 6 r(t)(1 + |x|) for every (t, x) ∈ [a, b] × R
m, and every

y ∈ F (t, x), where r : [a, b]→ [0,∞) is an integrable function. Then the composition

F (t, q(t)) admits for every q ∈ C([a, b],Rm), a single-valued measurable selection.

Lemma 2.2 (cf. [8], Theorem 0.3.4). Let [a, b] ⊂ R be a compact interval. Assume

that the sequence of absolutely continuous functions xk : [a, b] → R
n satisfies the

following conditions:

(i) the set {xk(t) : k ∈ N} is bounded for every t ∈ [a, b],

(ii) there exists a function α : [a, b] → R, integrable in the sense of Lebesgue, such

that

|ẋk(t)| 6 α(t) for a.a. t ∈ [a, b] and for all k ∈ N.
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Then there exists a subsequence of {xk} (for the sake of simplicity, denoted in

the same way as the sequence) converging to an absolutely continuous function

x : [a, b]→ R
n in the following way:

1. {xk} converges uniformly to x,

2. {ẋk} converges weakly in L1([a, b],Rn) to ẋ.

The following lemma is a slight modification of the well known result.

Lemma 2.3 (cf. [29], page 88). Let [a, b] ⊂ R be a compact interval, let E1, E2

be Euclidean spaces and F : [a, b]× E1 ⊸ E2 an upper-Carathéodory mapping.

Assume in addition that, for every nonempty, bounded set B ⊂ E1, there exists

ν = ν(B) ∈ L1([a, b], [0,∞)) such that

|F (t, x)| 6 ν(t)

for a.a. t ∈ [a, b] and every x ∈ B.

Let us define the Nemytskĭı operator NF : C([a, b], E1) ⊸ L1([a, b], E2) in the

following way:

NF (x) := {f ∈ L1([a, b], E2) : f(t) ∈ F (t, x(t)), a.e. on [a, b]}

for every x ∈ C([a, b], E1). Then, if sequences {xi} ⊂ C([a, b], E1) and {fi} ⊂

L1([a, b], E2), fi ∈ NF (xi), i ∈ N, are such that xi → x in C([a, b], E1) and fi → f

weakly in L1([a, b], E2), then f ∈ NF (x).

In the sequel, the following special case of the continuation principle, developed

recently in [6], Theorem 3.1 and Corollary 4.2 will be employed (especially, for n = 2,

cf. [5]).

Proposition 2.1. Let us consider the b.v.p.

(2.2)

{

x(n)(t) ∈ C(t, x(t), . . . , x(n−1)(t)) for a.a. t ∈ J,

x ∈ S,

where J is a given (possibly noncompact) interval, C : J × R
kn ⊸ R

k is an upper-

Carathéodory mapping and S ⊂ ACn−1
loc (J,Rk).

Moreover, let H : J × R
2kn ⊸ R

k be an upper-Carathéodory map such that

(2.3) H(t, c1, . . . , cn, c1, . . . , cn) ⊂ C(t, c1, . . . , cn) for all (t, c1, . . . , cn) ∈ J×R
kn.
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Assume that

(i) there exists a retract Q of Cn−1(J,Rk) such that the associated problem

(2.4)

{

x(n)(t) ∈ H(t, x(t), . . . , x(n−1)(t), q(t), . . . , q(n−1)(t)) for a.a. t ∈ J,

x ∈ S ∩Q

is solvable with an Rδ-set of solutions for each q ∈ Q,

(ii) there exists a non-negative, locally integrable function α : J → R such that

|H(t, x(t), . . . , x(n−1)(t), q(t), . . . , q(n−1)(t))| 6 α(t)(1 + |x(t)|+ . . .+ |x(n−1)(t)|),

a.e. in J for any (q, x) ∈ ΓT, where T denotes the multivalued map which assigns

to any q ∈ Q the set of solutions of (2.4),

(iii) T(Q) ⊂ Q,

(iv) T(Q) is bounded in C(J,Rk).

Then problem (2.2) admits a solution in S ∩Q.

One of the efficient methods which can be used for studying b.v.p.s on noncompact

intervals is an inverse limit method. Let us recall that by the inverse system, we mean

a family S = {Xα, π
β
α,Σ}, where Σ is a set directed by the relation 6, Xα is, for all

α ∈ Σ, a metric space and πβ
α : Xβ → Xα is a continuous function for all α, β ∈ Σ

such that α 6 β. Moreover, πα
α = idXα

and πβ
απ

γ
β = πγ

α for all α 6 β 6 γ. The limit

of the inverse system S is denoted by lim←−S and is defined by

lim←−S := {(xα) ∈ Πα∈ΣXαπ
β
α(xβ) = xα ∀α 6 β}.

If we denote by πα : lim←−S → Xα the restriction of the projection pα : Πα∈ΣXα → Xα

onto the α-th axis, then πα = πβ
απβ for all α 6 β.

Let us now consider two inverse systems S = {Xα, π
β
α,Σ} and S

′ = {Yα′ , πβ′

α′ ,Σ′}.

By a multivalued mapping of the system S into the system S ′, we mean a family

{σ, ϕσ(α′)} consisting of a monotone function σ : Σ′ → Σ and multivalued mappings

ϕσ(α′) : Xσ(α′) ⊸ Yα′ such that for all α′ 6 β′,

πβ′

α′ϕσ(β′) = ϕσ(α′)π
σ(β′)
σ(α′).

The mapping {σ, ϕσ(α′)} induces a limit mapping ϕ : lim←−S ⊸ lim←−S
′ satisfying for

all α′ ∈ Σ′,

πα′ϕ = ϕσ(α′)πσ(α′).

We will make use of the following result.
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Proposition 2.2 (cf. [2], [3], [15]). Let S = {Xm, πp
m,N} and S ′ = {Ym, πp

m,N}

be two inverse systems such that Xm ⊂ Ym. If ϕ : lim←−S ⊸ lim←−S
′ is a limit map

induced by a mapping {id, ϕm}, where ϕm : Xm ⊸ Ym, and if Fix(ϕm) are for all

m ∈ N, Rδ-sets, then the fixed point set Fix(ϕ) of ϕ is an Rδ-set, too.

For more details about the inverse limit method, see, e.g., [2], [3], [4], [15], [19], [25].

3. Kneser solutions

Let us consider the n-th order nonlinear (Kneser-type) multivalued b.v.p.

(3.1)























x(n)(t) ∈ −A1(t, x(t), . . . , x
(n−1)(t))x(n−1)(t)− . . .

−An(t, . . . , x
(n−1)(t))x(t) for a.a. t ∈ [a,∞),

x(a) = c0,

(−1)ix(i)(t) > 0 ∀ i = 0, . . . , n− 1, and t ∈ [a,∞),

where

(i) a ∈ (0,∞),

(ii) Ai : [a,∞)× R
n → R, i = 1, . . . , n, are upper-Carathéodory mappings with

|Ai(t, x1, x2, . . . , xn)| 6 β(t)(1 + |x1|)

for all (x1, x2, . . . , xn) ∈ R
n and t ∈ [a,∞), where β ∈ L1

loc([a,∞),R),

(iii) 0 /∈ An(t, x1, x2, . . . , xn) for all (x1, x2, . . . , xn) ∈ R
n and for t in a right neigh-

bourhood of a.

Moreover, let there exist r > 0 such that

(iv)

(3.2) c0 ∈
(

0,
( δ

a+ δ

)n−1 r

2n!

)

,

where δ ∈ (0, 1/(a+ 1)) is so small that

(3.3) 2(a+ 1)n−1

∫ a+δ

a

f∗(τ) dτ 6 r

with f∗ defined by

f∗(t) := max{| −A1(t, x1, . . . , xn)xn − . . .−An(t, x1, . . . , xn)x1| :(3.4)

0 6 (−1)i−1xi 6 rt1−i, i = 1, . . . , n}
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Theorem 3.1. Let us consider the n-th order Kneser-type b.v.p. (3.1) and let

the conditions (i)–(iv) be satisfied. Moreover, let for all q ∈ Q, where

Q :={x ∈ Cn−1([a,∞),R) : x(a) = c0, (−1)
ix(i)(t) > 0, i = 0, . . . , n−1, t ∈ [a,∞)},

the following condition hold:

(v)

(−1)n(−a1(t, q(t), . . . , q
(n−1)(t))xn − . . .− an(t, q(t), . . . , q

(n−1)(t))x1) > 0

for all t > a, all measurable selections ai of Ai, i = 1, . . . , n, and all xi satisfying

0 6 (−1)i−1xi 6 rt1−i, i = 1, . . . , n.

Then the b.v.p. (3.1) has a solution in Q.

P r o o f. Let us still consider the associated problems

(Pq)























x(n)(t) ∈ −A1(t, q(t), . . . , q
(n−1)(t))x(n−1)(t)− . . .

−An(t, . . . , q
(n−1)(t))x(t) for a.a. t ∈ [a,∞),

x(a) = c0,

(−1)ix(i)(t) > 0 for all i = 0, . . . , n− 1, and t ∈ [a,∞)

and let us verify that the b.v.p. (Pq) satisfies for all q ∈ Q, all assumptions of

Proposition 2.1.

ad (i) First, let us show that the b.v.p. (Pq) has for each q ∈ Q, an Rδ-set of

solutions.

For this purpose, let us consider, together with the b.v.p.s (Pq), the family of

associated problems on compact intervals

(Pm
q )























x(n)(t) ∈ −A1(t, q(t), . . . , q
(n−1)(t))x(n−1)(t)− . . .

−An(t, . . . , q
(n−1)(t))x(t) for a.a. t ∈ [a,m],

x(a) = c0

(−1)ix(i)(t) > 0 for all t ∈ [a,m], i = 0, . . . , n− 1,

where m ∈ N, m > a. Let us first study problems (Pm
q )-more concretely, let us

show that the set of solutions of problem (Pm
q ) for an arbitrary q ∈ Q, m ∈ N, is

a nonempty, compact and convex, i.e. in particular an Rδ-set.

Let vi(·) be a measurable selection of Ai(·, q(·), . . . , q(n−1)(·)), i = 1, . . . , n. It was

shown in [12] (see Lemma 2.1 in [12] and the remarks below) that, under the above
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assumptions imposed on Ai, the following two norms in ACn−1([a,m],R), where

m > a is arbitrary, are equivalent:

‖x‖ := sup
t∈[a,m]

|x(t)| + sup
t∈[a,m]

|ẋ(t)|+ . . .+ sup
t∈[a,m]

|x(n−1)(t)|+

∫ m

a

|x(n)(t)| dt,

‖x‖∗ := sup
t∈[a,m]

|x(t)|+

∫ m

a

|x(n)(t) + vn(t)x(t) + vn−1(t)ẋ(t) + . . .+ v1(t)x
(n−1)(t)| dt.

If x(·) is a solution of the b.v.p. (Pm
q ) for some q ∈ Q, m ∈ N, m > a, then

‖x‖∗ = c0.

Since sup
t∈[a,m]

|x(i)(t)| 6 ‖x‖, i = 1, . . . , n − 1, and the norms ‖x‖∗ and ‖x‖ are

equivalent, there exists M > 0 such that sup
t∈[a,m]

|x(i)(t)| 6 Mc0, i = 1, . . . , n− 1.

Moreover, the sets

Sm := {(x, ẋ, ẍ, . . . , x(n−1)) ∈ ACn−1([a,m],R)× . . .×AC([a,m],R),

x(0) = c0, (−1)ix(i)(t) > 0 ∀ t ∈ [a,m], i = 0, . . . , n− 1},

S := {(x, ẋ, ẍ, . . . , x(n−1)) ∈ AC
(n−1)
loc ([a,∞),R)× . . .×ACloc([a,∞),R),

x(0) = c0, (−1)ix(i)(t) > 0 ∀ t ∈ [a,∞), i = 0, . . . , n− 1}

are closed and convex.

Let us prove now that the set of solutions and their derivatives of the b.v.p. (Pm
q )

is convex and compact.

Let q ∈ Q be arbitrary and let us denote

P (t, x(t), . . . , x(n−1)(t)) :=

−A1(t, q(t), . . . , q
(n−1)(t))x(n−1)(t)− . . .− An(t, q(t), . . . , q

(n−1)(t))x(t).

If x1, x2 are solutions of problem (Pm
q ), then it follows from the integral representa-

tion of a solution that for a.a. t ∈ [a,m], we have

x1(t) ∈ x1(a) + ẋ1(a)(t− a) +
1

2
ẍ1(a)(t− a)2 + . . .+

1

(n− 1)!
x
(n−1)
1 (a)(t − a)n−1

+
1

(n− 1)!

∫ t

a

(t− s)n−1P (s, x1(s), ẋ1(s), . . . , x
(n−1)
1 (s)) ds,

and

x2(t) ∈ x2(a) + ẋ2(a)(t− a) +
1

2
ẍ2(a)(t− a)2 + . . .+

1

(n− 1)!
x
(n−1)
2 (a)(t − a)n−1

+
1

(n− 1)!

∫ t

a

(t− s)n−1P (s, x2(s), ẋ2(s), . . . , x
(n−1)
2 (s)) ds.
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Let θ ∈ [0, 1] be arbitrary. Then

θx1(t) + (1 − θ)x2(t) ∈ θx1(a) + (1− θ)x2(a) + [θẋ1(a) + (1 − θ)ẋ2(a)](t− a) + . . .

+
1

(n− 1)!

∫ t

a

(t− s)n−1θ · P (s, x1(s), ẋ1(s), . . . , x
(n−1)
1 (s)) ds

+
1

(n− 1)!

∫ t

a

(t− s)n−1(1− θ)P (s, x2(s), ẋ2(s), . . . , x
(n−1)
2 (s)) ds

= θx1(a) + (1− θ)x2(a) + [θẋ1(a) + (1 − θ)ẋ2(a)](t− a) + . . .

+
1

(n− 1)!

∫ t

a

(t− s)n−1P (s, θx1(s) + (1− θ)x2(s), . . . , θx
(n−1)
1 (s)

+ (1 − θ)x
(n−1)
2 (s)) ds.

Moreover, for all k = 1, . . . , n− 1,

x
(k)
1 (t) ∈ x

(k)
1 (a) + x

(k+1)
1 (a)(t− a) + . . .+

1

(n− 1− k)!
x
(n−1−k)
1 (a)(t− a)n−1−k

+
1

(n− 1− k)!

∫ t

a

(t− s)n−1−kP (s, x1(s), ẋ1(s), . . . , x
(n−1)
1 (s)) ds,

and

x
(k)
2 (t) ∈ x

(k)
2 (a) + x

(k+1)
2 (a)(t− a) + . . .+

1

(n− 1− k)!
x
(n−1−k)
2 (a)(t− a)n−1−k

+
1

(n− 1− k)!

∫ t

a

(t− s)n−1−kP (s, x2(s), ẋ2(s), . . . , x
(n−1)
2 (s)) ds.

By similar arguments as before, we can obtain for an arbitrary θ ∈ [0, 1] and all

k = 1, . . . , n− 1, that

θx
(k)
1 (t) + (1− θ)x

(k)
2 (t) ∈ θx

(k)
1 (a)

+ (1− θ)x
(k)
2 (a) + [θx

(k+1)
1 (a) + (1− θ)x

(k)
2 (a)](t− a) + . . .+

1

(n− 1− k)!

×

∫ t

a

(t− s)n−1−kP
(

s, θx1(s) + (1− θ)x2(s), . . . , θx
(n−1)
1 (s) + (1− θ)x

(n−1)
2 (s)

)

ds.

Finally, because of convexity of Sm, we obtain that

(θx1 + (1− θ)x2, θẋ1 + (1− θ)ẋ2, . . . , θx
(n−1)
1 + (1− θ)x

(n−1)
2 ) ∈ Sm

and, therefore, the set of solutions of (Pm
q ) and their derivatives is convex.

Let us also prove that the set of solutions of (Pm
q ) and their derivatives is relatively

compact. It follows from the well known Arzelà-Ascoli lemma that the set of solutions
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is relatively compact in Cn−1([a,m],R) if and only if it is bounded and all solutions

and their derivatives (up to the (n− 1)-st order) are equi-continuous.

First, let us show that the set of solutions of (Pm
q ) is bounded in Cn−1([a,m],R).

Let x be a solution of (Pm
q ) and let t ∈ [a,m] be arbitrary.

Since

x(n−1)(t) = x(n−1)(a) +

∫ t

a

x(n)(s) ds for a.a. t ∈ [a,m],

...

ẋ(t) = ẋ(a) +

∫ t

a

ẍ(s) ds for a.a. t ∈ [a,m],

x(t) = x(a) +

∫ t

a

ẋ(s) ds for a.a. t ∈ [a,m],

it holds that

|x(t)| + |ẋ(t)|+ . . .+ |x(n−1)(t)| 6 |x(a)|+ |ẋ(a)|+ . . .+ |x(n−1)(a)|

+

∫ t

a

|ẋ(s)|+ |ẍ(s)|+ . . .+ |x(n)(s)| ds

6 c0(1 +M(n− 1)) +

∫ m

a

|ẋ(s)|+ |ẍ(s)|+ . . .+ |x(n−1)(s)|

+ β(s)(1 + c0)|x
(n−1)(s)|+ . . .+ β(s)(1 + c0)|x(s)| ds

6 c0(1 +M(n− 1)) +

∫ m

a

β(s)(1 + c0)|x(s)|+ (1 + β(s)(1 + c0))|ẋ(s)|+ . . .

+ (1 + β(s)(1 + c0))|x
(n−1)(s)| ds

6 c0(1 +M(n− 1)) +

∫ m

a

k(s)(|x(s)| + |ẋ(s)|+ . . .+ |x(n−1)(s)|) ds

where for all s ∈ [a,m], k(s) := 1 + β(s)(1 + c0). Therefore, by Gronwall’s

lemma (cf. [24]),

(3.5) |x(t)| + |ẋ(t)|+ . . .+ |x(n−1)(t)| 6 c0(1 +M(n− 1)) exp

(
∫ m

a

k(s) ds

)

for a.a. t ∈ [a,m].

Therefore, the set of solutions of (Pm
q ) and their derivatives (up to the (n − 1)-st

order) is bounded in Cn−1([a,m],R).

Let us now show that all solutions x of (Pm
q ) and their derivatives ẋ, . . . , x(n−1) are

also equi-continuous. So, let x be a solution of (Pm
q ) and t1, t2 ∈ [a,m] be arbitrary.
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Then we have

(3.6) |x(t1)− x(t2)|

6

∣

∣

∣

∣

∫ t2

t1

|ẋ(τ)| dτ

∣

∣

∣

∣

6

∣

∣

∣

∣

∫ t2

t1

(c0(1 +M(n− 1))) exp

(
∫ m

a

k(s) ds

)

dτ

∣

∣

∣

∣

.

Analogously, we can get for each k ∈ {1, . . . , n− 2}, that

(3.7) |x(k)(t1)− x(k)(t2)| 6

∣

∣

∣

∣

∫ t2

t1

|x(k+1)(τ)| dτ

∣

∣

∣

∣

6

∣

∣

∣

∣

∫ t2

t1

(c0(1 +M(n− 1))) exp

(
∫ m

a

k(s) ds

)

dτ

∣

∣

∣

∣

.

Moreover,

(3.8) |x(n−1)(t1)− x(n−1)(t2)|

6

∣

∣

∣

∣

∫ t2

t1

(1 + β(τ)(1 + c0))|x
(n−1)(τ)| + . . .+ (1 + β(τ)(1 + c0))|x(τ)| dτ

∣

∣

∣

∣

6

∣

∣

∣

∣

∫ t2

t1

l(τ)((c0(1 +M(n− 1))) exp

(
∫ m

a

k(s) ds

)

dτ

∣

∣

∣

∣

,

where for all τ ∈ [a,m], l(τ) := 1 + β(τ)(1 + c0).

Taking into account estimates (3.6)–(3.8), x, ẋ, . . . , x(n−1) are equi-continuous, be-

cause c(·), k(·), l(·) ∈ L1([a,m],R). Thus, the set of solutions of (Pm
q ) and their

derivatives is relatively compact.

We still have to show that the set of solutions of (Pm
q ) and their derivatives (up

to the (n − 1)-st order) is closed. Let {xi} be a sequence of solutions of (Pm
q )

such that {(xi, ẋi, . . . , x
(n−1)
i )} → (x, ẋ, . . . , x(n−1)). By estimate (3.5), the sequences

{xi}, {ẋi}, . . . , {x
(n−1)
i } satisfy the assumptions of Lemma 2.2. Thus, there exists a

subsequence of {xi} for the sake of simplicity denoted as the sequence itself, uni-

formly convergent to x on [a,m], such that {ẋi}, . . . , {x
(n−1)
i } converges uniformly

to ẋ, . . . , x(n−1) on [a,m] and that {x
(n)
i } converges weakly to x

(n) in L1([a,m], R).

If we set zi := (xi, ẋi, . . . , x
(n−1)
i ), then żi → (ẋ, ẍ, . . . , x(n)) weakly in

L1([a,m], R). Let us now consider the system

(3.9) żi(t) ∈ G(t, zi(t)) for a.a. t ∈ [a,m],

where

G(t, zi(t)) = (ẋi, . . . , x
(n)
i , P (t, zi(t))).
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By virtue of Lemma 2.3 for fi := żi, f := (ẋ, ẍ, . . . , x(n)), xi := (zi), it follows

that

(ẋ(t), ẍ(t), . . . , x(n)(t)) ∈ G(t, x(t), ẋ(t), . . . , x(n−1)(t))

for a.a. t ∈ [a,m], i.e.

x(n)(t) ∈ P (t, x(t), ẋ(t), . . . , x(n−1)(t)) for a.a. t ∈ [a,m].

Moreover, since the set Sm is closed, (xi, . . . , x
(n−1)
i ) ∈ Sm for all i ∈ N, and

(xi, . . . , x
(n−1)
i )→ (x, . . . , x(n−1)),

it also holds that (x, ẋ, . . . , x(n−1)) ∈ Sm. Altogether, the set of solutions of (Pm
q )

and their derivatives is convex and compact, as claimed.

The nonemptiness of the set of solutions of (Pm
q ) follows from Theorem 13.1

in [20] and the fact that Ai(·, q(·), . . . , q(n−1)(·)), i = 1, . . . , n, admit (according

to Lemma 2.1) single-valued measurable selections vi(·), i = 1, . . . , n.

Summing up, for all q ∈ Q and m ∈ N, it was shown that the set of solutions of

problem (Pm
q ) on compact interval is nonempty, compact and convex, i.e. in partic-

ular an Rδ-set.

Let us prove now using the inverse limit method that the set of solutions of asymp-

totic problem (Pm
q ) is also an Rδ-set. For this purpose, let q ∈ Q be arbitrary and

let us denote (as before)

P (t, x(t), . . . , x(n−1)(t))

:= −A1(t, q(t), . . . , q
(n−1)(t))x(n−1)(t)− . . .−An(t, q(t), . . . , q

(n−1)(t))x(t).

A function x(·) is a solution of (Pm
q ) if and only if for a.a. t ∈ [a,m],

x(t) ∈ x(u)− |x(u)|+ c0 + ẋ(a) · t+ . . .(3.10)

+
1

(n− 1)!

∫ t

a

(t− s)n−1P (s, x(s), . . . , x(n−1)(s)) ds,

ẋ(t) ∈ ẋ(u) + |ẋ(u)|+ ẋ(a) + . . .(3.11)

+
1

(n− 2)!

∫ t

a

(t− s)n−2P (s, x(s), . . . , x(n−1)(s)) ds,

...

x(n−1)(t) ∈ x(n−1)(u)± |x(n−1)(u)|+ x(n−1)(a)(3.12)

+

∫ t

a

P (s, x(s), . . . , x(n−1)(s)) ds
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for each u ∈ [a,m], provided

(3.13) 0 /∈ An(t, q(t), . . . , q
(n−1)(t)),

on a subset of [a,m] with a nonzero measure.

More concretely, since the constraint in (Pm
q ) can be equivalently expressed as

(3.14)











x(a) = c0,

x(u)− |x(u)| = 0, ẋ(u) + |ẋ(u)| = 0, . . . , x(n−1)(u)± |x(n−1)(u)| = 0

∀u ∈ [a,m],

every solution x(·) of (Pm
q ) and its derivatives ẋ(·), . . . , x(n−1)(·) obviously sat-

isfy (3.10)–(3.12). Reversely, differentiating (3.12), we obtain

x(n)(t) ∈ P (t, x(t), ẋ(t), . . . , x(n−1)(t)).

Moreover, x(a) ∈ x(u) − |x(u)| + c0, ẋ(a) ∈ ẋ(u) + |ẋ(u)| + ẋ(a), ẍ(a) ∈ ẍ(u) −

|ẍ(u)|+ ẍ(a), . . . , x(n−1)(a) ∈ x(n−1)(u)± |x(n−1)(u)|+x(n−1)(a) for each u ∈ [a,m],

i.e. ẋ(u) + |ẋ(u)| = 0, ẍ(u) − |ẍ(u)| = 0, . . . , x(n−1)(u) ± |x(n−1)(u)| = 0 and, in

particular, for u = a, |x(a)| = c0. Thus, for x(a) = c0, we also have x(u)−|x(u)| = 0,

by which (3.14) (i.e. the constraint in (Pm
q )) is satisfied. On the other hand, if

x(a) = −c0, we arrive at x(u)− |x(u)| = −2c0, i.e. x(u) = −c0 for all u ∈ [a,m], and

subsequently 0 ∈ An(t, q(t), . . . , q
(n−1)(t)) for a.a. t ∈ [a,m], which is a contradiction

with (3.13).

The set of solutions of (Pm
q ) and their derivatives is a fixed point set of the map

ϕm : Cn−1([a,m],R) × . . . × C1([a,m],R) × C([a,m],R) ⊸ Cn−1([a,m],R) × . . . ×

C1([a,m],R)× C([a,m],R), where for all t ∈ [a,m],

ϕm(x, . . . , x(n−1))(t)

:=

{(

⋃

u∈[a,m]

x(u)− |x(u)|+ c0 + . . .+
1

(n− 1)!

∫ t

a

(t− s)n−1f(s) ds,

⋃

u∈[a,m]

ẋ(u) + |ẋ(u)|+ ẋ(a) + ẍ(a) · t+ . . .+
1

(n− 2)!

∫ t

a

(t− s)n−2f(s) ds,

...

⋃

u∈[a,m]

x(n−1)(u)± |x(n−1)(u)|+ x(n−1)(a) +

∫ t

a

f(s) ds

)

: f ∈ L1([a,m],R)

and f(s) ∈ P (t, x(s), ẋ(s), . . . , x(n−1)(s)) for a.a. s ∈ [a,m]

}

.
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It can be easily seen that {ϕm}∞m=1 is a map of the inverse system

{Cn−1([a,m],R)× . . .× C1([a,m],R)× C([a,m],R), πp
m,N}

into itself, where for all p > m, x ∈ Cn−1([a, p],R)× . . .×C1([a, p],R)×C([a, p],R),

πp
m(x, ẋ, . . . , x(n−1)) = (x|[a,m], ẋ|[a,m], . . . , x

(n−1)|[a,m]). Mappings {ϕm}∞m=1 in-

duce the limit mapping ϕ : Cn−1([a,∞),R) × . . .× C1([a,∞),R) × C([a,∞),R) ⊸

Cn−1([a,∞),R)× . . .× C1([a,∞),R)× C([a,∞),R), where for all t > a,

ϕ(x, . . . , x(n−1))(t)

:=

{(

⋃

u∈[a,∞)

x(u)− |x(u)|+ c0 + . . .+
1

(n− 1)!

∫ t

a

(t− s)n−1f(s) ds,

⋃

u∈[a,∞)

ẋ(u) + |ẋ(u)|+ ẋ(a) + ẍ(a) · t+ . . .+
1

(n− 2)!

∫ t

a

(t− s)n−2f(s) ds,

...

⋃

u∈[a,∞)

x(n−1)(u)± |x(n−1)(u)|+ x(n−1)(a) +

∫ t

a

f(s) ds

)

: f ∈ L1
loc([a,∞),R)

and f(s) ∈ P (t, x(s), ẋ(s), . . . , x(n−1)(s)) for a.a. s ∈ [a,∞)

}

.

The fixed point set of the mapping ϕ is the set of solutions and their derivatives

of the problem (Pq). By virtue of Proposition 2.2, the set of solutions and their

derivatives of the original problem (Pq) is therefore an Rδ-set.

ad (ii): Assumption (ii) follows immediately from the properties of mappings Ai,

i = 1, . . . , n, and the definition of (Pq).

ad (iii): Since the set S := Q is closed and each solution of the b.v.p. (Pq) belongs

to Q, it holds that T(Q) ⊂ S, where the map T is the solution mapping that assigns

to each q ∈ Q the set of solutions of (Pq).

ad (iv): It follows directly from the boundary conditions that T(Q) is bounded in

C([a,∞),R).

Since all assumptions of Proposition 2.1 are satisfied, the b.v.p. (3.1) admits a so-

lution x(·) such that 0 6 x(t) 6 c0 for all t ∈ [a,∞). �

Let us illustrate now the obtained result by a third-order asymptotic b.v.p.

Example 3.1. Let us consider the Kneser-type b.v.p.

(3.15)











x(3)(t) = f(t, x(t), ẋ(t), ẍ(t)) for a.a. t ∈ [1,∞),

x(1) = 1
4 ,

x(t) > 0, ẋ(t) 6 0, ẍ(t) > 0 for all t ∈ [1,∞),
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where

f(t, x(t), ẋ(t), ẍ(t)) :=
sin(x(t))

120
(2 + sgn(ẋ(t) + 1))ẍ(t) +

arctg(t)

64
ẋ(t)

−
et

1000
(π + sgn(ẍ(t)))x(t).

Because of discontinuity at y = 0 in sgn y, the Filippov solutions should be considered

which can be identified as Carathéodory solutions of the associated multivalued b.v.p.

(3.16)











x(3)(t) ∈ F (t, x(t), ẋ(t), ẍ(t)) for a.a. t ∈ [1,∞),

x(1) = 1
4 ,

x(t) > 0, ẋ(t) 6 0, ẍ(t) > 0 for all t ∈ [1,∞),

where

F (t, x(t), ẋ(t), ẍ(t)) :=
sin(x(t))

120
(2 + Sgn(ẋ(t) + 1))ẍ(t) +

arctg(t)

64
ẋ(t)

−
et

1000
(π + Sgn(ẍ(t)))x(t)

with

Sgn y :=











−1, for y < 0,

[−1, 1], for y = 0,

1, for y > 0.

Let us show now that the Kneser b.v.p. problem (3.16) satisfies all assumptions of

Theorem 3.1, and so admits a solution. More concretely, the fulfilment of assump-

tions (i)–(iii) directly follows from the considered r.h.s. and boundary conditions.

The assumption (iv) holds as well since, e.g. for r := 8,

f∗(t) := max
{∣

∣

∣

sin(x1)

120
(2 + Sgn(x2 + 1))x3 +

arctg(t)

64
x2 −

et

1000
(π + Sgn(x3))x1

∣

∣

∣
:

x1 ∈ [0, 8], x2 ∈ [−8, 0], x3 ∈ [0, 8]
}

6
1

5
+

π

16
+

et(1 + π)

125
.

Solving the relevant inequality (cf. (3.3))

8

∫ 1+δ

1

1

5
+

π

16
+

et(1 + π)

125
dt 6 8,

we obtain that δ 6 1.6116, and subsequently (3.2) that c0 = 1
4 should belong to the

interval (0; 0.2538), which is true. Thus, the assumption (iv) of Theorem 3.1 holds.
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In order to verify assumption (v), let us define the set Q by

Q :=
{

x ∈ C2([1,∞),R) : x(1) = 1
4 , x(t) > 0, ẋ(t) 6 0, ẍ(t) > 0, t ∈ [1,∞)

}

.

For all q ∈ Q, t > 1 and all x1 ∈ [0, 8], x2 ∈ [−8, 0], x3 ∈ [0, 8], it holds that

sin(q(t))

120
(2 + Sgn(q̇(t) + 1))x3 −

arctg(t)

64
x2 +

et

1000
(π + Sgn(q̈(t)))x1 ⊆ [0,∞),

which ensures the validity of assumption (v). Therefore, it is possible to apply

Theorem 3.1 and obtain that the b.v.p. (3.16) has a solution in Q. This solution is

consequently the Filippov solution of the original problem (3.15).
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