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A Study on φ-recurrence τ -curvature tensor in
(k, µ)-contact metric manifolds

Gurupadavva Ingalahalli, C.S. Bagewadi

Abstract. In this paper we study φ-recurrence τ -curvature tensor in
(k, µ)-contact metric manifolds.

1 Introduction
In [11], S. Tanno introduced the notion of k-nullity distribution of a contact metric
manifold as a distribution such that the characteristic vector field ξ of the contact
metric manifold belongs to the distribution. The contact metric manifold with ξ
belonging to the k-nullity distribution is called N(k)-contact metric manifold and
such a manifold is also studied by various authors. Generalizing this notion in 1995,
D.E. Blair, T. Koufogiorgos and B.J. Papantoniou [2] introduced the notion of a
contact metric manifold with ξ belonging to the (k, µ)-nullity distribution, where
k and µ are real constants. In particular, if µ = 0 then the notion of (k, µ)-nullity
distribution reduces to the notion of k-nullity distribution.

In [13], M.M. Tripathi and et al. introduced the τ -curvature tensor which con-
sists of known curvatures like conformal, concircular, projective, M -projective,
Wi-curvature tensor (i = 0, . . . , 9) and W ∗

j -curvature tensor (j = 0, 1). Further,
in [14] and [15] M.M. Tripathi and et al. studied τ -curvature tensor in K-contact,
Sasakian and semi-Riemannian manifolds. Later in [6] the authors studied some
properties of τ -curvature tensor and they obtained some interesting results.
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The notion of local symmetry of a Riemannian manifold has been weakened
by many authors in several ways to a different extent. In the context of contact
geometry the notion of φ-symmetry is introduced and studied by E. Boeckx, P.
Buecken and L. Vanhecke [3] with several examples. As a weaker version of local
symmetry, T. Takahashi [12] introduced the notion of locally φ-symmetry on a
Sasakian manifold. Generalizing the notion of φ-symmetry De et al. [5] introduced
the notion of φ-recurrent Sasakian manifold. In [4], the authors studied φ-recurrent
N(k)-contact metric manifolds. Motivated by all these work in this paper we study
the φ-recurrent τ -curvature tensor in (k, µ)-contact metric manifold.

2 Preliminaries
A (2n + 1)-dimensional differential manifold M is said to have an almost contact
structure (φ, ξ, η) if it carries a tensor field φ of type (1, 1), a vector field ξ and
1-form η satisfying

φ2 = −I + η ⊗ ξ, η(ξ) = 1, η ◦ φ = 0, φξ = 0. (1)

Let g be a compatible Riemannian metric with almost contact structure (φ, ξ, η)
such that,

g(φX, φY ) = g(X,Y )− η(X)η(Y ), (2)

g(φX, Y ) = −g(X,φY ) g(X, ξ) = η(X), (3)

where X,Y are vector fields defined on M. Then the structure (φ, ξ, η, g) on M is
said to have an almost contact metric structure and the manifold M equipped with
this structure is called an almost contact metric manifold.

An almost contact metric structure (φ, ξ, η, g) becomes a contact metric struc-
ture if

dη(X,Y ) = g(X,φY ),

for all vector fields X,Y on M.
Given a contact metric manifold M(φ, ξ, η, g), we define a (1, 1) tensor field h

by h = 1
2Lφ, where L denotes the Lie differentiation. Then h is symmetric and

satisfies hφ = −φh. Also we have tr(h) = tr(φh) = 0 and hξ = 0. Moreover, if ∇
denotes the Riemannian connection on M, then the following relation holds:

∇Xξ = −φX − φhX. (4)

In contact metric manifold M(φ, ξ, η, g), the (k, µ)-nullity distribution is

p→ Np(k, µ) =
{
Z ∈ TpM : R(X,Y )Z = k

[
g(Y,Z)X − g(X,Z)Y

]
+ µ

[
g(Y,Z)hX − g(X,Z)hY

]}
, (5)

for all vector fields X,Y ∈ TpM and k, µ are real numbers and R is the curva-
ture tensor. Hence, if the characteristic vector field ξ belongs to the (k, µ)-nullity
distribution, then we have

R(X,Y )ξ = k
[
η(Y )X − η(X)Y

]
+ µ

[
η(Y )hX − η(X)hY

]
. (6)
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Thus a contact metric manifold satisfying (6) is called a (k, µ)-contact metric
manifold. In particular, if µ = 0, then the notion of (k, µ)-nullity distribution
reduces to the notion of k-nullity distribution introduced by S. Tanno [11]. In a
(k, µ)-contact metric manifold the following relations hold [2], [9]:

h2 = (k − 1)φ2, k ≤ 1, (7)

(∇Xφ)Y = g(X + hX, Y )ξ − η(Y )[X + hX],

(∇Xh)Y =
[
(1− k)g(X,φY ) + g(X,hφY )

]
ξ

+ η(Y )
[
h(φX + φhX)

]
− µη(X)φhY,

R(ξ,X)Y = k
[
g(X,Y )ξ − η(Y )X

]
+ µ

[
g(hX, Y )ξ − η(Y )hX

]
,

η(R(X,Y )Z) = k
[
g(Y,Z)η(X)− g(X,Z)η(Y )

]
+ µ

[
g(hY, Z)η(X)− g(hX,Z)η(Y )

]
,

S(X, ξ) = 2nkη(X), (8)

S(X,Y ) =
[
2(n− 1)− nµ

]
g(X,Y ) +

[
2(n− 1) + µ

]
g(hX, Y )

+
[
2(1− n) + n(2k + µ)

]
η(X)η(Y ), n ≥ 1, (9)

QX =
[
2(n− 1)− nµ

]
X +

[
2(n− 1) + µ

]
hX

+
[
2(1− n) + n(2k + µ)

]
η(X)ξ, n ≥ 1, (10)

r = 2n
[
2n− 2 + k − nµ

]
,

S(φX, φY ) = S(X,Y )− 2nkη(X)η(Y )− 2(2n− 2 + µ)g(hX, Y ), (11)

where S is the Ricci tensor of type (0, 2), Q is the Ricci operator, that is, S(X,Y ) =
g(QX,Y ) and r is the scalar curvature of the manifold. From (3), it follows that

(∇Xη)Y = g(X + hX, φY ).

Definition 1. A (k, µ)-contact metric manifold M is said to be locally φ-symmetric
if

φ2
(
(∇WR)(X,Y )Z

)
= 0,

for all vector fields X,Y, Z,W orthogonal to ξ. This notion was introduced by T.
Takahashi [12] for Sasakian manifolds.

A field that is at every point and for every direction proportional to its covari-
ant differential is called recurrent. Based on this concept we define the following
definition:

Definition 2. A (k, µ)-contact metric manifold M is said to be φ-recurrent if and
only if there exists a non zero 1-form A such that

φ2
(
(∇WR)(X,Y )Z

)
= A(W )R(X,Y )Z,

for all arbitrary vector fields X, Y, Z, W which are not necessarily orthogonal to
ξ.

If the 1-form A vanishes identically, then the manifold is said to be a locally
φ-symmetric manifold.
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Definition 3. A (k, µ)-contact metric manifold M is said to be φ-τ -recurrent if and
only if there exists a non zero 1-form A such that

φ2
(
(∇W τ)(X,Y )Z

)
= A(W )τ(X,Y )Z,

for all arbitrary vector fields X, Y , Z, W which are not necessarily orthogonal to ξ.

The τ -curvature tensor [13] is given by

τ(X,Y )Z = a0R(X,Y )Z + a1S(Y,Z)X + a2S(X,Z)Y + a3S(X,Y )Z

+ a4g(Y,Z)QX + a5g(X,Z)QY + a6g(X,Y )QZ

+ a7r[g(Y,Z)X − g(X,Z)Y ],

(12)

where a0, . . . , a7 are all constants on M . For different values of a0, . . . , a7 the
τ -curvature tensor reduces to the curvature tensor R, quasi-conformal curvature
tensor, conformal curvature tensor, conharmonic curvature tensor, concircular cur-
vature tensor, pseudo-projective curvature tensor, projective curvature tensor, M -
projective curvature tensor, Wi-curvature tensors (i = 0, . . . , 9), W ∗

j -curvature
tensors (j = 0, 1).

3 φ-τ -recurrent (k, µ)-contact metric manifold

In this section, we define φ-τ -recurrent (k, µ)-contact metric manifold

φ2
(
(∇W τ)(X,Y )Z

)
= A(W )τ(X,Y )Z, (13)

for all vector fields X,Y, Z,W . By using (9) and (10) in (12), we get

τ(X,Y )Z = a0R(X,Y )Z + a1[αg(Y,Z)X + βg(hY, Z)X + γη(Y )η(Z)X]

+ a2[αg(X,Z)Y + βg(hX,Z)Y + γη(X)η(Z)Y ]

+ a3[αg(X,Y )Z + βg(hX, Y )Z + γη(X)η(Y )Z]

+ a4g(Y,Z)
[
αX + βhX + γη(X)ξ

]
+ a5g(X,Z)

[
αY + βhY + γη(Y )ξ

]
+ a6g(X,Y )

[
αZ + βhZ + γη(Z)ξ

]
+ a7r

[
g(Y, Z)X − g(X,Z)Y

]
,

(14)

where α = [2(n− 1)− nµ], β = [2(n− 1) + µ] and γ = [2(1− n) + n(2k + µ)].
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Differentiating (14) with respect to W, we obtain

(∇W τ)(X,Y )Z = a0(∇WR)(X,Y )Z

+ a1

[
βg((∇Wh)Y,Z)X + γ

{
(∇W η)Y η(Z)X + (∇W η)Zη(Y )X

}]
+ a2

[
βg((∇Wh)X,Z)Y + γ

{
(∇W η)Xη(Z)Y + (∇W η)Zη(X)Y

}]
+ a3

[
βg((∇Wh)X,Y )Z + γ

{
(∇W η)Xη(Y )Z + (∇W η)Y η(X)Z

}]
+ a4g(Y,Z)

[
β(∇Wh)X + γ

{
(∇W η)(X)ξ + η(X)∇W ξ

}]
+ a5g(X,Z)

[
β(∇Wh)Y + γ

{
(∇W η)(Y )ξ + η(Y )∇W ξ

}]
+ a6g(X,Y )

[
β(∇Wh)Z + γ

{
(∇W η)(Z)ξ + η(Z)∇W ξ

}]
+ a7(∇W r)[g(Y, Z)X − g(X,Z)Y ].

(15)
By virtue of (1), (13), we have

−(∇W τ)(X,Y )Z + η
(
(∇W τ)(X,Y )Z

)
ξ = A(W )τ(X,Y )Z. (16)

By taking an inner product with U, we obtain

−g((∇W τ)(X,Y )Z,U)+ η
(
(∇W τ)(X,Y )Z

)
g(ξ, U) = A(W )g(τ(X,Y )Z,U). (17)

Let {ei : i = 1, 2, . . . , 2n + 1, } be an orthonormal basis of the tangent space
at any point of the manifold. Putting X = U = ei in (17) and taking summation
over i, we get

−g((∇W τ)(ei, Y )Z, ei) + η
(
(∇W τ)(ei, Y )Z

)
g(ξ, ei) = A(W )g(τ(ei, Y )Z, ei). (18)

By using (15) in (18), we obtain

− a0(∇WS)(Y, Z)− [2na1 + a2 + a5]
[
β
{[

(1− k)g(W,φY ) + g(W,hφY )
]
η(Z)

+ η(Y )g(h(φW + φhW ), Z)− µη(W )g(φhY,Z)
}
+ γ
{
g(W + hW,φY )η(Z)

+ η(Y )g(W + hW,φZ)
}]
− (a3 + a6)

[
β
{[

(1− k)g(W,φZ) + g(W,hφZ)
]
η(Y )

+ η(Z)g(h(φW + φhW ), Y )− µη(W )g(φhZ, Y )
}
+ γ
{
g(W + hW,φZ)η(Y )

+ η(Z)g(W + hW,φY )
}]
− a7(∇W r)[2ng(Y,Z)] + a0η

(
(∇WR)(ξ, Y )Z

)
+ a2

[
βg(h(φW + φhW ), Z)η(Y ) + γg(W + hW,φZ)η(Y )

]
+ a3

[
βg(h(φW + φhW ), Y )η(Z) + γg(W + hW,φY )η(Z)

]
+ a5

[
β{(1− k)g(W,φY ) + g(W,hφY )}η(Z) + γη(Z)g(W + hW,φY )

]
+ a6

[
β{(1− k)g(W,φZ) + g(W,hφZ)}η(Y ) + γη(Y )g(W + hW,φZ)

]
+ a7(∇W r)[g(Y,Z)− η(Y )η(Z)]

= A(W )[a4 + 2na7]rg(Y,Z) +A(W )
[
a0 + (2n+ 1)a1 + a2 + a3 + a5 + a6

]
S(Y, Z).

(19)
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Putting Z = ξ in (19) and on simplification, we get

− a0(∇WS)(Y, ξ)− (2na1 + a2 + a6)
[
β
{
(1− k)g(W,φY ) + g(W,hφY )

}
+ γg(W + hW,φY )

]
− 2na7(∇W r)η(Y )

= A(W )η(Y )
[
[a0 + (2n+ 1)a1 + a2 + a3 + a5 + a6]2nk + [a4 + 2na7]r

]
.

(20)

We know that

(∇WS)(Y, ξ) = ∇WS(Y, ξ)− S(∇WY, ξ)− S(Y,∇W ξ). (21)

By using (4), (8) in (21), we obtain

(∇WS)(Y, ξ) = S(Y, φW ) + S(Y, φhW )− 2nkg(Y, φW )− 2nkg(Y, φhW ). (22)

Substituting (22) in (20), we get

− a0
{
S(Y, φW ) + S(Y, φhW )− 2nkg(Y, φW )− 2nkg(Y, φhW )

}
− (2na1 + a2 + a6)

[
β{(1− k)g(W,φY ) + g(W,hφY )}+ γg(W + hW,φY )

]
− 2na7(∇W r)η(Y )

= A(W )η(Y )
[
[a0 + (2n+ 1)a1 + a2 + a3 + a5 + a6]2nk + [a4 + 2na7]r

]
.

(23)
Replacing Y by φY in (23) and simplifying, we have

− a0S(Y,W )− a0S(Y, hW ) +
[
2a0β + 2nka0 + (2na1 + a2 + a6)(β + γ)

]
g(hW, Y )

+
[
2nka0 + (2na1 + a2){β(1− k) + γ}+ a6γ − (2a0 + a6)β(k − 1)

]
g(W,Y )

+
[
(2a0 + a6)β(k − 1)− (2na1 + a2){β(1− k) + γ} − a6γ

]
η(W )η(Y ) = 0.

(24)
Replacing W by hW in (24) and by virtue of (7), (9) and on simplification, we get

− a0S(Y, hW ) + a0(k − 1)S(Y,W )

+ (k − 1)
[
2a0β + (2na1 + a2 + a6)(β + γ)

]
η(W )η(Y )

+
[
2nka0 + (2na1 + a2){β(1− k) + γ}+ a6γ − (2a0 + a6)β(k − 1)

]
g(hW, Y )

− (k − 1)
[
2a0β + 2nka0 + (2na1 + a2 + a6)(β + γ)

]
g(W,Y ) = 0.

(25)
Subtracting (24) and (25) and by virtue of (9), we obtain

g(Y, hW ) =
E

F
g(Y,W ) +

G

F
η(Y )η(W ), (26)

where

E = [a0(β − 2nk) + (2na1 + a2 + a6)γ]

F = [a0(2β − α) + β(2na1 + a2)]

and
G = γ(−a0 + 2na1 + a2 + a6).
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By substituting (26) in (24), we get

S(Y,W ) =

[
NE

a0F
+
P

a0

]
g(Y,W ) +

[
GN

Fa0
+
Q

a0

]
η(Y )η(W ),

where

N =
[
[2nk − α+ 2β]a0 + (2na1 + a2 + a6)(β + γ)

]
,

P =
[
2nka0 − β(k − 1)[a0 + 2na1 + a2 + a6] + γ[2na1 + a2 + a6]

]
and

Q =
[
β(k − 1)[a0 + 2na1 + a2 + a6]− γ[2na1 + a2 + a6]

]
.

Hence, we state the following:

Theorem 1. A φ-τ -recurrent (k, µ)-contact metric manifold is an η-Einstein man-
ifold with a0 6= 0.

4 η-τ -Ricci-recurrent (k, µ)-contact metric manifold
Definition 4. A (k, µ)-contact metric manifold M is said to be η-τ -Ricci-recurrent
if it satisfies the condition

(∇XSτ )(φY, φZ) = A(X)Sτ (φY, φZ), (27)

for all vector fields X, Y , Z on M

From (12), we have

Sτ (Y,Z) = [a0+(2n+1)a1+a2+a3+a5+a6]S(Y, Z)+ r[a4+2na7]g(Y,Z). (28)

Replacing Y = φY and Z = φZ in (28), we obtain

Sτ (φY, φZ) = [a0 + (2n+ 1)a1 + a2 + a3 + a5 + a6]S(φY, φZ)

+ [a4 + 2na7]rg(φY, φZ).
(29)

Differentiating (29) with respect to X, we get

(∇XSτ )(φY, φZ) = [a0 + (2n+ 1)a1 + a2 + a3 + a5 + a6](∇XS)(φY, φZ)
+ [a4 + 2na7](∇Xr)g(φY, φZ).

(30)

By using (30) and (29) in (27), we have

L(∇XS)(φY, φZ) +M(∇Xr)g(φY, φZ) = A(X){LS(φY, φZ) +Mrg(φY, φZ)},
(31)

where L = [a0 + (2n+ 1)a1 + a2 + a3 + a5 + a6] and M = [a4 + 2na7].
Now, differentiating (11), we have

(∇XS)(φY, φZ) = (∇XS)(Y, Z)− 2nk
[
−η(Z)g(Y, φX)− η(Z)g(Y, φhX)

− η(Y )g(Z, φX)− η(Y )g(Z, φhX)
]

− 2[2n− 2 + µ]
[
(1− k)g(X,φY )η(Z)

+ g(X,hφY )η(Z) + η(Y )g(h(φX + φhX), Z)

− µη(X)g(φhY,Z)
]

+ η(Y )S(X + hX, φZ) + η(Z)S(φY,X + hX).

(32)
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Substituting (32) in (31) and on simplification, we obtain

(∇XS)(Y,Z) = −2nk
[
η(Z)g(Y, φX) + η(Z)g(Y, φhX) + η(Y )g(Z, φX)

+ η(Y )g(Z, φhX)
]
+ 2[2n− 2 + µ]

[
(1− k)g(X,φY )η(Z)

+ g(X,hφY )η(Z) + η(Y )g(h(φX + φhX), Z)− µη(X)g(φhY,Z)
]

− η(Y )S(X + hX, φZ)− η(Z)S(φY,X + hX)

− M

L
(∇Xr)g(φY, φZ) +A(X){S(Y,Z)− 2nkη(Y )η(Z)

− 2[2n− 2 + µ]g(hY, Z) +
Mr

L
g(φY, φZ)}.

(33)

Let {ei : i = 1, 2, . . . , 2n+1} be an orthonormal frame field at any point of the
manifold. Then contracting Y and Z in (33), we have

dr(X) = A(X)

[
r − 2nkL

(L+ 2nM)

]
. (34)

Again, contracting over X and Z in (33), we get

1

2
dr(Y ) =

[
−2nk tr(φ) + 2(2n− 2 + µ) tr(hφh)− tr(Qφ)− tr(Qhφ) +

(ξr)M

L

]
η(Y )

−
[
2nk +

rM

L

]
A(ξ)η(Y )− M

L
dr(Y ) + S(Y, ρ)− 2(2n− 2 + µ)A(hY )

+
rM

L
A(Y ).

(35)
By using (34) in (35) and on simplification, we get

A(Y )

[
r

2
− nk(L+ 2M)

(L+ 2nM)

]
=
[
−2nk tr(φ) + 2(2n− 2 + µ) tr(hφh)

− tr(Qφ)− tr(Qhφ)− 2nk(L+M + 2nM)

(L+ 2nM)
A(ξ)

]
η(Y )

+ S(Y, ρ)− 2(2n− 2 + µ)A(hY ). (36)

Replacing Y = hY in (36) and by virtue of (9), we obtain

A(hY ) =
2(L+ 2nM)

[(r − 2α)(L+ 2nM)− 2nk(L+ 2M)]
[β(k−1){A(Y )−A(ξ)η(Y )}], (37)

where α = [2(n− 1)− nµ] and β = [2(n− 1) + µ].
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Substituting (37) in (36), we have

A(Y )

[
r

2
− nk(L+ 2M)

(L+ 2nM)
+

4β2(L+ 2nM)(k − 1)

[(r − 2α)(L+ 2nM)− 2nk(L+ 2M)]

]
= [−2nk tr(φ) + 2β tr(hφh)− tr(Qφ)− tr(Qhφ)]η(Y )

+

[
4β2(L+ 2nM)(k − 1)

[(r − 2α)(L+ 2nM)− 2nk(L+ 2M)]
− 2nk(L+M + 2nM)

(L+ 2nM)

]
A(ξ)η(Y )

+ S(Y, ρ). (38)

Putting Y = ξ in (38), we get

A(ξ)

[
r

2
− nkL

(L+ 2nM)

]
= [−2nk tr(φ) + 2β tr(hφh)− tr(Qφ)− tr(Qhφ)]. (39)

From (39) and (38), we have

S(Y, ρ) =

[
r

2
− nk(L+ 2M)

(L+ 2nM)
+

4β2(L+ 2nM)(k − 1)

[(r − 2α)(L+ 2nM)− 2nk(L+ 2M)]

]
g(Y, ρ)

+

[
−r
2
+

nkL

(L+ 2nM)
− 4β2(L+ 2nM)(k − 1)

[(r − 2α)(L+ 2nM)− 2nk(L+ 2M)]

+
2nk(L+M + 2nM)

(L+ 2nM)

]
η(Y )η(ρ).

(40)
From (40), we have

QY =

[
r

2
− nk(L+ 2M)

(L+ 2nM)
+

4β2(L+ 2nM)(k − 1)

[(r − 2α)(L+ 2nM)− 2nk(L+ 2M)]

]
Y

+

[
−r
2
+

nkL

(L+ 2nM)
− 4β2(L+ 2nM)(k − 1)

[(r − 2α)(L+ 2nM)− 2nk(L+ 2M)]

+
2nk(L+M + 2nM)

(L+ 2nM)

]
η(Y )ξ.

(41)

Hence, we state the following:

Theorem 2. If the Ricci tensor of a (k, µ)-contact metric manifold is η-τ -Ricci-
-recurrent then its Ricci tensor along the associated vector field of the 1-form is
given by (40) and the eigen value of the Ricci tensor with respect to the charac-
teristic vector ξ is given by (41).
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