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K Y B E R N E T I K A — V O L U M E 5 5 ( 2 0 1 9 ) , N U M B E R 1 , P A G E S 6 3 – 8 0

A BI-AVERAGE TREE SOLUTION FOR PROBABILISTIC
COMMUNICATION SITUATIONS WITH FUZZY
COALITION

Xianghui Li, Hao Sun and Dongshuang Hou

A probabilistic communication structure considers the setting with communication restric-
tions in which each pair of players has a probability to communicate directly. In this paper, we
consider a more general framework, called a probabilistic communication structure with fuzzy
coalition, that allows any player to have a participation degree to cooperate within a coalition.
A maximal product spanning tree, indicating a way of the greatest possibility to communicate
among the players, is introduced where the unique path from one player to another is optimal.
We present a feasible procedure to find the maximal product spanning trees. Furthermore,
for games under this model, a new solution concept in terms of the average tree solution is
proposed and axiomatized by defining a restricted game in Choquet integral form.

Keywords: probabilistic communication situation, fuzzy coalition, average tree solution,
maximal product spanning tree

Classification: 05C57, 05C72, 91A12

1. INTRODUCTION

A cooperative game over a finite set of players is a function assigning to any coalition
a profit achieved by cooperation. It is generally supposed that there are no restrictions
on communications between players. This leads us to capture the fact that there may
be a given structure of communication in various economical and social issues.

Myerson [11] considered a kind of communication restriction and introduced the com-
munication structure represented by an undirected graph. The nodes are players and
one link between any two players is established if they can communicate each other. The
famous solutions for games with communication structure are Myerson value proposed
by Myerson [11] and position value by Borm et al. [3].

Later, Herings et al. [8] proposed an average tree solution for cycle-free communica-
tion situations which is an average of specific marginal contribution vectors defined by
a rooted tree. The marginal contribution of every player in a rooted tree is equal to the
worth of the coalition consisting of this player and his all subordinates minus the sum
of worths of the coalitions consisting of one of his successors and all subordinates of this
successor.
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Calvo et al. [5] extended the model of Myerson and introduced the probabilistic
version of communication structure. A probabilistic communication structure assigns
to each link a probability of realization and these probabilities are independent each
other. Gómez et al. [7] dropped the independence assumption about the probabilities
and consider the generalized communication structure where a probabilistic distribution
over all possible communication structures is given.

Aubin [1] considered the uncertainty about the participation levels of players and in-
troduced the fuzzy cooperative game. Two particular forms for fuzzy cooperative games
are the proportional form defined by Butnariu [4] and Choquet integral form defined by
Tsurumi et al. [12]. Xu et al. [14] and Li et al. [10] considered the participation levels
of players under communication structures and studied the Myerson value and position
value respectively. Jiménez-Losada et al. [9] introduced the fuzzy communication struc-
ture described by a fuzzy graph where the participation levels and communication levels
for players are allowed to be not full. The communication level between any two players
is limited to be not greater than their own participation level.

Assume that the likelihood of existence of a communication link is represented by a
probability assigned to it and greater formation probability of a communication structure
among some players reflects its stronger stability than other communication possibilities.
In this paper, we consider that any two players can have different preferences for all pos-
sible paths through them and in the cooperation they only choose the most stable one
as the final communication channel. For example, for the purpose of saving construction
cost, cities that plan to build pipelines together to transport natural gas will prefer to
choose the path covering all cities with the greatest communication possibility. Syn-
thesizing the uncertainty of players’ participation levels in the process of cooperation,
it is meaningful to research a new framework of probabilistic communication structure
with fuzzy coalition in which every player is permitted to join in a coalition with a
certain participation level and any two of them communicate by mutually independent
probabilities.

Under this model, a maximal product spanning tree, in which all players communicate
in the most likely way and the unique path between any two players is optimal, is
introduced. In order to find a reasonable solution in this setting, we make an assumption
that every player has a equal opportunity to govern the rest of players and is always
rational to take the optimal paths in the process of cooperation. We define a restricted
game containing all the information from the probabilistic communication structure with
fuzzy coalition and propose a solution concept, called a bi-average tree solution. This
new solution is axiomatized following the step of Herings et al. [8]. Meanwhile, it also
has a relation with the average tree solution for special cases.

This paper is organized as follows. In Section 2, we get some preliminary knowledge
served for the latter contexts. In Section 3, we introduce the probabilistic communication
situation with fuzzy coalition arising form the examples in which players cooperate
partially and communicate each other with a probability. In Section 4, a bi-average tree
solution for this situation is proposed and characterized by defining a restricted game in
Choquet integral form. Finally, some conclusions are given in Section 5.
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2. PRELIMINARIES

2.1. Deterministic communication situations

A cooperative game can be described by a pair (N, v) where N = {1, 2, . . . . , n} denotes
the set of players and v : 2N → R with v(∅) = 0 the corresponding characteristic
function. Any subset S ⊆ N is called a coalition and v(S) the worth of S. If there is no
ambiguity, we identify the game (N, v) with its characteristic function v. The set of all
cooperative games over N is denoted by GN . Throughout this paper, any game v ∈ GN

is thought to be zero-normalized, i. e., v
(
{i}
)

= 0 for all i ∈ N .
The restriction of a game v to a coalition S ⊆ N , denoted by vS , is defined by

vS(T ) = v(S ∩ T ) for all T ⊆ N . We say a cooperative game v is superadditive if for all
S, T ⊆ N such that S ∩ T = ∅, v(S ∪ T ) ≥ v(S) + v(T ).

A solution for cooperative games is a mapping that assigns to any game a set of payoff
vectors. The core of a game v ∈ GN is a set-valued solution consisting of all efficient
and coalition rational payoffs,

C(v) = {x ∈ Rn|
∑
i∈N

xi = v(N),
∑
i∈S

xi ≥ v(S) for any S ⊆ N}.

In the classical cooperative game theory models, it is often assumed that any two
players can communicate freely. Myerson [11] considered that the communication among
players can be different and studied the cooperative games with communication struc-
ture. A communication structure can be represented by an undirected graph with play-
ers as nodes and the bilateral communication relations between them as links. Denote
L =

{
{i, j}|i, j ∈ N, i 6= j

}
, an undirected graph is a pair (N,L) where N is the set

of players and L ⊆ L is a collection of feasible links among players in N . A subgraph
of (N,L) is another graph (S,A) satisfying that S ⊆ N and A ⊆ L. A path in (N,L)
is a sequence of nodes (i1, i2, . . . , ik) satisfying that {ih, ih+1} ∈ L is different for each
h ∈ {1, 2, . . . , k − 1}. A cycle in (N,L) is a sequence of nodes (i1, i2, . . . , ik) if k ≥ 4,
(i1, i2, . . . , ik) is a path and ik = i1. A graph (N,L) is cycle-free when it does not
contain any cycle. Two nodes i, j ∈ N are connected in (N,L) if there exists a path
from i to j. (N,L) is connected if any two nodes i, j ∈ N are connected. A connected
graph without cycles is named a tree. In a connected graph (N,L), a spanning tree is a
tree subgraph of (N,L) using all its nodes and we denote the set of all spanning trees
of (N,L) by T (N,L). For any S ⊆ N , the graph

(
S,L(S)

)
is a subgraph of (N,L) with

L(S) =
{
{i, j} ∈ L|i, j ∈ S

}
. S ⊆ N is a connected subset of (N,L) if

(
S,L(S)

)
is

connected. K ⊆ N is a component of (N,L) if
(
K,L(K)

)
is maximally connected. The

set of all components in subgraph
(
S,L(S)

)
for any S ⊆ N is denoted by CL(S).

A communication situation is a triple (N, v, L) with (N, v) being a cooperative game
and (N,L) an undirected graph. Much attention has been paid to the allocation of profit
among the players for communication situations, including the Myerson value introduced
by Myerson [11] and the average tree solution by Herings et al. [8] Denote the set of all
communication situations over N by CSN , a solution for communication situations is a
mapping ψ : CSN → Rn.

The Myerson value is defined as the Shapley value of a graph game vL,

µ(N, v, L) = Sh(N, vL),
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where vL(S) =
∑

C∈CL(S) v(C) for any S ⊆ N .

Before presenting the average tree solution, we first get a knowledge of directed
graphs. A directed graph D = (N, ~L) is defined by a set of nodes N and a collection

of directed links ~L ⊆
{

(i, j)|i, j ∈ N, i 6= j
}

. If (i, j) ∈ ~L, then j is a successor of i.

j is called a subordinate of i if there exists a directed sequence of links (ih, ih+1) ∈ ~L,
h = 1, 2, . . . , k such that i1 = i and ik+1 = j. SD(i) is the set of nodes consisting of i

and all its subordinates in D = (N, ~L). ID(i) is the set of successors of i in D = (N, ~L).

Let (N, v, L) be a cycle-free communication situation. Consider a component K ∈
CL(N), every player i ∈ K can induce a unique directed tree, denoted by T (i), with i
being the root. The average tree solution for any i ∈ K is an average of all marginal
payoffs over |K| rooted trees given by

ATi(N, v, L) =
1

|K|
∑
j∈K

[
v
(
ST (j)(i)

)
−

∑
h∈IT (j)(i)

v
(
ST (j)(h)

)]
.

For convenience, we also use SL
j (i) and ILj (i) instead of ST (j)(i) and IT (j)(i) respectively.

2.2. Fuzzy cooperative games

A fuzzy coalition is defined as a fuzzy set U = (U1, U2, . . . , Un) with the ith coordinate
being in the interval [0, 1] interpreted as the participation level of player i ∈ N . We
denote by FN the set of fuzzy coalitions. The support of U ∈ FN is supp(U) = {i|Ui 6=
0}, representing the set of active players. If t ∈ [0, 1], the t-level set of U ∈ FN is
[U ]t = {i ∈ N |Ui ≥ t}. The fuzzy coalition eS with eSi = 1 if i ∈ S and otherwise eSi = 0
corresponds to the crisp situation where the players within S fully cooperate. We write
ei instead of e{i}.

A fuzzy cooperative game is a function vf : FN → R such that vf (e∅) = 0. The set
of fuzzy cooperative games is denoted by FGN . The associated crisp game w ∈ GN of
vf is defined as w(S) = vf (eS) for each S ⊆ N .

Butnariu [4] studied the fuzzy cooperative game with proportional form. Later,
Tsurumi et al. [12] defined the fuzzy characteristic function with Choquet integral form
which is continuous with regard to the level of players’ participation.

Let Q(U) = {Ui|Ui > 0, i ∈ N} and q(U) =
∣∣Q(U)

∣∣. A fuzzy cooperative game vf is
said to be with Choquet integral form if

vf (U) =
q(U)∑
k=1

[hk − hk−1] · w([U ]hk
)

for any U ∈ FN , where Q(U) ∪ {0} = {h0, h1, h2, . . . , hq(U)} and 0 = h0 < h1 < h2 <
· · · < hq(U).

Yu and Zhang [13] proposed the fuzzy core of the fuzzy cooperative game vf with a
fuzzy coalition U ∈ FN ,

C̃(vf )(U) = {x ∈ Rn|
∑
i∈N

xi = vf (U),
∑

i∈supp(UT )

xi ≥ vf (UT ) for any T ⊆ N},
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where UT ∈ FN is defined by

(UT )i =

{
Ui, if i ∈ T,
0, otherwise.

2.3. Probabilistic communication situations

A probabilistic communication situation is a triple (N, v, p) where (N, v) is a cooperative
game and p : L → [0, 1] is a probabilistic function which assigns to each pair of players
a probability of direct communication between them. The probabilities are deemed to
be independent. The set of probabilistic links is defined by supp(p) =

{
{i, j}|p({i, j}) >

0, i, j ∈ N
}

. The image of p is im(p) =
{
p
(
{i, j}

)
|p
(
{i, j}

)
6= 0

}
. We denote the

restriction to any S ⊆ N of the function p by pS with

pS
(
{i, j}

)
=

{
p
(
{i, j}

)
, if i, j ∈ S,

0, otherwise.

Calvo et al. [5] defined a restricted game vp associated to any probabilistic commu-
nication situation integrating both the economic possibilities of players described by the
cooperative game v and the possibilities of bilateral communications described by the
probabilistic function p. Given S ⊆ N and let L(S) =

{
{i, j}|i, j ∈ S, i 6= j

}
. The

possibility that each link set L ⊆ L(S) is realized among players in S is

pS(L) =
∏
l∈L

pl
∏

l∈L(S)\L

(1− pl).

Since the worth achieved by S ⊆ N if L ⊆ L(S) is realized is vL(S), the expected profit
of coalition S can be defined by

vp(S) =
∑

L⊆L(S)

pS(L)vL(S).

3. PROBABILISTIC COMMUNICATION SITUATIONS WITH FUZZY COALITION

In this section, as an extended model of probabilistic communication situation, a prob-
abilistic communication situation with fuzzy coalition is introduced considering the un-
certainty of participation levels of players.

A probabilistic communication structure with fuzzy coalition can be described by a
pair (U, p) where U = (U1, U2, . . . , Un) is a fuzzy coalition with the ith coordinate being
the real participation level of player i in a cooperation and p : L → [0, 1] is a function
with p

(
{i, j}

)
being the probability of the formation of communication link {i, j} for

all i, j ∈ N . A greater probability of one communication link says that it is better
recognized by its two endpoints. The basic graph of (U, p) is a crisp graph defined
by supp(U, p) =

(
supp(U), supp(p)

)
. The concepts of a probabilistic communication

structure with fuzzy coalition such as “path”, “cycle” and “component” coincide with
its corresponding basic graph. We denote by Cp(U) the set of components of (U, p). The
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restriction to a subset S ⊆ N of (U, p) is another probabilistic communication structure
with fuzzy coalition (US , pS).

Given a cycle-free probabilistic communication structure with fuzzy coalition (U, p)
and any K ∈ Cp(U), every player i ∈ K induces a unique directed tree T̄ (i) with i being
the root in supp(U, p). With respect to T̄ (i) for any i ∈ K, we define Sp

i (j) = ST̄ (i)(j)
and Ipi (j) = IT̄ (i)(j) for any j ∈ K.

Due to for players in a path, their communication relationship is obviously more stable
if the minimal formation probability among them is greater than other communication
possibilities, we define a concept of degree of path and take the maximum degree of all
paths between any two players as their degree of connectivity.

Definition 3.1. Let (U, p) be connected. If there exists a path P connecting i and j,
the degree of path P is defined by

d(P ) = min
e∈E(P )

p(e),

where E(P ) is the set of all links involved in path P . Assume that there are l paths
P1, P2, . . . , Pl connecting i and j in (U, p), the degree of connectivity d(i, j) between i
and j is defined by

d(i, j) = max
k∈{1,2,...,l}

d(Pk), if i 6= j.

Since one link with a lower probability is easier to destroy the communication among
its two endpoints, it is very possible to be abandoned in the cooperation. Here we define
one of paths from i and j whose degree is exactly the connectivity degree between i and
j to be optimal as follows.

Definition 3.2. A path P of (U, p) connecting i and j is called the optimal path if

d(P ) = d(i, j).

In an optimal path from i to j, all of players involved in it are rational to choose their
preferable partners. Apparently, the optimal paths are not always unique.

Definition 3.3. Let (U, p) be connected. If T = (V,E) is a spanning tree of supp(U, p),
T̃ = (U, pE) is called a spanning tree of (U, p) where pE : L → [0, 1] is a function with

(pE)
(
{i, j}

)
=

{
p
(
{i, j}

)
, if {i, j} ∈ E,

0, if {i, j} /∈ E.

If there is no confusion, we still write T̃ by T .

Let (U, p) be connected. If T is a spanning tree of (U, p), then T can be divided into
two connected parts after deleting one probabilistic link e in it, denoted by T1 and T2.
Let V (T1) be the set of nodes in T1 and V (T2) in T2, we denote

p∗(T, e) =
{
{i, j}|i ∈ V (T1), j ∈ V (T2), {i, j} ∈ supp(p)

}
.
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Definition 3.4. Denote the set of all spanning trees in the connected (U, p) by T (U, p),
we say a spanning tree T ∗ = (U, pE∗) is the maximal product spanning tree of (U, p) if
for any T = (U, pE) ∈ T (U, p), ∏

e∈E
p(e) ≤

∏
e∈E∗

p(e).

A maximal product spanning tree guarantees the communications among all players
with the maximal possibility, i. e., all players choose the partners they prefer to coop-
erate. The set of maximal product spanning trees in a connected (U, p) is denoted by
Tm(U, p).

Lemma 3.5. Let (U, p) be connected. If T is a spanning tree of (U, p), the following
two statements are equivalent.

(i) T is the maximal product spanning tree of (U, p);

(ii) For all i, j ∈ supp(U) (i 6= j), the degree of connectivity d(i, j) between i and j is
equal to the degree of the unique path P connecting i and j in T .

P r o o f . (i)⇒(ii) For any i, j ∈ supp(U), let P be a unique path connecting i and j
in the spanning tree T . Assume that p(e′) = d(P ), e′ ∈ E(P ). Since T is a maximal
product spanning tree of (U, p) and e′ is a cut edge of T , we can obtain that

p(e′) = max
e∈p∗(T,e′)

p(e). (1)

Meanwhile, on any path P ∗ connecting i and j, there must exist e∗ ∈ p∗(T, e′) such that
p(e′) ≥ p(e∗). Then,

d(P ∗) ≤ p(e∗) ≤ p(e′) = d(P )

and further

d(i, j) = d(P ).

(ii)⇒(i) Let T ∗ be a maximal product spanning tree of (U, p), we assume that the
spanning tree T 6= T ∗ and only these edges e1, e2, . . . , ek(k ≥ 1) are in T ∗, but not in T .
Consider ek = {ik, jk}, in the unique path Pk of T connecting ik and jk, there must exist
e∗k ∈ E(Pk) such that e∗k ∈ p∗(T ∗, ek) and therefore p(e∗k) ≤ p(ek) from the equation
(1). Due to the result of (i)⇒(ii), we get that p(ek) = d(ik, jk) since T ∗ is a maximal
product spanning tree. In addition, according to the condition that for all i, j ∈ supp(U)
(i 6= j), the degree of connectivity d(i, j) between i and j is equal to the degree of the
unique path P connecting i and j in T , it is derived that d(ik, jk) = d(Pk) ≤ p(e∗k).
Hence, p(e∗k) = p(ek). Replacing ek by e∗k, another spanning tree T ∗1 is generated and
then

∏
e∈E(T∗) p(e) =

∏
e∈E(T∗1 ) p(e) where E(T ∗) is the set of edges in T ∗ and E(T ∗1 )

in T ∗1 . Those edges in T ∗1 but not in T are e1, e2, . . . , ek−1. Repeat this step, we can
obtain T after k steps such that

∏
e∈E(T∗) p(e) =

∏
e∈E(T ) p(e), namely, T is also the

maximal product spanning tree of (U, p). �
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Remark 3.6. It is worthwhile to mention that, if the maximal product spanning tree
is substituted for the maximal spanning tree which is defined to be that of possessing
the maximal sum of probability of each link, the Lemma 3.5 is still true by a similar
proof. However, in this paper we use the product of probabilities of communication links,
namely, the probability that all of these links are formed, to represent the stability of
the generated communication structure because the sum of probabilities of links refers
to the probability that at least one of these links is formed.

The Lemma 3.5 indicates that the unique path between any two nodes in a maximal
product spanning tree is exactly an optimal path and provides us a procedure to find
the maximal product spanning trees as below.

Suppose that (U, p) is connected,
∣∣supp(U)

∣∣ = q.

(1) Take any element in supp(U) as i1. Put A1 = {i1}, B1 = supp(U)\A1. If there
exists j∗ ∈ B1 such that p

(
{i1, j∗}

)
= maxj∈B1

p
(
{i1, j}

)
, then let i2 = j∗ and

e1 = {i1, i2} (If j∗ is not unique, one of them can be recorded as i2). Denote
A2 = A1 ∪ {i2}, E1 = {e1}.

(2) If Ak = {i1, i2, . . . , ik}, Ek−1 = {e1, e2, . . . , ek−1} (k < q), take Bk = supp(U)\Ak

and denote

E∗ =
{
{i, j}|i ∈ Ak, j ∈ Bk

}
,

p
(
{i∗, j∗}

)
= max
{i,j}∈E∗

p
(
{i, j}

)
.

Let ik+1 = j∗, ek = {i∗, ik+1} (If j∗ is not unique, take one of them as ik+1). We
put Ak+1 = Ak ∪ {ik+1}, Ek = Ek−1 ∪ {ek}.

(3) If k + 1 < q, let k = k + 1 and go to the step (2); otherwise if k + 1 = q, the
procedure ends and T = (U, pEq−1

) is the maximal product spanning tree of (U, p).

0.6

0.3

0.3

0.4

0.7

0.4
0.5

0.3

Fig. 1. (U, p).

Example 3.7. A probabilistic communication structure with fuzzy coalition is depicted
in Figure 1, we can easily find its maximal product spanning trees listed in Figure 2.
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0.30.7
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(a)
(
U, p̄

)

0.6

0.3
0.4

0.30.7

0.4
0.5

(b)
(
U, ¯̄p

)
Fig. 2. Maximal product spanning trees of (U, p).

4. A BI-AVERAGE TREE SOLUTION

A probabilistic communication situation with fuzzy coalition is a triple (U, v, p), where
(U, p) is a probabilistic communication structure with fuzzy coalition and v ∈ GN . The
set of probabilistic communication situations with fuzzy coalition is denoted by PFN .

Choquet integrals [12] are used to obtain fuzzy games from their crisp counterparts.
The domain of fuzzy games is FN . For a fuzzy game v̄ with the fixed fuzzy coalition U ,
the worth of fuzzy coalition US is v̄(US). If we regard v̄(US) as the worth of crisp coalition
S with the participation levels of players in it being Ui(i ∈ S), v̄ with fuzzy coalition U
can be transformed into a crisp game with respect to U whose domain is 2N , denoted
by vU , where vU (S) = v̄(US) for any S ⊆ N . Similarly, in the following we define a
restricted crisp game vUp on the domain 2N which is essentially the transformation of a
fuzzy game v̄p with fuzzy coalition U and vUp(S) = v̄p(US) for any S ⊆ N .

Definition 4.1. Given (U, v, p) ∈ PFN , a restricted game in Choquet integral form vUp

will be defined by

vUp(S) =

q(U)∑
k=1

[hk − hk−1]
∑

L⊆L(S)

pS(L)vL([U ]hk
∩ S), for any S ⊆ N,

where Q(U) ∪ {0} = {h0, h1, h2, . . . , hq(U)} and 0 = h0 < h1 < h2 < · · · < hq(U).

The restricted game implies that, all players for a probabilistic communication situ-
ation with fuzzy coalition take a Choquet behavior, i. e., every of them try their best to
pursue the biggest feasible coalition to cooperate.

Remark 4.2. If L ⊆ L(S) is realized, the worth of US is
∑q(U)

k=1 [hk−hk−1]vL([U ]hk
∩S).

Then, vUp(S) can be seen as the expectation of the worth of US , that is, vUp(S) =∑
L⊆L(S) p

S(L)
∑q(U)

k=1 [hk − hk−1]vL([U ]hk
∩S). When U = eN , the restricted game vUp

is degenerated to vp having been defined in Calvo et al. [5].

A solution for probabilistic communication situations with fuzzy coalition is a function
Ψ : PFN → Rn. The real number Ψ(U, v, p) is the final payoff vector in the game v
when the communications between players are restricted by (U, p). Now we focus on
how to reasonably divide the profit among the players for this situation.
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In this paper, we tacitly admit that every player is equally possible to be a leader
and tends to choose a optimal channel when they communicate with others. Based on
this consideration, we introduce a bi-average tree solution on the class of probabilistic
communication situations with fuzzy coalition.

Definition 4.3. A bi-average tree solution for any (U, v, p) ∈ PFN is defined to be

BATi(U, v, p) =
1∣∣Tm(UK , pK)

∣∣ ∑
(Ū,p̄)∈Tm(UK ,pK)

1∣∣supp(Ū)
∣∣

·
∑

j∈supp(Ū)

[
vŪ p̄

(
Sp̄
j (i)

)
−

∑
k∈Ip̄

j (i)

vŪ p̄
(
Sp̄
j (k)

)]
if i ∈ K, K ∈ Cp(U), and BATi(U, v, p) = 0 if i 6∈ supp(U).

Remark 4.4. Note that Ū = UK , and any (Ū , p̄) ∈ Tm(UK , pK) can be found according
to the previous Definition 3.3 and 3.4. The Definition 4.3 builds a relation between the
bi-average tree solution and the classical average tree solution, i. e., for any K ∈ Cp(U)
and i ∈ K,

BATi(U, v, p) =
1∣∣Tm(UK , pK)

∣∣ ∑
(Ū,p̄)∈Tm(UK ,pK)

ATi
(
supp(Ū), vŪ p̄, supp(p̄)

)
,

and further BATi(U, v, p) = ATi
(
supp(UK), vUp, supp(pK)

)
if (U, p) is cycle-free.

Let Ψ be a solution for probabilistic communication situations with fuzzy coalition.
We consider some properties described below and aim to characterize the bi-average tree
solution.

Bi-average tree property For any (U, v, p) ∈ PFN and any K ∈ Cp(U), it holds
that

Ψi(U, v, p) =
1∣∣Tm(UK , pK)

∣∣ ∑
(Ū,p̄)∈Tm(UK ,pK)

Ψi(Ū , v, p̄), for any i ∈ K.

This property says that the payoff to each player i ∈ K for any (U, v, p) ∈ PFN and
any K ∈ Cp(U) is an average of its payoffs associated to all maximal product spanning
trees of (UK , pK).

Cycle-free component efficiency For any (U, v, p) ∈ PFN with (U, p) being cycle-
free and any K ∈ Cp(U), ∑

i∈K
Ψi(U, v, p) = vUp(K)

and Φi(U, v, p) = 0 if i 6∈ supp(U).
Cycle-free component efficiency states that a solution for a cycle-free probabilistic

communication situation with fuzzy coalition (U, v, p) assigns to any component K a pay-
off vUp(K).
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Cycle-free component fairness For any (U, v, p) ∈ PFN with (U, p) being cycle-free
and {i, j} ∈ supp(p),

1

|Ki|
∑
h∈Ki

[
Ψh(U, v, p)−Ψh(U, v, p−{i,j})

]
=

1

|Kj |
∑
h∈Kj

[
Ψh(U, v, p)−Ψh(U, v, p−{i,j})

]
,

where Ki and Kj are the components of (U, p−{i,j}) containing i and j respectively, and
p−{i,j} is a probabilistic function with

p−{i,j}
(
{e, f}

)
=

{
p
(
{e, f}

)
, if {e, f} 6= {i, j},

0, if {e, f} = {i, j}.

Cycle-free component fairness requires that deleting a probabilistic link {i, j} yields
the same average loss of payoff in both Ki and Kj .

Theorem 4.5. The bi-average tree solution is the unique solution over PFN if it satis-
fies the bi-average tree property, cycle-free component efficiency and cycle-free compo-
nent fairness.

P r o o f . First, we prove that the bi-average tree solution satisfies the properties in this
theorem.
Bi-average tree property. Since for any K ∈ Cp(U), i ∈ K,

BATi(U, v, p) =
1∣∣Tm(UK , pK)

∣∣ ∑
(Ū,p̄)∈Tm(UK ,pK)

1∣∣supp(Ū)
∣∣∑

j∈supp(Ū)

[
vŪ p̄

(
Sp̄
j (i)

)
−

∑
k∈Ip̄

j (i)

vŪ p̄
(
Sp̄
j (k)

)]
,

and for any (Ū , p̄) ∈ Tm(UK , pK),

BATi(Ū , v, p̄) =
1∣∣supp(Ū)

∣∣ ∑
j∈supp(Ū)

[
vŪ p̄

(
Sp̄
j (i)

)
−

∑
k∈Ip̄

j (i)

vŪ p̄
(
Sp̄
j (k)

)]
,

it is clear that

BATi(U, v, p) =
1∣∣Tm(UK , pK)

∣∣ ∑
(Ū,p̄)∈Tm(UK ,pK)

BATi(Ū , v, p̄), for any i ∈ K.

Cycle-free component efficiency. Given (U, v, p) ∈ PFN with (U, p) being cycle-free and
K ∈ Cp(U), it is derived that∑

i∈K
BATi(U, v, p) =

∑
i∈K

ATi
(
supp(U), vUp, supp(p)

)
= vUp(K)
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following from the efficiency in Herings et al. [8] of the average tree solution and

BATi(U, v, p) =
1∣∣Tm(UK , pK)

∣∣ ∑
(Ū,p̄)∈Tm(UK ,pK)

ATi
(
supp(Ū), vŪ p̄, supp(p̄)

)
.

Cycle-free component fairness. For any (U, v, p) ∈ PFN with (U, p) being cycle-free and
any K ∈ Cp(U), let the restriction to K of supp(p) be denoted by supp(p)(K). Assume
that supp(p)(K) = L, since if r ∈ K,∑

h∈K

[
vUp

(
SL
r (h)

)
−

∑
k∈IL

r (h)

vUp
(
SL
r (k)

)]
= vUp(K)

holds, we have that if r ∈ Kj ,∑
h∈Ki

[
vUp

(
SL
r (h)

)
−

∑
k∈IL

r (h)

vUp
(
SL
r (k)

)]
= vUp(Ki),

and if r ∈ Ki,∑
h∈Ki

[
vUp

(
SL
r (h)

)
−

∑
k∈IL

r (h)

vUp
(
SL
r (k)

)]
= vUp(K)− vUp(Kj).

Then, ∑
h∈Ki

ATh
(
K, vUp, supp(p)(K)

)
=

1

|K|
∑
r∈K

∑
h∈Ki

[
vUp

(
SL
r (h)

)
−

∑
k∈IL

r (h)

vUp
(
SL
r (k)

)]
=

1

|K|

[
|Kj |vUp(Ki) + |Ki|

(
vUp(K)− vUp(Kj)

)]
.

Because for any h ∈ K, BATh(U, v, p) = ATh
(
K, vUp, supp(p)(K)

)
, for any h ∈ Ki,

BATh(U, v, p−{i,j}) = ATh
(
Ki, vUp, supp(p)(Ki)

)
and for any h ∈ Kj ,

BATh(U, v, p−{i,j}) = ATh
(
Kj , vUp, supp(p)(Kj)

)
, together with the efficiency of the

average tree solution and |Ki|+ |Kj | = |K|, we derive that∑
h∈Ki

[
BATh(U, v, p)−BATh(U, v, p−{i,j})

]
=
∑
h∈Ki

[
ATh

(
K, vUp, supp(p)(K)

)
−ATh

(
Ki, vUp, supp(p)(Ki)

)]
=

1

|K|

[
|Kj |vUp(Ki) + |Ki|

(
vUp(K)− vUp(Kj)

)]
− vUp(Ki)

=
|Ki|
|K|

[
vUp(K)− vUp(Kj)− vUp(Ki)

]
.
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Therefore,

1

|Ki|
∑
h∈Ki

[
BATh(U, v, p)−BATh(U, v, p−{i,j})

]
=

1

|Kj |
∑
h∈Kj

[
BATh(U, v, p)−BATh(U, v, p−{i,j})

]
.

To prove uniqueness, we suppose that Ψ satisfies the bi-average tree property, cycle-
free component efficiency and cycle-free component fairness. In fact, due to the bi-
average tree property and cycle-free component efficiency, we only need to check the
uniqueness of Ψi(U, v, p) for any (U, v, p) ∈ PFN when i ∈ supp(U) and (U, p) is cycle-
free.

Let (U, p) be cycle-free. The cycle-free component efficiency implies that for any
K ∈ Cp(U), ∑

h∈K

Ψh(U, v, p) = vUp(K). (2)

Also, from the cycle-free component efficiency, we derive that∑
h∈Ki

Ψh(U, v, p−{i,j}) = vUp(Ki) and
∑
h∈Kj

Ψh(U, v, p−{i,j}) = vUp(Kj).

Therefore, the cycle-free component fairness can be changed into

1

|Ki|
[ ∑
h∈Ki

Ψh(U, v, p)− vUp(Ki)
]

=
1

|Kj |
[ ∑
h∈Kj

Ψh(U, v, p)− vUp(Kj)
]
. (3)

Since in total there are |supp(U)| equations of type (2) and (3) with |supp(U)| variables
and all the equations are linearly independent, Ψ(U, v, p) is uniquely determined. �

Now we show that these three properties mentioned above are independent.

1. The solution Ψ1 defined, for every (U, v, p) ∈ PFN , by

Ψ1(U, v, p) =

{
BAT (U, v, p), if (U, p) is cycle-free,

0, otherwise

satisfies cycle-free component efficiency and cycle-free component fairness, but not
bi-average tree property.

2. The solution Ψ2 defined, for every (U, v, p) ∈ PFN , by Ψ2(U, v, p) = 0 satis-
fies bi-average tree property and cycle-free component fairness, but not cycle-free
component efficiency.

3. The solution Ψ3 defined, for every (U, v, p) ∈ PFN any K ∈ Cp(U), by

Ψ3
i (U, v, p) =

1∣∣Tm(UK , pK)
∣∣ ∑

(Ū,p̄)∈Tm(UK ,pK)

vŪ p̄(K)

|K|

for any i ∈ K satisfies bi-average tree property and cycle-free component efficiency,
but not cycle-free component fairness.
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Remark 4.6. Jimenez-Losada et al. [9] introduced the fuzzy communication situation,
which supposed that the capacity of the players or their communication can be uncer-
tain, and defined the fuzzy Myerson value. Assuming p(e) is a fuzzy degree of edge e.
The main differences between the bi-average tree solution and the fuzzy Myerson value
are that:

1. The fuzzy Myerson value is defined over the fuzzy communication structures where
the communication level between any two players is limited to be not greater than their
own participation level.

2. The bi-average tree solution focuses on the maximal product spanning trees of the
probabilistic communication structure with fuzzy coalition, where the unique path be-
tween two players is optimal. However, the fuzzy Myerson value considered all possible
communication channels among players.

3. When the probabilistic communication structure with fuzzy coalition is cycle-free,
the bi-average tree solution has the component fairness which says that deleting a link
between two players yields for both resulting components the same average change in
payoff, where the average is taken over the players in the component. However, the fuzzy
Myerson value has the fairness which says that the loss of one bilateral communication
implies the same loss of payment for the players involved in this link.

Compared to the characterizations of probabilistic Myerson values for probabilistic
communication situations studied by Calvo et al. [5] and the average tree solutions for
cycle-free communication situations in [8], the characterization of the bi-average tree
solutions has two important differences.

1. The probabilistic Myerson value in [5] has the fairness, that is, the loss of one bilateral
communication implies the same loss of payment for the players involved in this link.
However, the bi-average tree solution for cycle-free case has the component fairness, that
is, deleting a probabilistic link between two players yields for both resulting components
the same average change in payoff, where the average is taken over the players in the
component.

2. The bi-average tree solution is defined on general probabilistic communication situa-
tions with fuzzy coalition which only focuses on the induced communication structures
with the strongest stability, namely, the maximal product spanning trees and has the
bi-average tree property. However, the average tree solution is defined for cycle-free
communication situations and has no this property.

Proposition 4.7. Given (U, v, p) ∈ PFN with (U, p) being cycle-free. If U = eN ,

(i) BAT (U, v, p) =
∑

L⊆L p
N (L)AT (N, v, L);

(ii) When v is superadditive, BAT (U, v, p) ∈ C(vp).

P r o o f . (i) For any (U, v, p) ∈ PFN with (U, p) being cycle-free and U = eN , it is
apparent that the bi-average tree solution can be axiomatized by cycle-free component
efficiency and cycle-free component fairness. Put f(U, v, p) =

∑
L⊆L p

N (L)AT (N, v, L),
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this part is verified true if we can prove that f(U, v, p) satisfies the cycle-free compo-
nent efficiency and cycle-free component fairness. The final result that BAT (U, v, p) =∑

L⊆L p
N (L)AT (N, v, L) can be seen as a expected value of AT (N, v, L) over all possible

realized L ⊆ L among players N .
(ii) From Herings et al. [8] we know thatAT (N, v, L) ∈ C(vL), namely,

∑
i∈N ATi(N, v, L) =

vL(N) and
∑

i∈S ATi(N, v, L) ≥ vL(S)(∀S ⊆ N) for any cycle-free deterministic com-

munication situation (N, v, L) ∈ CSN if v is superadditive. This implies BAT (U, v, p) ∈
C(vp) following the fact that∑

i∈N
BATi(U, v, p) =

∑
i∈N

∑
L⊆L

pN (L)ATi(N, v, L)

=
∑
L⊆L

pN (L)
∑
i∈N

ATi(N, v, L)

=
∑
L⊆L

pN (L)vL(N)

= vp(N),

and ∑
i∈S

BATi(U, v, p) =
∑
i∈S

∑
L⊆L

pN (L)ATi(N, v, L)

=
∑
L⊆L

pN (L)
∑
i∈S

ATi(N, v, L)

≥
∑
L⊆L

pN (L)vL(S) = vp(S).

The last equality holds because∑
L⊆L

pN (L)vL(S)

=
∑
L⊆L

∏
l∈L

pl
∏

l∈L\L
(1− pl)vL(S)

=
∑

A⊆L(S),B⊆L\L(S)

∏
l∈A

pl
∏

l∈L(S)\A
(1− pl)

∏
l∈B

pl

∏
l∈L\L(S)

(1−pl)∏
l∈B

(1−pl)
vA∪B(S)

=
∑

A⊆L(S)

∏
l∈A

pl
∏

l∈L(S)\A
(1− pl)

∑
B⊆L\L(S)

∏
l∈B

pl

∏
l∈L\L(S)

(1−pl)∏
l∈B

(1−pl)
vA(S)

=
∑

A⊆L(S)

∏
l∈A

pl
∏

l∈L(S)\A
(1− pl)

∑
B⊆L\L(S)

∏
l∈B

pl
∏

l∈(L\L(S))\B
(1− pl)vA(S)

=
∑

A⊆L(S)

∏
l∈A

pl
∏

l∈L(S)\A
(1− pl)vA(S)

= vp(S).

�

Proposition 4.8. Given (U, v, p) ∈ PFN with (U, p) being cycle-free. If v is superad-
ditive and im(p) = {1}, assume that supp(p) = L and define a fuzzy cooperative game

(U, ṽL) with ṽL(US) = vUp(S) for any S ⊆ N , then BAT (U, v, L) ∈ C̃(ṽL)(U).

P r o o f . Under the condition of this proposition, we know that AT (N, vL([U ]hk
), L) ∈

C(vL([U ]hk
)) from Herings et al. [8], i. e.,

∑
i∈N ATi(N, v

L([U ]hk
), L) = vL([U ]hk

)(N) and∑
i∈S ATi(N, v

L([U ]hk
), L) ≥ vL([U ]hk

)(S). Then, we have that
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∑
i∈N

BATi(U, v, p) =
q(U)∑
k=1

[hk − hk−1]
∑
i∈N

ATi(N, v
L([U ]hk

), L)

=
q(U)∑
k=1

[hk − hk−1]vL([U ]hk
)(N) = vUp(N) = ṽL(U)

and for any T ⊆ N ,

∑
i∈supp(UT )

BATi(U, v, p) =
q(U)∑
k=1

[hk − hk−1]
∑

i∈supp(UT )

ATi(N, v
L([U ]hk

), L)

≥
q(U)∑
k=1

[hk − hk−1]vL([U ]hk
)
(
supp(UT )

)
= vUp(T ) = ṽL(UT ).

Therefore, BAT (U, v, L) ∈ C̃(ṽL)(U). �

Example 4.9. Suppose that there are four cities N = {1, 2, 3, 4} ready to transport
natural gas by pipelines to benefit the local residents. Certainly, at the same period
there may also have other issues for each city to contribute a part of their abilities
and resources, so the true levels of their participation in this project cooperation about
natural gas are less that 1. Let we assume that they are 0.4, 0.7, 0.3 and 0.5 respectively.

Now, for the purpose of reducing the construction costs of pipelines, these four cities
plan to negotiate together about the joint cooperation. Let p : L(N) → [0, 1] be a
probabilistic function with p({i, j}) being the probability that cities i and j prefer to
reach an agreement on building a pipeline through them, where p

(
{1, 2}

)
= p
(
{2, 3}

)
=

0.3, p
(
{1, 3}

)
= 0.4, p

(
{1, 4}

)
= 0.6 and p

(
{2, 4}

)
= p

(
{3, 4}

)
= 0. This scenario can

be described by a probabilistic communication structure with fuzzy coalition (U, p) as
listed in Figure 1. In order to try to promote cooperation each other, every of cities
is rational to select the strongest connection channel to communicate with others and
then the final potential network structures, namely the maximal product spanning trees
(U, p̄) and (U, ¯̄p) of (U, p) shown in Figure 2 are builded.

Given a cooperative game v ∈ GN with the characteristic function v(S) = 10000|S|
for any S ⊆ N representing the cost savings of cities that would result from cooperation
between the cities of S instead of acting alone if they contribute all their capacities. For
this probabilistic communication situation with fuzzy coalition (U, v, p), we are devoted
to allocate the cost savings among four cities. First, we calculate the restricted game
vUp̄ corresponding to (U, p̄),

vUp̄
(
{1, 2, 3}

)
= 4440, vUp̄

(
{1, 2, 4}

)
= 6840,

vUp̄
(
{1, 3, 4}

)
= 6480, vUp̄

(
{1, 2, 3, 4}

)
= 8016.

and vU ¯̄p corresponding to (U, ¯̄p),

vU ¯̄p
(
{1, 4}

)
= 4800, vU ¯̄p

(
{2, 3}

)
= 1800,

vU ¯̄p
(
{1, 2, 3}

)
= 2880, vU ¯̄p

(
{1, 3, 4}

)
= 6480, vU ¯̄p

(
{1, 2, 3, 4}

)
= 7500.
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Eventually, since the network structure (U, p̄) or (U, ¯̄p) are formed with the equal possi-
bility of 1

2 , it is derived that

BAT (U, v, p̄) = (4095, 255, 1995, 1155),

BAT (U, v, ¯̄p) = (6444, 384, 294, 1893)

and further, the allocation of savings for these four cities is

BAT (U, v, p) =
1

2

[
BAT (U, v, p̄) +BAT (U, v, ¯̄p)

]
= (5269.5, 319.5, 1144.5, 1524).

In this example, in order to save construction cost as much as possible while benefiting
residents, four cities choose to build the shortest pipelines which cover all cities by con-
sidering the stability of generated communication structure among them. So, naturally
the communication channels (U, p̄) and (U, ¯̄p) corresponding to the maximal spanning
trees of (U, p) are the optimal choice for four cities.

5. CONCLUSIONS

Compared to the previous probabilistic communication situation proposed by Calvo et al.
[5], in this paper we have considered a more general framework, called the probabilistic
communication situation with fuzzy coalition, in which every of players is permitted to
join in a cooperation with some participation level.

A maximal product spanning tree, reflecting the most likely way to communicate
among the players, is introduced where the unique path from one player to another is
optimal. We provide a feasible procedure to find the maximal product spanning trees.
Assume that each player is rational enough to select an optimal path to communicate
with others, a solution concept in terms of the average tree solution is given and axiom-
atized by defining a restricted game in Choquet integral form.

Our new model has showed its prospect in solving real allocation problems along with
the uncertainty of players’ participation degrees and mutual communication. Other
solution concepts for probabilistic communication situations with fuzzy coalition still
need further research.
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communication structures with Choquet players. Europ. J. Oper. Res. 207 (2010), 836–
847. DOI:10.1016/j.ejor.2010.06.014

[10] X. Li, H. Sun, and D Hou: On the position value for communication situations with
fuzzy coalition. J. Intell. Fuzzy Systems 33 (2017), 113–124. DOI:10.3233/jifs-16117

[11] R. B. Myerson: Graphs and cooperation in games. Mathematics of Operations Research
2 (1977), 225–229. DOI:10.1287/moor.2.3.225

[12] M. Tsurumi, T. Tanino, and M. Inuiguchi: A Shapley function on a class of coop-
erative fuzzy games. Europ. J. Oper. Res. 129 (2001), 596–618. DOI:10.1016/s0377-
2217(99)00471-3

[13] X. Yu, and Q. Zhang: The fuzzy core in games with fuzzy coalitions. J. Computat. Appl.
Math. 230 (2009), 173–186. DOI:10.1016/j.cam.2008.11.004

[14] G. Xu, X. Li, H. Sun, and J. Su: The Myerson value for cooperative games on com-
munication structure with fuzzy coalition. J. Intell. Fuzzy Systems 33 (2017), 27–39.
DOI:10.3233/jifs-16080

Xianghui Li, Department of Applied Mathematics, Northwestern Polytechnical Univer-
sity, Xi’an, Shaanxi 710072. P. R. China.

e-mail: xianghuili@mail.nwpu.edu.cn

Hao Sun, Corresponding author, Department of Applied Mathematics, Northwestern
Polytechnical University, Xi’an, Shaanxi 710072. P. R. China.

e-mail: hsun@nwpu.edu.cn

Dongshuang Hou, Department of Applied Mathematics, Northwestern Polytechnical Uni-
versity, Xi’an, Shaanxi 710072. P R. China.

e-mail: dshhou@126.com

http://dx.doi.org/10.1137/0405023
http://dx.doi.org/10.1016/0165-0114(80)90064-0
http://dx.doi.org/10.1016/s0165-4896(98)00013-4
http://dx.doi.org/10.1016/j.fss.2014.09.002
http://dx.doi.org/10.1016/j.ejor.2007.06.040
http://dx.doi.org/10.1016/j.geb.2007.03.007
http://dx.doi.org/10.1016/j.ejor.2010.06.014
http://dx.doi.org/10.3233/jifs-16117
http://dx.doi.org/10.1287/moor.2.3.225
http://dx.doi.org/10.1016/s0377-2217(99)00471-3
http://dx.doi.org/10.1016/s0377-2217(99)00471-3
http://dx.doi.org/10.1016/j.cam.2008.11.004
http://dx.doi.org/10.3233/jifs-16080

		webmaster@dml.cz
	2020-02-27T15:39:30+0100
	CZ
	DML-CZ attests to the accuracy and integrity of this document




