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Abstract. We classify tetravalent G-half-arc-transitive graphs I' of order p%q?, where
G < AutT and p, g are distinct odd primes. This result involves a subclass of tetravalent
half-arc-transitive graphs of cube-free order.
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1. INTRODUCTION

Throughout the paper, graphs considered are simple, connected and undirected.
For a graph I', we denote by VT, ET, AT, AutT" and val(T") the vertex set, edge set,
arc set, full automorphism group and the valency of I, respectively. A graph I is
G-vertex-transitive, G-edge-transitive or G-arc-transitive if G < AutT is transitive
on VI, ET or AT, respectively, and T' is G-half-arc-transitive if G < AutT' acts
transitively on VT and ET, but not on AI'; in particular, when G = AutI' then
T is said to be wvertex-transitive, edge-transitive, arc-transitive or half-arc-transitive,
respectively. A graph I' is a Cayley graph if there exists a group G and a subset
S C Gwithl g S =S8"1:={g7': g € S} such that the vertices of ' may
be identified with the elements of G in such a way that x is adjacent to y if and
only if yz=! € S. The Cayley graph I' is denoted by Cay(G,S). A Cayley graph
I' = Cay(G, S) is connected if and only if G = (S), that is, S generates G. Let
A = AutT and Aut(G,S) = {a € Aut(G): S* = S}. For each g € G, let R(g)
denote the permutation on G defined by x — xg. Then A contains the right regular
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representation R(G) := {R(g): g € G} of G, which is regular on VT, and the group
Aut(G, S) is a subgroup of the stabilizer of 1 in A. A Cayley graph Cay(G, S) is said
to be X-normal if X < A contains R(G) as a normal subgroup; in particular, when
G = AutT then I is said to be normal.

Let G be a group, N a normal subgroup and H a subgroup of G. Then we
use Aut(G), Out(G), Z(G), G/N, Ce(H) and Ng(H) to denote the automorphism
group, outer automorphism group, the center, quotient group of G, the centralizer
and the normalizer of H in G, respectively. Let M and N be two groups. Then we
use M : N, M x N and M - N to denote a semidirect product, direct product and
an extension of M by N. For a positive integer n, we denote by Z,,, Da,,, A,, and S,,
the cyclic group of order n, the dihedral group of order 2n, the alternating group
and the symmetric group of degree n, respectively.

The investigation of half-arc-transitive graphs was initiated by Tutte, see [25], and
he proved that a vertex- and edge-transitive graph with odd valency must be arc-
transitive. In 1970, Bouwer constructed the first family of half-arc-transitive graphs
in [2]. From then on, half-arc-transitive graphs have been extensively studied over
decades and more such graphs were constructed, see for example [1], [7], [8], [9],
[12], [13] [16], [19], [24] [26], [27], [28], [29], [30], [32]. In particular, it is proved
that for a prime p there is no tetravalent half-arc-transitive graph of order p, p?,
2p and 2p?, see [4], [5], [28]. The half-arc-transitive graphs of order 3p and 4p are
classified in [1], [16], respectively. The tetravalent half-arc-transitive graphs of order
p3, p* and 2pq are classified in [8], [9], [32], respectively. Recently, Pan et al. in [21]
classified tetravalent edge-transitive graphs of order p?q. Wang et al. in [30] studied
tetravalent half-arc-transitive graphs of order a product of three primes.

In this paper, we will study tetravalent half-arc-transitive graphs of order p?q?
with p, ¢ distinct odd primes. The main result of the paper is the following theorem:

Theorem 1.1. Let I' be a tetravalent G-half-arc-transitive graph of order p?q?,
where G < AutD' and p, q are distinct odd primes. Then one of the following
statements holds:

(1) G is soluble, ' = Cay(H, S) is a G-normal Cayley graph, G1 < 73 and S =
{a,a”,a™1,(a=1)7}, where a € H, and 7 € Aut(H) is an involution.
(2) G is insoluble, and one of the following holds:
(1) [VI|=2250r44l, G = FxAs = ZpqxAs or Z,; xPSL(2,7), and |G| = 4

or§;
(ii) |VT| = 225 or 441, and soc(G) = AZ or PSL(2,7)2, where soc(G) is the
socle of G.
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2. PRELIMINARY RESULTS

In this section, we will give some necessary preliminary results. The next lemma
deals with a basic group-theoretic result.

Lemma 2.1 ([14], Theorem 4.5). Let H be a subgroup of a group G. Then Cq(H)
is a normal subgroup of Ng(H), and the quotient Ng(H)/Cq(H) is isomorphic to
a subgroup of Aut(H).

For a graph I" and a positive integer s, an s-arc of I' is a sequence (ag, a1, ..., as)
of vertices such that a;_1, «; are adjacent for 1 < i < s and a;—1 # ;41 for
1 <i< s—1. A graph T is said to be (G, s)-arc-transitive, where G < AutT,
if G is transitive on the set of s-arcs of I'. If T is (G, s)-arc-transitive but not
(G, s + 1)-arc-transitive, then T' is called a (G, s)-transitive graph. In particular,
when (G, s) = (AutT, s) then I is simply called an s-transitive graph. The following
result characterizes the vertex stabilizers of tetravalent edge-transitive graphs of odd
order.

Lemma 2.2. Let I" be a tetravalent G-edge-transitive graph of odd order, where
G < Autl. Let o € VT and {a, 5} € ET'. Then either
(1) G4 is a 2-group, and T is G-half-arc-transitive; or
(2) T is (G, s)-transitive with 1 < s < 3. Furthermore, the pair (s, G,,) satisfies the
following Table 1:

s Go

1 2-group

2 Ay <Gy <5y

3 AsxZ3< Gy <SyxSs
Table 1.

Proof. Assume that I' is G-arc-transitive. Then the part (2) can be easily
derived from [18], Lemma 2.5. Assume that I' is not G-arc-transitive. Note that |[VT|
is odd, so I is G-vertex-transitive. It follows that I" is G-half-arc-transitive. By [17],
Lemma 2.1, Go® < S, is a {2,3}-group. If 3 ‘ |G£(a)|, then Go'™ = A4 or Sy. It
follows that G, is transitive on I'(«), and so I' is G-arc-transitive, a contradiction.
Thus G, is a 2-group. This completes the proof of this lemma. O

By [3], page 337, Table 8.1, we give the soluble maximal subgroups of GL(2,p) in

the following lemma.

Lemma 2.3. Let M be a soluble maximal subgroup of GL(2,p). Then M is
isomorphic to one of the following groups:
(1) Zp—1 x (Zp: Zp—1);
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(2) Zpe_q: Zy;
(3) Zp—111Zs;
(4) 2-Sy4.

By [21], we have the following lemma regarding the tetravalent edge-transitive
graph with odd but not a prime power order.

Lemma 2.4 ([21], Lemma 4.3). Let I be a tetravalent G-edge-transitive graph
with odd but not a prime power order, where G < AutI'. Suppose that N is a nilpo-
tent normal subgroup of G. Then N is semiregular on VT

For a group G, the largest nilpotent normal subgroup of G is called the Fitting
subgroup of G.

Lemma 2.5 ([23], page 30, Corollary). Let F' be the Fitting subgroup of
a group G. If G is soluble, then F' # 1 and the centralizer Cq(F) < F.

The next two lemmas give a characterization and classification for the tetravalent
edge-transitive graphs of order p?q with p, ¢ distinct odd primes.

Lemma 2.6 ([30], Lemma 3.3). Let p, ¢ be distinct odd primes and I a tetravalent
half-arc-transitive graph of order p?>q. Then T is a normal Cayley graph.

Lemma 2.7 ([21], Theorem 5.3). Let I' be a tetravalent G-edge-transitive graph
of order p*q, where G < AutT and p, q are distinct odd primes. Then one of the
following statements holds:

(1) T is of order 45, 63, 75 or 147, given in [31]. In particular, there are exactly
17 pairwise nonisomorphic graphs in this case;

R

(2) T = Gis53 is a tetravalent arc-transitive graph of order 153 with AutT' =
PSL(2,17);
(3) T = Cay(H, S) is a G-normal edge-transitive Cayley graph, and either
(i) T is (G,1)-transitive, and S = {a,a",a"z,a”3}, where o € Aut(H) is of
order 4; or
(i) G1 < Z3 and S = {a,a",a™ ', (a=1)7}, where T € Aut(H) is an involution.

Remark on Lemma 2.7. For the cases (1) and (2), G is insoluble; and for the
case (3), G is soluble.

For a tetravalent G-edge-transitive graph I' of odd order, where G < Autl is
a insoluble group, we have the following lemma.

Lemma 2.8 ([21], Corollary 2.4). Let I' be a tetravalent G-edge-transitive graph
of odd order, where G < AutD'. If G is insoluble, then I' is not a G-normal edge-
transitive Cayley graph.
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Let G be a finite group and let 7(G) = {p: p is a prime divisor of |G|}. Herzog
in [11] and Huppert et al. in [15] classified nonabelian finite simple groups G for
|7(G)| = 3, from which we may deduce the following lemma.

Lemma 2.9. Let G be a nonabelian simple group, if |7(G)| = 3. Then
(G,|G|,Out(Q@)) lies in Table 2:

G |G| Out(G) G |G| Out(G)

As 22.3-5 Z Ag 23.32.5 73
PSp(4,3) 26.3%5 Zs PSL(2,7) 23.3.7 Zs
PSL(2,8)  23:32.7 Zs PSL(2,17) 2%.32.17 Z
PSL(3,3) 243313 Zs PSU(3,3) 2537 Zs

Table 2. Nonabelian simple {2, ¢, p}-groups

Regarding the Cayley graph I' = Cay(G, S), we have the following basic result.

Lemma 2.10 ([10], Lemma 2.1). Let I' = Cay(G, S) be a Cayley graph. Then
the normalizer Na,:r(G) = G : Aut(G, 9).

Lemma 2.11 ([21], Lemma 2.10). Let G < Sym(2) be a transitive permutation

group on 2, and let p™ be a divisor of |a%|, where a € Q and p is a prime. If G
has a subgroup H such that (p,|G : H|) = 1, then p™ divides |af!|. In particular, if

(19,|G : H|) =1, then H is transitive on Q.

Let T be a vertex-transitive graph, and let NV be a subgroup of AutI'. Denote
by I' v the quotient graph corresponding to the orbits of N, that is, the graph having
the orbits of N as vertices with two orbits adjacent in I'y if there is an edge in I’
between those orbits. Let B be the set of N-orbits on VI'. If for any adjacent
orbits B, C' of N, the induced subgraph [B,C] of T' is regular, then T" is called
a multi-cover of I'y. If in addition [B, C] is of valency 1, then I" is called a normal
cover of I'y.

Lemma 2.12. LetI" be a connected G-half-arc-transitive graph, where G < AutT.
Let N < G and let N have more than two orbits on VI'. Then I' is a multi-cover
of Ty, and G/K < AutTy, where K is the kernel of the action of the set of N-orbits
on VI'. If [T'(a) N B| =0 or 1 for any N-orbit B and o € VI'\ B, then the following
statements hold:

(1) G/N < AutT'y;
(2) T is a normal cover of T'y;
(3) 'y is a G/N-half-arc-transitive graph.
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Proof. Let B be the set of N-orbits on VT and let K be the kernel of the action
of G on B. Obviuosly, N < K. Since N < G, it is easy to show that the induced
subgraph [B, C] of " is regular for any adjacent orbits B, C'. Hence I is a multi-cover
or a normal cover of I'y and G/K < AutT'y

Suppose that |[['(a) N B’| = 1, where B’ is an N-orbit on VT. Since N is transitive
on B and B’, it follows that the subgraph [B, B’] is a perfect matching and so T
and I'y have the same valency. It then follows that I" is a normal cover of I'y. For
a € VT, the stabilizer K, fixes each member of B setwise, and since distinct vertices
of I'(«) lie in distinct N-orbits, we have that K, acts trivially on I'(a). Since I is
connected it follows that K, fixes all the vertices of I', and hence K, = 1. Since this
is true for all a, K acts semiregularly on VT', and hence so does N. Furthermore,
as N < K and acts transitively on the orbits of K, we see that K = N. Thus
GYI'v =2 G/N and so G/N < AutT'y.

For any (a, f), (v,9) € AT, we have (oV, BN), (vV,6V) € AT'y, where a, 3,7, 6 €
VT. If I'y is G/N-arc-transitive, then we have g € G such that (o) = a9V =N
and (BN)9 = BIN = V. Tt then follows that (a,B)? = (y™,6"2) for some
ni,n2 € N. And for (y",6™2),(v,0) € AT, we have n € N such that (y",6™)" =
(7,9). Hence (a, 8)9" = (v,0). Thus I' is G-arc-transitive, a contradiction. So I'y
is G/N-half-arc-transitive. O

For the tetravalent normal half-arc-transitive Cayley graphs, the following propo-

sition gives a general construction.

Proposition 2.13. Let I' = Cay(H, S) be a tetravalent G-half-arc-transitive Cay-
ley graph of order p?q?, where p, q are distinct odd primes. Let 1 denote the vertex
of T corresponding to the identity element of H. Assume that H < G. Then G; < 73
and S = {a,a”,a" !, (a7')"}, where T € Aut(H) is an involution.

Proof. By Lemma 2.10, G; < Aut(H,S). Since I" is connected, H = (S) and
then G acts faithfully on I'(1) = S, which implies G; < S4. Since G is a 2-group,
G1 <Ds. Let a € S. If G; > (0) = Z4, then (o) is regular on S. Hence I' is G-arc-
transitive, a contradiction. Thus G; < 73. Since I is a G-normal half-arc-transitive
Cayley graph, S = T~*UT by [22], Proposition 1, where T is an orbit of the action
of G1 on S. So there exists an involution 7 € G such that a” # a or a~'; it follows
that S = {a,a™,a™ !, (a™1)7}. O

By Proposition 2.13, more specific constructions of the graph I' = Cay(H, S) de-
pend on the automorphism group of the group H.
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3. PrOOF OF THEOREM 1.1

Let I be a tetravalent G-half-arc-transitive graph of order p?¢?, where G' < AutT’
and p, q are distinct odd primes. Let a € VI'. By Lemma 2.2, G, is a 2-group, and
hence G is a {2, p, ¢}-group. Obviously, G has no nontrivial normal 2-subgroup.

Now we first consider the case when G is soluble.

Lemma 3.1. If G is soluble, then I is a G-normal Cayley graph.

Proof. Since G, is a 2-group, |G| = 2ip?¢? for some positive integer i. Let F
be the Fitting subgroup of G. By Lemma 2.5, F # 1, C¢(F) < F. In particular,
F = V,(G) x V4(G), where V,,(G) and V4(G) are the largest normal p-subgroup and
g-subgroup of G, respectively. Therefore, F' is abelian and C(F) = F. Now F is
semiregular on VI and hence |F| | p2q2.

Assume F' = 7,. Then by Lemma 2.1 G/F < Aut(F) = Z,_4, it follows that
p? 1 |G|, which is not possible. Similarly, we can exclude the cases F = 7, and Z,,.

Assume |F| = p?. Then we consider the quotient graph I', induced by F. Let K
be the kernel of G acting on VI'p. By Lemma 2.12, G/K < AutT'p and K = F : K.
Suppose that val(I'r) = 4. Again by Lemma 2.12, we obtain that X = F and T
is a normal cover of I'rp. So I'r is a G/F-half-arc-transitive graph of order ¢ If
F = 7,2, then G/F < Aut(F) is abelian. Thus G/F is regular on VI'p, which is
not possible. So F = 72, and G/F < Aut(F) = GL(2,p). Note that G/F is soluble,
G/F is one of subgroups listed in Lemma 2.3. We consider the candidates one by one.

(1) Suppose that G/F < Zp_1x(Zp : Zp—1). Since pt |G/F|, hence G/F = Z;xZ,,
for some I, m | p — 1, which is not possible.

(2) Suppose that G/F < Z,2_4 : Z5. Then G/F = 7, : 7, for some k | p—1
and ¢2 | k. Let Q be a Sylow g-subgroup of G/F. Then |Q| = ¢®> and Q < G/F.
Therefore, G has a normal subgroup isomorphic to F' - ) which is regular on VT.
That is to say I' is a G-normal Cayley graph in this case.

(3) Suppose that G/F < Z,1Zs. Then G/F = (Z; x Z;) : Z for some t | p—1
and ¢ | t. Similarly, the Sylow g-subgroup @ of G/F is normal, and G has a normal
subgroup isomorphic to F'- () which is regular on VI'. Therefore I" is also a G-normal
Cayley graph.

(4) Suppose that G/F < 2-S4. Obviously, this is not possible since ¢* t |G/F|.
Now we consider the case val(I'r) = 2. Then I'p := {By, Ba,..., B} is a cycle of
length ¢2, where B; is adjacent to B;;; in I'p for 1 < i < ¢® — 1, so the induced
subgraph [B;, Bi11] is a cycle of length 2p?. This implies that K, < Z2, K = F or
F:75,and G < K - Autl'p = K - Dyg2. It follows that G has a normal Hall {p, ¢}-
subgroup which is regular on I', hence I' is a G-normal Cayley graph. Similarly, I' is
also a G-normal Cayley graph when |F| = ¢%.
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Assume |F| = p?q. Then G/K < Autl'p, where K is the kernel of G acting
on VI'p. If val(T'r) = 4, then K = F and I'r is G/F half-arc-transitive of order g.
Note that G/F is soluble. It follows that G/F < Z, : Z,—1 from [6], Corollary 3.5B.
Thus G has a normal subgroup isomorphic to F'- Z, which is regular on VI'. So I is
a G-normal half-arc-transitive Cayley graph. For val(I'r) = 2, K, < Z2, K = F or
F :7Z5,and G < K -AutT'p = K - Dy,. It follows that G has a normal Hall-{p, ¢}-
subgroup which is regular on I', hence I' is a G-normal Cayley graph. Similarly, I' is
also a G-normal Cayley graph when |F| = pq®.

Finally, assume |F| = p?¢®. Then F is regular on VT, and so I' is a G-normal
Cayley graph on F. O

Next we consider the case when G is insoluble.

Lemma 3.2. Let M be the radical of G, and let F' be the Fitting subgroup of M.
If G is insoluble, then one of the following statements holds:
(1) M #1,F = 7,, |[VT| =225 or 441, G = F x Ay = Zpy X A5 or Zpy x PSL(2,7),
and |G| =4 or 8;
(2) M =1 and soc(G) = A5, Ag, PSL(2,7), PSL(2,8),PSL(2,17), A2 or PSL(2,7)%.

Proof. Let N be the socle of G, that is, the product of all minimal normal
subgroups of G. Let M be the radical of G, that is, the largest normal soluble
subgroup of G. And let |G| = 2/p?q? for some integer i.

Case 1. Assume M # 1. Let F be the Fitting subgroup of M. Then F < G
and F' # 1 by Lemma 2.5. We consider I'p. Let K be the kernel of G acting
on VI'p. Then K = FK,, and hence K is soluble as K, is soluble by Lemma 2.2.
If val(Tp) = 2, then I'p is a cycle and G/K < AutT'p = Dy, where m = |VTp|.
So G is soluble, which is a contradiction. Thus, val(I'r) = 4. Then K = F and
G/F < AutT'p. Further, by Lemma 2.4, F' is semiregular on VI' and hence |F|
divides p?¢®. Suppose |F| = p?¢?, then T is a G-normal half-arc-transitive Cayley
graph of F', which is not possible by Lemma 2.8.

Suppose |F| = p?. Then I'r is a tetravalent G/F-half-arc-transitive graph of
order ¢2. If ¢ > 5, then we obtain a contradiction by [21], Lemma 4.2. If ¢ = 3
then I'r is an edge-transitive graph of order 9. By [20], 'y = DW (3, 3) is a deleted
wreath graph, and AutT'p = 72 - Dg. It follows that G is soluble, a contradiction.
Similarly, we can exclude the case |F| = ¢*.

Suppose |F| = pg?. Then I'r is a tetravalent G/F-half-arc-transitive graph of
order p. Since |VI'p| = p, G/F is almost simple and 2-transitive on VI'p by [6],
page 99. It follows that I'p = K,. Since val(I'p) =4, p="5. As G/F < AutKs = S35
is insoluble, we have G = F' - A5 or F' - Sg, and so 3 ‘ |G, which is a contradiction
by Lemma 2.2. Similarly, we can exclude the case |F| = p%q.
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Suppose |F| = pq. Then T'p is a tetravalent G/F-half-arc-transitive graph of
order pg. But by [1], [26], there is no tetravalent edge-transitive graph of order pq
which is half-arc-transitive, so I'p is arc-transitive. It follows that (pq, T'r, AutT'p,
(AutT'p)s) satisfies Table 1 in [21], Lemma 2.6, where @ € VI'p. We first consider
rows 1-2 of Table 1. If pg = 15 or 21, then |[VT'| =225 or 441, G = F'x A5 = Zpg X A5
or Z,qxPSL(2,7), and |G| = 4 or 8, respectively. For rows 3-5 of Table 1. If pg = 35
as in row 3, then G/F < AutT'r = S7. Note that G/F is insoluble, and since G/F
is edge-transitive on VI'g, 70 ‘ |G/F|, we conclude that G/F > A;. It follows that
|G| > |F||A7|, and so 3 ‘ |G|, which is a contradiction by Lemma 2.2. Similarly, we
can also exclude the cases where pg = 55 or 253, as in rows 4 or 5, respectively.

Finally, suppose |F| = p. Then I'r is a tetravalent G/ F-half-arc-transitive Cayley
graph of order pg?. It follows that AutI'r is half arc-transitive or arc-transitive
on I'r. For convenience, we say I'r = Cay(R, S), where |R| = pg®. If AutTr is half
arc-transitive on I'p; then R < AutI'p by Lemma 2.6. That is, I'r = Cay(R, S) is
a normal edge transitive Cayley graph. Noting that G is insoluble, I'p is not normal
edge transitive by Lemma 2.8. A contradiction occurs. If AutT'g is arc-transitive
on I'r, by checking the tetravalent edge-transitive graphs of order pg? in Lemma 2.7,
then I'r = Gis3 and AutT'p = PSL(2,17). It follows that G = F - PSL(2,17) =
F x PSL(2,17). But there exists no tetravalent half arc-transitive graph of order
32 .17? admitting G as a graph automorphism group by simple computing.

Case 2. Assume M = 1. Then each nontrivial normal subgroup of G is insoluble.
Let soc(G) = My x ... x My, where M; (1 <4 < s) are all minimal normal subgroups
of G. Suppose that My = Tg’“ , where T}, is a nonabelian simple group and 1 < k < s.
Since G, is a 2-group, N is a {2,p, ¢}-group. By Lemma 2.9, soc(G) = Aj, Ag,
PSL(2,7), PSL(2,8), PSL(2,17), A% or PSL(2,7)2. O

Proof of Theorem 1.1. Let I' be G-half-arc-transitive. If G is soluble, then, by
Lemma 3.1, I is a G-normal half-arc-transitive Cayley graph. Combining Proposi-
tion 2.13, we complete the proof of part (1) in Theorem 1.1.

Suppose that G is insoluble. Let soc(G) = Aj, Ag, PSL(2,7), PSL(2,8),
PSL(2,17), AZ or PSL(2,7)%2. Let a € VI. Then |G| = |Ga| - p?¢®. If N :=
soc(G) = As, then G = Aj or S5. Since |[A5| = 22-3-5and [S5| = 22-3-5, p’¢* 1 |G].
Similarly, we can exclude the cases N = Ag, PSL(2,7), PSL(2,8) and PSL(2,17).

If N = AZ, then |[N| = 2%.3%2.5% Since |N| | |Gl - p?¢® and G, is a 2-group,
(p*’¢?,|G : N|) = 1. By Lemma 2.11, N is transitive on VI. So |N : N,| = 32 - 52,
that is, |[VT| = 225. Similarly, we can obtain that |[VT| = 441 when N = PSL(2,7)%.
Apply Lemma 3.2 (1), we complete the proof of part (2) in Theorem 1.1. O
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