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1

Lightlike hypersurfaces of an indefinite Kaehler
manifold of a quasi-constant curvature

Dae Ho Jin, Jae Won Lee

Abstract. We study lightlike hypersurfaces M of an indefinite Kaehler
manifold M̄ of quasi-constant curvature subject to the condition that the
characteristic vector field ζ of M̄ is tangent to M . First, we provide a new
result for such a lightlike hypersurface. Next, we investigate such a lightlike
hypersurface M of M̄ such that
(1) the screen distribution S(TM) is totally umbilical or
(2) M is screen conformal.

1 Introduction
In the classical theory of Riemannian geometry, Chen-Yano [2] introduced the
notion of a Riemannian manifold of a quasi-constant curvature as a Riemannian
manifold (M̄, ḡ) endowed with a curvature tensor R̄ satisfying

R̄(X̄, Ȳ )Z̄ = f1

{
ḡ(Ȳ , Z̄)X̄ − ḡ(X̄, Z̄)Ȳ

}
+ f2

{
θ(Ȳ )θ(Z̄)X̄ − θ(X̄)θ(Z̄)Ȳ + ḡ(Ȳ , Z̄)θ(X̄)ζ − ḡ(X̄, Z̄)θ(Ȳ )ζ

}
, (1)

where f1 and f2 are smooth functions which are called the curvature functions, ζ is
a vector field which is called the characteristic vector field of M̄ , and θ is a 1-form
associated with ζ by θ(X) = ḡ(X, ζ). In the followings, we denote by X̄, Ȳ and Z̄
the smooth vector fields on M̄ . If f2 = 0, then M̄ is reduced to a space of constant
curvature.
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In this paper, we study lightlike hypersurfaces M of an indefinite Kaehler mani-
fold M̄ of quasi-constant curvature subject such that ζ is tangent to M . After then,
under the condition that ζ is tangent to M , we investigate lightlike hypersurfaces
M of M̄ such that

(1) the screen distribution S(TM) of M is totally umbilical in M or

(2) M is screen conformal.

2 Preliminaries
Let (M, g) be a lightlike hypersurface, with a screen distribution S(TM), of a semi-
Riemannian manifold M̄ . Denote by F (M) the algebra of smooth functions on M
and by Γ(E) the F (M) module of smooth sections of a vector bundle E. Also
denote by (8)i the i-th equation of (8). We use same notations for any others. We
follow Duggal-Bejancu [3] for notations and structure equations used in this article.
It is well known that

TM = TM⊥ ⊕orth S(TM),

where ⊕orth denotes the orthogonal direct sum. For any null section ξ of TM⊥ on
a coordinate neighborhood U ⊂M , there exists a unique null section N of a unique
lightlike vector bundle tr(TM) of rank 1 in the orthogonal complement S(TM)⊥

of S(TM) in M̄ satisfying

ḡ(ξ,N) = 1, ḡ(N,N) = ḡ(N,X) = 0, ∀X ∈ Γ(S(TM)).

Then the tangent bundle TM̄ of M̄ is decomposed as follow

TM̄ = TM ⊕ tr(TM) = {TM⊥ ⊕ tr(TM)} ⊕orth S(TM).

We call tr(TM) and N the transversal vector bundle and the null transversal vector
field of M with respect to S(TM), respectively.

Let ∇̄ be the Levi-Civita connection of M̄ and P the projection morphism of
TM on S(TM). In the sequel, denote by X, Y , Z and W the smooth vector fields
on M , unless otherwise specified. The local Gauss and Weingartan formulae for M
and S(TM) are given respectively by

∇̄XY = ∇XY +B(X,Y )N, (2)

∇̄XN = −ANX + τ(X)N, (3)

∇XPY = ∇∗XPY + C(X,PY )ξ, (4)

∇Xξ = −A∗ξX − τ(X)ξ, (5)

where ∇ and ∇∗ are the liner connections on TM and S(TM), respectively, B and
C are the local second fundamental forms on TM and S(TM), respectively, AN
and A∗ξ are the shape operators and τ is a 1-form on TM .

Since ∇̄ is torsion-free, ∇ is also torsion-free and B is symmetric. As B(X,Y ) =
ḡ(∇̄XY, ξ), B is independent of the choice of S(TM) and

B(X, ξ) = 0. (6)
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The induced connection ∇ of M is not metric and satisfies

(∇Xg)(Y,Z) = B(X,Y )η(Z) +B(X,Z)η(Y ), (7)

where η is a 1-form such that η(X) = ḡ(X,N). But ∇∗ is metric. The above local
second fundamental forms are related to their shape operators by

B(X,Y ) = g(A∗ξX,Y ), ḡ(A∗ξX,N) = 0, (8)

C(X,PY ) = g(ANX,PY ), ḡ(ANX,N) = 0. (9)

From (8), A∗ξ is S(TM)-valued and self-adjoint on TM such that

A∗ξξ = 0. (10)

Denote by R̄, R and R∗ the curvature tensors of the connections ∇̄,∇ and ∇∗,
respectively. Using (2)–(5), we obtain the Gauss-Codazzi equations:

R̄(X,Y )Z = R(X,Y )Z +B(X,Z)ANY −B(Y, Z)ANX

+
{

(∇XB)(Y,Z)− (∇YB)(X,Z) + τ(X)B(Y,Z)− τ(Y )B(X,Z)
}
N, (11)

R̄(X,Y )N = −∇X(ANY ) +∇Y (ANX) +AN [X,Y ]

+ τ(X)ANY − τ(Y )ANX +
{
B(Y,ANX)−B(X,ANY ) + 2dτ(X,Y )

}
N, (12)

R(X,Y )PZ = R∗(X,Y )PZ + C(X,PZ)A∗ξY − C(Y, PZ)A∗ξX

+
{

(∇XC)(Y, PZ)− (∇Y C)(X,PZ) + τ(Y )C(X,PZ)− τ(X)C(Y, PZ)
}
ξ, (13)

R(X,Y )ξ = −∇∗X(A∗ξY ) +∇∗Y (A∗ξX) +A∗ξ [X,Y ]− τ(X)A∗ξY + τ(Y )A∗ξX

+
{
C(Y,A∗ξX)− C(X,A∗ξY )− 2dτ(X,Y )

}
ξ. (14)

In the case R = 0, we say that M is flat.
The Ricci tensor, denoted by Ric, of M̄ is defined by

Ric(X̄, Ȳ ) = trace{Z̄ → R̄(X̄, Z̄)Ȳ }.

Let dim M̄ = n+ 2. Locally, Ric is given by

Ric(X̄, Ȳ ) =

n+2∑
i=1

εiḡ
(
R̄(Ei, X̄)Ȳ , Ei

)
,

where {E1, . . . , En+2} is an orthonormal basis of TM̄ .
Let R(0,2) denote the induced tensor of type (0, 2) on M given by

R(0,2)(X,Y ) = trace{Z → R(X,Z)Y }. (15)



4 D.H. Jin, J.W. Lee

Due to [4], using (8), (9) and the Gauss equation (11), we get

R(0,2)(X,Y ) = Ric(X,Y )+B(X,Y ) trAN−g(ANX,A
∗
ξY )−ḡ(R̄(ξ, Y )X,N). (16)

Using the transversal part of (12) and the first Bianchi’s identity, we obtain

R(0,2)(X,Y )−R(0,2)(Y,X) = 2dτ(X,Y ).

This shows that R(0,2) is not symmetric. A tensor field R(0,2) of M , given by (15),
is called the induced Ricci tensor, denoted by Ric, of M if it is symmetric. In this
case, M is said to be Ricci flat if Ric = 0. M is called an Einstein manifold if there
exist a smooth function κ such that

Ric = κg. (17)

Let ∇⊥

XN = π1(∇̄XN), where π1 is the projection morphism of TM̄ on tr(TM).
Then ∇⊥

is a linear connection on the transversal vector bundle tr(TM) of M . We
say that ∇⊥

is the transversal connection of M . We define the curvature tensor R
⊥

on tr(TM) by

R
⊥

(X,Y )N = ∇
⊥

X∇
⊥

YN −∇
⊥

Y∇
⊥

XN −∇
⊥

[X,Y ]N.

The transversal connection ∇⊥
of M is said to be flat [5] if R

⊥
= 0.

We quote the following result due to Jin [5].

Theorem 1. Let M be a lightlike hypersurface of a semi-Riemannian manifold M̄ .
The following assertions are equivalent:

(1) The transversal connection of M is flat, i.e., R⊥ = 0.

(2) The 1-form τ is closed, i.e., dτ = 0, on any neighborhood U ⊂M .

(3) The Ricci type tensor R(0,2) is an induced Ricci tensor of M .

Remark 1. Due to [3, Section 4.2–4.3], we shown the following results:

(1) dτ is independent to the choice of the section ξ ∈ Γ(TM⊥), that is, suppose
τ and τ̄ are 1-forms with respect to the sections ξ and ξ̄, respectively, then
dτ = dτ̄ .

(2) If dτ = 0, then we can take a 1-form τ such that τ = 0.

3 Quasi-constant curvature
Let M̄ = (M̄, J, ḡ) be a real 2m-dimensional indefinite Kaeler manifold, where ḡ is
a semi-Riemannian metric of index q = 2v, 0 < v < m, and J is an almost complex
metric structure on M̄ satisfying

J2 = −I, ḡ(JX̄, JȲ ) = ḡ(X̄, Ȳ ), (∇̄X̄J)Ȳ = 0. (18)
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Let (M, g) be a lightlike hypersurface of an indefinite Kaeler manifold M̄ , where
g is a degenerate metric on M induced by ḡ. Due to [3, Section 6.2], we show that
J(TM⊥) ⊕ J(tr(TM)) is a subbundle of S(TM) of rank 2. There exist two non-
-degenerate almost complex distributions Do and D on M with respect to J , i.e.,
J(Do) = Do and J(D) = D, such that

S(TM) =
{
J(TM⊥)⊕ J

(
tr(TM)

)}
⊕orth Do,

D =
{
TM⊥ ⊕orth J(TM⊥)

}
⊕orth Do.

In this case, TM is decomposed as follow

TM = D ⊕ J(tr(TM)). (19)

Consider lightlike vector fields U and V , and their 1-forms u and v such that

U = −JN, V = −Jξ, u(X) = g(X,V ), v(X) = g(X,U). (20)

Denote by S the projection morphism of TM on D with respect to (19). Then, for
any vector field X on M , JX is expressed as follow

JX = FX + u(X)N, (21)

where F is a tensor field of type (1, 1) globally defined on M by F = J◦S. Applying
∇̄X to (20)1,2 and using (2)–(5) and (18)–(21), we have

B(X,U) = C(X,V ), (22)

∇XU = F (ANX) + τ(X)U, (23)

∇XV = F (A∗ξX)− τ(X)V. (24)

From now and in the sequel, let M̄ be an indefinite Kaeler manifold of a quasi-
-constant curvature. We shall assume that the characteristic vector field ζ of M̄ is
tangent to M and let α = θ(N).

Theorem 2. Let M be a lightlike hypersurface of an indefinite Kaehler manifold
M̄ of a quasi-constant curvature such that ζ is tangent to M . Then the curvature
functions f1 and f2, given by (1), are satisfied

f1 = 0, f2θ(V ) = 0, αf2 = 0.

Proof. Comparing the tangent and transversal components of the two forms (1)
and (11) of the curvature tensor R̄ of M̄ , we get

R(X,Y )Z = B(Y, Z)ANX −B(X,Z)ANY + f1

{
ḡ(Y, Z)X − ḡ(X,Z)Y

}
+ f2

{[
θ(Y )X − θ(X)Y

]
θ(Z) +

[
g(Y,Z)θ(X)− g(X,Z)θ(Y )

]
ζ
}
,

(25)
(∇XB)(Y,Z)− (∇YB)(X,Z) + τ(X)B(Y,Z)− τ(Y )B(X,Z) = 0 . (26)
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Taking the product with N to (11) and using (9)2 and (13), we get

(∇XC)(Y, PZ)− (∇Y C)(X,PZ)− τ(X)C(Y, PZ) + τ(Y )C(X,PZ)

= f1{η(X)g(Y, PZ)− η(Y )g(X,PZ)}+ f2{θ(Y )η(X)− θ(X)η(Y )}θ(PZ)

+ αf2{θ(X)g(Y, PZ)− θ(Y )g(X,PZ)}. (27)

Applying ∇Y to (22) and using (8), (9) and (22)–(24), we have

(∇XB)(Y,U) = (∇XC)(Y, V )− 2τ(X)C(Y, V )

− g(A∗ξX,F (ANY ))− g(A∗ξY, F (ANX)).

Substituting this equation into (26) with Z = U , we get

(∇XC)(Y, V )− (∇Y C)(X,V )− τ(X)C(Y, V ) + τ(Y )C(X,V ) = 0.

Comparing this equation and (27) such that PZ = V , we obtain

f1{η(X)u(Y )− η(Y )u(X)}+ f2{θ(Y )η(X)− θ(X)η(Y )}θ(V )

+ f2α{θ(X)u(Y )− θ(Y )u(X)} = 0. (28)

Replacing Y by ξ to this equation and using the fact that θ(ξ) = 0, we have

f1u(X) + f2θ(X)θ(V ) = 0.

Taking X = V and X = U to this equation by turns, we get

f2θ(V ) = 0, f1 + f2θ(U)θ(V ) = 0.

From these two equations, we get f1 = 0. Taking Y = ζ to (28) and using f1 = 0
and f2θ(V ) = 0, we have αf2u(X) = 0. It follows that αf2 = 0. �

4 Totally umbilical screen distribution
Definition 1. A screen distribution S(TM) is said to be totally umbilical [3], [6]
in M if there exists a smooth function γ such that ANX = γPX, i.e.,

C(X,PY ) = γg(X,Y ). (29)

In case γ = 0, we say that S(TM) is totally geodesic in M .

Theorem 3. Let M be a lightlike hypersurface of an indefinite Kaehler manifold
M̄ of a quasi-constant curvature such that ζ is tangent to M . If S(TM) is totally
umbilical, then

(1) S(TM) is totally geodesic and parallel distribution,

(2) f1 = f2 = 0, i.e., M̄ is flat, and M is also flat,

(3) the transversal connection of M is flat, and
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(4) M is locally a product manifold Cξ ×M∗, where Cξ is a null geodesic tangent
to TM⊥, and M∗ is a semi-Euclidean leaf of S(TM).

Proof. Applying ∇X to C(Y, PZ) = γg(Y, PZ) and using (7), we have

(∇XC)(Y, PZ) = (Xγ)g(Y, PZ) + γB(X,PZ)η(Y ).

Substituting this and (29) into (27) such that f1 = f2α = 0, we obtain{
Xγ − γτ(X)

}
g(Y, PZ)−

{
Y γ − γτ(Y )

}
g(X,PZ)

+ γ
{
B(X,PZ)η(Y )−B(Y, PZ)η(X)

}
= f2

{
θ(Y )η(X)− θ(X)η(Y )

}
θ(PZ).

Replacing Y by ξ to this and using (6) and the fact that θ(ξ) = 0, we get

γB(X,Y ) =
{
ξγ − γτ(ξ)

}
g(X,Y )− f2θ(X)θ(Y ). (30)

Taking Y = U to this equation and using (20), (22) and (29), we have

γ2u(X) =
{
ξγ − γτ(ξ)

}
v(X)− f2θ(X)θ(U).

Replacing X by V to this and using the fact that f2θ(V ) = 0, we obtain

ξγ − γτ(ξ) = 0, γ2u(X) = −f2θ(X)θ(U). (31)

Assume that f2 6= 0. Taking X = ζ to (31)2, we have

γ2θ(V ) = −f2θ(U).

Taking the product with f2 to this and using f2θ(V ) = 0, we get f2θ(U) = 0. Using
this, from (31)2, we see that γ = 0. Taking X = Y = ζ to (30), we have f2 = 0. It
is a contradiction. Thus f2 = 0. We obtain γ = 0 by (31)2.

(1) As γ = 0, S(TM) is totally geodesic. Therefore, S(TM) is a parallel distri-
bution by (4) and the fact that C = 0.

(2) As f1 = f2 = 0, M̄ is flat. As f1 = f2 = AN = 0, from (27), we see that
R = 0. Thus M is also flat.

(3) As R = 0, from (15), M is Ricci flat and dτ = 0 by Theorem 2.1. Thus the
transversal connection of M is flat.

(4) From (5) and (10), we see that TM⊥ is an auto-parallel distribution. As
S(TM) is a parallel distribution and TM = TM⊥ ⊕ S(TM), by the decom-
position theorem [7], M is locally a product manifold Cξ ×M∗, where Cξ is
a null geodesic tangent to TM⊥ and M∗ is a leaf of S(TM). As R = 0 and
C = 0, from (13) we see that R∗ = 0. Thus M∗ is semi-Euclidean. �

Denote by G = J(TM⊥)⊕orthDo. Then G is a complementary vector subbundle
to J(tr(TM)) in S(TM) and we have the decomposition:

S(TM) = J(tr(TM))⊕ G.
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Theorem 4. Let M be a lightlike hypersurface of an indefinite Kaehler manifold
M̄ of quasi-constant curvature such that ζ is tangent to M . If S(TM) is totally
umbilical, then M is locally a product manifold Cξ × CU ×M ], where Cξ and CU
are null geodesics tangent to TM⊥ and J(tr(TM)) respectively and M ] is a semi-
Euclidean leaf of G.

Proof. By Theorem 4.1, we show that dτ = 0 and AN = C = 0. As dτ = 0, we
can take τ = 0 by Remark 2.2, without loss generality. As C = 0, from (22) we see
that B(X,U) = 0. Also, since AN = 0, from (23) we have

∇XU = 0. (32)

Thus J(tr(TM)) is a parallel distribution on M . From (5) and (10), TM⊥ is also
a parallel distribution on M . Using (32), we derive

g(∇XY, U) = 0, g(∇XV,U) = 0, ∀X ∈ Γ(G),∀Y ∈ Γ(Do).

Thus G is also a parallel distribution. By the decomposition theorem [7], M is
locally a product manifold Cξ × CU × M ], where Cξ and CU are null geodesics
tangent to TM⊥ and J(tr(TM)) respectively and M ] is a leaf of G. Let π2 be
the projection morphism of S(TM) on G. Then π2 ◦R∗ is the curvature tensor of
G. As R = 0 and C = 0, we have R∗ = 0. Therefore, π2 ◦ R∗ = 0 and M ] is a
semi-Euclidean space. �

5 Screen conformal lightlike hypersurfaces
Definition 2. A lightlike hypersurface M is called screen conformal [1], [4] if there
exists a non-vanishing smooth function ϕ such that AN = ϕA∗ξ , i.e.,

C(X,PY ) = ϕB(X,Y ).

If ϕ is a non-zero constant, then we say that M is screen homothetic.

Remark 2. If M is screen conformal, then, using (1) and the fact f1 = 0,

ḡ(R(ξ,X)Y,N) = f2θ(X)θ(Y )

and

Ric(X,Y ) = f2

{
g(X,Y ) + nθ(X)θ(Y )

}
.

Thus the form (16) of the Ricci type tensor R(0,2) is reduced to

R(0,2)(X,Y ) = f2

{
g(X,Y ) + (n− 1)θ(X)θ(Y )

}
+B(X,Y ) trAN − ϕg(A∗ξX,A

∗
ξY ). (33)

Thus R(0,2) is symmetric. Thus dτ = 0 and the transversal connection is flat by
Theorem 2.1. As dτ = 0, we can take τ = 0 by Remark 2.2.
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Proposition 1. Let M be a lightlike hypersurface of an indefinite Kaehler manifold
M̄ of a quasi-constant curvature such that ζ is tangent to M . If M is screen
conformal, then the curvature function f2 is satisfied f2θ(U) = 0.

Proof. Applying ∇X to C(Y, PZ) = ϕB(Y, PZ), we have

(∇XC)(Y, PZ) = (Xϕ)B(Y, PZ) + ϕ(∇XB)(Y, PZ).

Substituting this equation into (26) and using (25), we obtain

(Xϕ)B(Y, PZ)− (Y ϕ)B(X,PZ) = f2

{
θ(Y )η(X)− θ(X)η(Y )

}
θ(PZ). (34)

Taking Y = ξ to (34) and using (6) and the fact that θ(ξ) = 0, we get

(ξϕ)B(X,Y ) = f2θ(X)θ(Y ). (35)

Replacing Y by V to (35) and using the fact that f2θ(V ) = 0, we have

(ξϕ)B(X,V ) = 0.

Taking Y = U to (35) and using the fact B(X,U) = C(X,V ) = ϕB(X,V ), we
obtain f2θ(X)θ(U) = 0. Replacing X by ζ, we have f2θ(U) = 0. �

Corollary 1. Let M be a lightlike hypersurface of an indefinite Kaehler manifold M̄
of a quasi-constant curvature such that ζ is tangent to M . If M is screen homoth-
etic, then f1 = f2 = 0, i.e., M̄ is flat.

Proof. As M is screen homothetic, we get ξϕ = 0. Taking X = Y = ζ to (35) such
that ξϕ = 0, we obtain f2 = 0. As f1 = f2 = 0, M̄ is flat. �

As {U, V } is a null basis of J(TM⊥)⊕ J(tr(TM)), let

µ = U − ϕV, ν = U + ϕV,

then {µ, ν} is an orthogonal basis of J(TM⊥)⊕ J(tr(TM)) and satisfies

B(X,µ) = 0, A∗ξµ = 0, (36)

due to (22). Thus µ is an eigenvector field of A∗ξ on S(TM) corresponding to the
eigenvalue 0. As f2θ(V ) = 0 and f2θ(U) = 0, we also have

f2θ(µ) = 0, f2θ(ν) = 0. (37)

Let H′ = Span{µ}. Then H = Do ⊕orth Span{ν} is a complementary vector
subbundle to H′ in S(TM) and we have the following decomposition

S(TM) = H′ ⊕orth H. (38)

Theorem 5. Let M be a screen homothetic lightlike hypersurface of an indefinite
Kaehler manifold M̄ of quasi-constant curvature such that ζ is tangent to M .
Then M is locally a product manifold Cξ × Cµ ×M \, where Cξ and Cµ are null
and non-null geodesics tangent to TM⊥ and H′, respectively and M \ is a leaf of a
non-degenerate distribution H.
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Proof. In general, from (23), (24) and the fact that F is linear, we have

∇Xµ = −(Xϕ)V.

Therefore, if M is screen homothetic, then we have

∇Xµ = 0. (39)

This implies that H′ is a parallel distribution on M . From (5) and (10), TM⊥ is
also a parallel distribution on M . Using (39), we derive

g(∇XY, µ) = g(∇̄XY, µ) = −g(Y,∇Xµ) = 0,

g(∇Xν, µ) = −g(ν,∇Xµ) = Xϕ = 0,

for X ∈ Γ(H) and Y ∈ Γ(Do). Thus H is also a parallel distribution. By the de-
composition theorem of de Rham [7], M is locally a product manifold Cξ×Cµ×M \,
where Cξ and Cµ are null and non-null geodesics tangent to TM⊥ and H′ respec-
tively and M \ is a leaf of H.

�

Theorem 6. Let M be an Einstein lightlike hypersurface of an indefinite Kaehler
manifold M̄ of a quasi-constant curvature such that ζ is tangent to M . If M is
screen conformal, then the function κ, given by (17), satisfies κ = f2. If M is
screen homothetic, then it is Ricci flat, i.e., κ = 0.

Proof. Since M is Einstein manifold, (33) is reduced to

g(A∗ξX,A
∗
ξY )−`g(A∗ξX,Y )−ϕ−1

{
(κ−f2)g(X,Y )−f2(n−1)θ(X)θ(Y )

}
= 0, (40)

where ` = trA∗ξ is the trace of A∗ξ . Put X = Y = µ in (40) and using (36)2 and
(37)1, we have κ = f2. If M is screen homothetic, then M is Ricci flat as f2 = 0
by Corollary 5.3. �

Theorem 7. Let M be a screen homothetic Einstein lightlike hypersurface of an
indefinite Kaehler manifold M̄ of quasi-constant curvature such that q = 2 and ζ
is tangent to M . Then M is locally a product manifold

M = Cξ × Cµ ×M \ or M = Cξ × Cµ × C` ×M ],

where Cξ, Cµ and C` are null geodesic, timelike geodesic and spacelike geodesic
respectively, and M \ and M ] are Euclidean spaces.

Proof. In this proof, we set µ = 1√
2εϕ
{U − ϕV } where ε = sgnϕ. Then µ is

a unit timelike eigenvector of A∗ξ corresponding to the eigenvalue 0 by (36) and
H is a parallel Riemannian distribution by Theorem 5.4 due to q = 2. Since
g(A∗ξX,N) = 0 and g(A∗ξX,µ) = 0, A∗ξ is H-valued real self-adjoint operator.
Thus A∗ξ have (n − 1) real orthonormal eigenvectors in H and is diagonalizable.
Consider a frame field of eigenvectors {µ, e1, . . . , en−1} of A∗ξ on S(TM) such that
{e1, . . . , en−1} is an orthonormal frame field ofH. Then A∗ξei = λiei (1 ≤ i ≤ n−1).
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Put X = Y = ei in (40) such that κ = f2 = 0, we show that each eigenvalue λi of
A∗ξ is a solution of

x(x− `) = 0. (41)

The equation (41) has at most two distinct real solutions 0 and ` on U . Assume
that there exists p ∈ {1, . . . , n− 1} such that λ1 = · · · = λp = 0 and λp+1 = · · · =
λn−1 = `, by renumbering if necessary. Then we have

` = trA∗ξ = (n− p− 1)`.

If ` = 0, then A∗ξ = 0 and also AN = 0. Thus M and S(TM) are totally
geodesic. From (11) and (13), we have R∗(X,Y )Z = R̄(X,Y )Z = 0 for all
X,Y, Z ∈ Γ(S(TM)). Thus M is locally a product manifold Cξ × Cµ ×M \, where
Cξ and Cµ are null and timelike geodesic tangent to TM⊥ and H′ respectively and
M \ is a leaf of H, where the leaf M∗(= Cµ ×M \) of S(TM) is a Minkowski space.
Since ∇Xµ = 0 and

g(∇∗XY, µ) = −g(Y,∇∗Xµ) = −g(Y,∇Xµ) = 0,

for all X,Y, Z ∈ Γ(S(TM)), we have ∇∗XY ∈ Γ(H) and R∗(X,Y )Z ∈ Γ(H).
This imply ∇∗XY = Q(∇∗XY ), i.e., M \ is totally geodesic and Q(R∗(X,Y )Z) =
R∗(X,Y )Z = 0, where Q is a projection morphism of S(TM) on H with respect
to (38). Thus M \ is a Euclidean space.

If ` 6= 0, then p = n− 2. Consider the following two distributions on H;

Γ(E0) = {X ∈ Γ(H)|A∗ξX = 0},
Γ(E`) = {X ∈ Γ(H)|A∗ξX = `X}.

Then we know that the distributions E0 and E` are mutually orthogonal non-
-degenerate subbundle ofH, of rank (n−2) and 1 respectively, satisfyH = E0⊕orthE`.
From (40), we get A∗ξ(A

∗
ξ − `Q) = 0. Using this equation, we have

ImA∗ξ ⊂ Γ(E`) and Im(A∗ξ − `Q) ⊂ Γ(E0).

For any X,Y ∈ Γ(E0) and Z ∈ Γ(H), we get

(∇XB)(Y,Z) = −g(A∗ξ∇XY, Z).

Using this and the fact that

(∇XB)(Y,Z) = (∇YB)(X,Z),

we have g(A∗ξ [X,Y ], Z) = 0. If we take Z ∈ Γ(E`), since ImA∗ξ ⊂ Γ(E`) and E` is
non-degenerate, we have A∗ξ [X,Y ] = 0. Thus [X,Y ] ∈ Γ(E0) and E0 is integrable.
From (11) and (13), we have

R∗(X,Y )Z = R̄(X,Y )Z = 0

for all X,Y, Z ∈ Γ(E0).
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Since g(∇∗XY, µ) = 0 and g(∇∗XY, en−1) = −g(Y,∇Xen−1) = 0 for all X,Y ∈
Γ(E0) because ∇XW ∈ Γ(E`) for X ∈ Γ(E0) and W ∈ Γ(E`). In fact, from (26)
such that τ = 0, we get

g
({

(A∗ξ − `Q)∇XW −A∗ξ∇WX
}
, Z
)

= 0,

for all X ∈ Γ(E0),W ∈ Γ(E`) and Z ∈ Γ(H). Using the fact that H is non-
degenerate distribution, we have

(A∗ξ − `Q)∇XW = A∗ξ∇WX.

Since the left term of this equation is in Γ(E0) and the right term is in Γ(E`) and
E0 ∩ E` = {0}, we have

(A∗ξ − `Q)∇XW = 0 and A∗ξ∇WX = 0.

These imply that ∇XW ∈ Γ(E`). Thus ∇∗XY = π3∇∗XY for all X,Y ∈ Γ(E0),
where π3 is the projection morphism of S(TM) on E0 and π3∇∗ is the induced
connection on E0. These imply that the leafM ] of E0 is totally geodesic. Thus E0 is
a parallel distribution and M is locally a product manifold Cξ×M∗(= Cµ×C`×M ]),
where C` is a spacelike curve and M ] is an (n−2)-dimensional Riemannian manifold
satisfies A∗ξ = 0. As

g(R∗(X,Y )Z, µ) = 0 and g(R∗(X,Y )Z, en−1) = 0

for all X,Y, Z ∈ Γ(E0), we have

R∗(X,Y )Z = π3R
∗(X,Y )Z ∈ Γ(E0)

and the curvature tensor π3R
∗ of E0 is flat. Thus M ] is a Euclidean space. �
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