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Abstract. We consider the anisotropic quasilinear elliptic Dirichlet problem










−
N
∑

i=1

D
i
ai(x, u,∇u) + |u|s(x)−1u = f + λ

|u|p0(x)−2u

|x|p0(x)
in Ω,

u = 0 on ∂Ω,

where Ω is an open bounded subset of RN containing the origin. We show the existence of
entropy solution for this equation where the data f is assumed to be in L1(Ω) and λ is a
positive constant.

Keywords: anisotropic variable exponent Sobolev space; quasilinear elliptic equation;
Hardy potential; entropy solution; L1-data

MSC 2010 : 35J15, 35J62

1. Introduction

In the recent years, the anisotropic variable exponent Sobolev spaces have taken

its place in the mathematical literature. This impulse is essentially due to their

applications in nonhomogeneous materials that behave differently in different space

directions, we can refer here to the electrorheological and thermoelectric fluids that

have multiple applications in brakes shock absorbers, robotics and space technology

(see for example [4], [23]).

In [11], Boccardo et al. have studied the nonlinear anisotropic elliptic equation

(1.1)











−

N
∑

i=1

∂

∂xi

(∣

∣

∣

∂u

∂xi

∣

∣

∣

pi−2 ∂u

∂xi

)

= f in Ω,

u = 0 on ∂Ω,
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where Ω is an open bounded subset of RN , N > 2, and the right-hand side f is a

bounded Radon measure. They have proved the existence and regularity of solutions

in the anisotropic Sobolev spacesW 1,~p
0 (Ω). The critical regularity was obtained under

the assumption of |f | log(1 + |f |) ∈ L1(Ω). In [13], Cı̂rstea and Vétois have proved

the existence of weak solutions to the problem (1.1) where the data f is assumed

to be a Dirac mass at 0. We refer also to [28] where the author has proved the

existence of nonnegative weak solutions in anisotropic Sobolev space for the elliptic

and parabolic cases, where the right-hand side is assumed to be a Carathéodory

function f(x, u,∇u). We refer the reader also to [27].

In [14], Di Nardo and Feo have considered the quasilinear elliptic problem

(1.2)











−
N
∑

i=1

∂iai(x, u,∇u) +
N
∑

i=1

Hi(x,∇u) = f −
N
∑

i=1

∂igi in Ω,

u = 0 on ∂Ω;

they have proved the existence and uniqueness of weak solutions for this anisotropic

elliptic Dirichlet problem, where the data is assumed to be in the dual space.

Di Nardo, Feo and Guibé have studied in [15] the existence of renormalized solu-

tions for some class of nonlinear anisotropic elliptic problems of the type

−

N
∑

i=1

∂xi
(ai(x, u)|∂xi

u|pi−2∂xi
u) = f − div g in Ω,

with f ∈ L1(Ω) and g ∈
N
∏

i=1

Lp′

i(Ω); the uniqueness of renormalized solution was

concluded under some local Lipschitz conditions on the function ai(x, s) with respect

to s (see also [3]).

In the framework of variable exponents Sobolev spaces, Wittbold and Zimmer-

mann have proved in [29] the existence and uniqueness of renormalized solutions for

the quasilinear elliptic problem

(1.3)











β(u)− div a(x,∇u)−

N
∑

i=1

divF (u) ∋ f in Ω,

u = 0 on ∂Ω,

where the data f is assumed to be in L1(Ω). In [9], Bendahmane et al. have considered

the nonlinear elliptic equation

(1.4)











−

N
∑

i=1

∂

∂xi

(∣

∣

∣

∂u

∂xi

∣

∣

∣

pi(x)−2 ∂u

∂xi

)

+ |u|s(x)−1u = f in Ω,

u = 0 on ∂Ω,
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with f ∈ L1(Ω) and pi(·) being continuous functions for i = 1, . . . , N ; they have

shown the existence of solution in the anisotropic variable exponents Sobolev spaces.

Also, the authors have proved the corresponding results for the nonlinear anisotropic

parabolic case. In [12], Cianchi has considered the quasilinear anisotropic elliptic

problem

(1.5)

{

− div(a(x, u,∇u)) = f(x, u) in Ω,

u = 0 on ∂Ω,

where the datum f(x, s) is a Carathéodory function verifying some growth condition.

He has proved the existence of weak solutions in the anisotropic Orlicz–Sobolev

spaces, which he established via symmetrization. We refer also to [25], where the

author has shown the existence and regularity of weak solutions for the data in

Lm(Ω) with m > 1, also to [5] for the existence of weak solutions, and to [2] for the

solutions in the sense of distributions, and [21] for the renormalized solutions.

For some elliptic problems with singularity on its right-hand side, we refer the

reader to [1] where the authors have studied the nonlinear elliptic problem

(1.6)

{

−∆u± |∇u|2 = λ
u

|x|2
+ f in Ω,

u = 0 on ∂Ω,

with λ > 0. They have proved the existence of positive solutions for the problem (1.6)

in the absorption case (+|∇u|2) with f ∈ L1(Ω). In the reaction case (−|∇u|2), the

non-existence of solution is proved even in a very weak sense. Porzio has studied

in [26] the existence of weak solutions for the quasilinear elliptic problem

(1.7)

{

−div(M(x, u)∇u) + ν|u|p−1u = a
u

|x|2
+ f(x) − div(F ) in Ω,

u = 0 on ∂Ω,

where p > N/(N − 2) and a is a positive constant, the Carathéodory functionM(x, s)

satisfies the growth and coercivity conditions. For the case of nonlinear and non-

coercive elliptic problems, we refer the reader to [19], [20].

In this paper, we consider Ω to be an open bounded subset of RN , N > 2, contain-

ing the origin, and let pi(·) be some measurable functions on Ω for any i = 0, 1, . . . , N

where

(1.8) p0(x) = max{pi(x), i = 1, 2, . . . , N} a.e. in Ω.

We will study the existence of entropy solutions for the anisotropic quasilinear elliptic

problem

(1.9)







Au + |u|s(x)−1u = f + λ
|u|p0(x)−2u

|x|p0(x)
in Ω,

u = 0 on ∂Ω,
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with λ > 0, f ∈ L1(Ω) and

(1.10) s(x) > max
(N(p0(x)− 1)

N − p0(x)
,

1

p0(x) − 1

)

a.e. in Ω.

The Leray-Lions operator A acting from W
1,~p(·)
0 (Ω) into its dual, is defined by the

formula

(1.11) Au = −

N
∑

i=1

Diai(x, u,∇u)

where ai : Ω×R×R
N 7→ R

N are Carathéodory functions for i = 1, . . . , N (measurable

with respect to x in Ω for every (s, ξ) in R×R
N and continuous with respect to (s, ξ)

in R× R
N for almost every x in Ω), which satisfy the following conditions:

|ai(x, s, ξ)| 6 β

(

Ki(x) + |s|pi(x)−1 +
N
∑

i=1

|ξi|
pi(x)−1

)

,(1.12)

N
∑

i=1

ai(x, s, ξ)ξi > α

N
∑

i=1

|ξi|
pi(x)(1.13)

for any ξ = (ξ1, . . . , ξN ) and ξ′ = (ξ′1, . . . , ξ
′
N ) in R

N , we have

(1.14) (ai(x, s, ξ)− ai(x, s, ξ
′))(ξi − ξ′i) > 0 for ξi 6= ξ′i,

for a.e. x ∈ Ω and all (s, ξ) ∈ R × R
N , where Ki(x) ∈ Lp′

i
(·)(Ω), and α, β are two

positive real numbers.

R em a r k 1.1. The assumption (3.1) is essential to ensure that |ai(x, u,∇u)|

belongs to Lp′

i
(·)(Ω). In the case of Au = −

N
∑

i=1

Diai(x,∇u), the condition (1.12) will

be written as

(1.15) |ai(x, ξ)| 6 β

(

Ki(x) +

N
∑

i=1

|ξi|
pi(x)−1

)

,

thus the existence of an entropy solution will be guaranteed by following the same

way, without using the additional assumption (1.8).

Note that, in view of the growth condition (1.12), to show that the Carathéodory

functions |ai(x, u,∇u)| belong to Lp′

i
(·)(Ω) for any u ∈ W

1,~p(·)
0 (Ω), it is necessary to

have u ∈ Lpi(·)(Ω) for any i = 1, . . . , N, which is verified by taking the condition (1.8).
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For the case where the Carathéodory functions ai(x, ξ) verify the assumption (1.15),

then |ai(x,∇u)| ∈ Lp′

i
(·)(Ω) for any u ∈ W

1,~p(·)
0 (Ω).

In this paper, we have assumed that the data f belong to L1(Ω), then the elliptic

equation (1.9) is not in the dual space W−1,~p′(·)(Ω), thus the existence of a weak

solution have no sense. To overcome this difficulty, some mathematicians have used

the notions of entropy and renormalized solutions, which are more adapted for this

category of problems. Note that the entropy solutions were introduced by Bénilan

et al. in [10], and the notion of renormalized solutions by DiPerna et al. in [17], [18].

The difficulties in proving the existence of entropy solutions stem from the fol-

lowing fact: Since the exponents pi(·) are assumed to be measurable functions, the

Poincaré and Sobolev inequalities are not verified, therefore, the operator Au is

not coercive in the anisotropic variable exponent Sobolev space W
1,~p(·)
0 (Ω), defined

below. To overcome this difficulty, we use the penalization term |u|p0(x)−2u/n in ap-

proximate problems (3.4). Moreover, the singular term |u|p0(x)−2u/|x|p0(x) creates,

in general, a hindrance to the existence of solutions. We overpass this difficulty by

using the regularizing effect of the term |u|s(x)−1u to remove the non-existence effect

produced by the Hardy potential.

This paper is organized as follows. In Section 2 we introduce some preliminary

results including a brief discussion on the anisotropic variable exponent Sobolev

spaces, and we recall some technical lemmas. Section 3 will be devoted to showing

the existence of entropy solutions for our anisotropic ~p(x)-quasilinear elliptic equation

with Hardy potential (1.9).

2. Preliminary

Let Ω be a bounded open subset of RN , N > 2, we denote

C+(Ω) = {measurable function p(·) : Ω 7→ R such that 1 < p− 6 p+ < N},

where

p− = ess inf{p(x) : x ∈ Ω} and p+ = ess sup{p(x) : x ∈ Ω}.

We define the Lebesgue space with a variable exponent Lp(·)(Ω) as the set of all

measurable functions u : Ω 7→ R for which the convex modular

̺p(·)(u) :=

∫

Ω

|u|p(x) dx

is finite. If the exponent is bounded, i.e. if p+ < ∞, then the expression

‖u‖p(·) = inf{λ > 0: ̺p(·)(u/λ) 6 1}
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defines a norm in Lp(·)(Ω), called the Luxemburg norm. The space (Lp(·)(Ω), ‖·‖p(·))

is a separable Banach space. Moreover, if 1 < p− 6 p+ < ∞, then Lp(·)(Ω) is

uniformly convex, hence reflexive, and its dual space is isomorphic to Lp′(·)(Ω), where

1/p(x) + 1/p′(x) = 1. Finally, we have the generalized Hölder type inequality:

(2.1)

∣

∣

∣

∣

∫

Ω

uv dx

∣

∣

∣

∣

6

( 1

p−
+

1

(p′)−

)

‖u‖p(·)‖v‖p′(·)

for any u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω).

The Sobolev space with a variable exponent W 1,p(·)(·) is defined by

W 1,p(·)(Ω) = {u ∈ Lp(·)(Ω) and |∇u| ∈ Lp(·)(Ω)},

which is a Banach space equipped with the norm

‖u‖1,p(·) = ‖u‖p(·) + ‖∇u‖p(·).

The space (W 1,p(·)(Ω), ‖·‖1,p(·)) is a separable and reflexive Banach space. We de-

fine W
1,p(·)
0 (Ω) as the closure of C∞

0 (Ω) in W 1,p(·)(Ω). For more details on variable

exponent Lebesgue and Sobolev spaces, we refer the reader to [16].

Now, we present the anisotropic variable exponent Sobolev spaces used in the

study of our quasilinear anisotropic elliptic problem.

Let p0(·), p1(·), . . . , pN (·) be N + 1 variable exponents in C+(Ω). We denote

~p(·) = (p0(·), . . . , pN(·)), D0u = u and Diu =
∂u

∂xi
for i = 1, . . . , N,

and if we define

(2.2) p = min{p−0 , p
−
1 , . . . , p

−
N},

then p > 1. The anisotropic variable exponent Sobolev space W 1,~p(·)(Ω) is defined

as

W 1,~p(·)(Ω) = {u ∈ Lp0(·)(Ω) and Diu ∈ Lpi(·)(Ω) for i = 1, 2, . . . , N},

endowed with the norm

(2.3) ‖u‖1,~p(·) =

N
∑

i=0

‖Diu‖pi(·).

We define also W
1,~p(·)
0 (Ω) to be the closure of C∞

0 (Ω) in W 1,~p(·)(Ω) with respect to

the norm (2.3). The space (W
1,~p(·)
0 (Ω), ‖u‖1,~p(·)) is a reflexive Banach space (cf. [24]).
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Lemma 2.1. We have the following continuous and compact embedding:

⊲ if p < N then W
1,~p(·)
0 (Ω) →֒→֒ Lq(Ω) for q ∈ [p, p∗[ where p∗ = Np/(N − p),

⊲ if p = N then W
1,~p(·)
0 (Ω) →֒→֒ Lq(Ω) for all q ∈ [p,∞[,

⊲ if p > N then W
1,~p(·)
0 (Ω) →֒→֒ L∞(Ω) ∩ C0(Ω).

The proof of this lemma follows from the fact that the embedding W
1,~p(·)
0 (Ω) →֒

W
1,p

0 (Ω) is continuous, and in view of the compact embedding theorem for Sobolev

spaces.

Proposition 2.1. The dual of W
1,~p(·)
0 (Ω) is denoted by W−1,~p′(·)(Ω), where

~p′(·) = (p′0(·), . . . , p
′
N(·)) and 1/p′i(·) + 1/pi(·) = 1 (cf. [8] for the constant expo-

nent case). For each F ∈ W−1,~p′(·)(Ω) there exists Fi ∈ Lp′

i
(·)(Ω) for i = 0, 1, . . . , N,

such that F = F0 −
N
∑

i=1

DiFi. Moreover, for any u ∈ W
1,~p(·)
0 (Ω), we have

〈F, u〉 =

N
∑

i=0

∫

Ω

FiD
iu dx.

We define a norm on the dual space by

‖F‖−1,~p′(·) = inf

{ N
∑

i=0

‖Fi‖p′

i
(·) : F = F0 −

N
∑

i=1

DiFi with Fi ∈ Lp′

i
(·)(Ω)

}

.

We set

T
1,~p(·)
0 (Ω) := {u : Ω 7→ R measurable, such that Tk(u) ∈ W

1,~p(·)
0 (Ω) for any k > 0}.

Note that a measurable function u verifying Tk(u) ∈ W
1,~p(·)
0 (Ω) for all k > 0 does

not necessarily belong to W 1,1
0 (Ω). However, for any u ∈ T

1,~p(·)
0 (Ω) it is possible to

define the weak gradient of u, still denoted by ∇u.

Proposition 2.2. Let u ∈ T
1,~p(·)
0 (Ω). For any i ∈ {1, . . . , N}, there exists a

unique measurable function vi : Ω 7→ R such that

∀ k > 0 DiTk(u) = vi.χ{|u|<k} a.e. x ∈ Ω,

where χA denotes the characteristic function of a measurable set A. The functions vi
are called the weak partial derivatives of u and are still denoted by Diu. Moreover,

if u belongs toW 1,1
0 (Ω), then vi coincides with the standard distributional derivative

of u, that is, vi = Diu.
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The proof of Proposition 2.2 follows the usual techniques developed in [10] for the

case of Sobolev spaces. For more details concerning the anisotropic Sobolev spaces,

we refer the reader to [8] and [15].

Lemma 2.2 ([6]). Let g ∈ Lr(·)(Ω) and gn ∈ Lr(·)(Ω) with ‖gn‖r(·) 6 C for

1 < r(x) < ∞. If gn(x) → g(x) a.e. in Ω, then gn ⇀ g in Lr(·)(Ω).

Lemma 2.3 ([7]). Assuming that (1.12)–(1.14) hold, and letting (un)n∈N be a

sequence in W
1,~p(·)
0 (Ω) such that un ⇀ u in W

1,~p(·)
0 (Ω) and

(2.4)

∫

Ω

(|un|
p0(x)−2un − |u|p0(x)−2u)(un − u) dx

+

N
∑

i=1

∫

Ω

(ai(x, un,∇un)− ai(x, un,∇u))(Diun −Diu) dx → 0,

then un → u in W
1,~p(·)
0 (Ω) for a subsequence.

3. Existence of entropy solutions

Let Ω be a bounded open subset of RN , N > 2, containing the origin, and let

pi(·) ∈ C+(Ω) for i = 0, 1, . . . , N, where

(3.1) p0(x) = max{pi(x), i = 1, 2, . . . , N} a.e. in Ω.

Definition 3.1. A measurable function u is an entropy solution of the Dirichlet

problem (1.9) if

u ∈ T
1,~p(·)
0 (Ω), |u|s(x)−1u ∈ L1(Ω),

|u|p0(x)−2u

|x|p0(x)
∈ L1(Ω)

and

(3.2)
N
∑

i=1

∫

Ω

ai(x, u,∇u) ·DiTk(u− ϕ) dx+

∫

Ω

|u|s(x)−1uTk(u− ϕ) dx

6

∫

Ω

fTk(u− ϕ) dx+ λ

∫

Ω

|u|p0(x)−2u

|x|p0(x)
Tk(u − ϕ) dx

for any ϕ ∈ W
1,~p(·)
0 (Ω) ∩ L∞(Ω).
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Our main result is the following:

Theorem 3.1. Let λ > 0 and f ∈ L1(Ω), assuming that (1.10) and (1.12)–(1.14)

hold true. Then there exists at least one entropy solution u for quasilinear elliptic

problem (1.9), such that u ∈ W
1,~q(·)
0 (Ω), with

(3.3) ~q(·) = (s(·), q1(·), . . . , qN (·)) and 1 6 qi(x) <
pi(x)s(x)

s(x) + 1
for i = 1, . . . , N.

P r o o f of Theorem 3.1.

Step 1: Approximate problems. Let (fn)n∈N∗ be a sequence of smooth functions

such that fn → f in L1(Ω) and |fn| 6 |f | (for example fn = Tn(f)). We consider

the approximate problem

(3.4) Anun + |Tn(un)|
s(x)−1Tn(un) = fn + λ

|Tn(un)|
p0(x)−2Tn(un)

|x|p0(x) + 1/n
,

where Anv = −
N
∑

i=1

∂ai(x, Tn(v),∇v)/∂xi + |v|p0(x)−2v/n.

We consider the operator Gn : W
1,~p(·)
0 (Ω) 7→ W−1,~p′(·)(Ω) given by

〈Gnu, v〉 =

∫

Ω

|Tn(u)|
s(x)−1Tn(u)v dx− λ

∫

Ω

|Tn(u)|
p0(x)−2Tn(u)

|x|p0(x) + 1/n
v dx

for any u, v ∈ W
1,~p(·)
0 (Ω). Thanks to the generalized Hölder’s type inequality, we

have

(3.5) |〈Gnu, v〉| 6

∫

Ω

|Tn(u)|
s(x) |v| dx+ λ

∫

Ω

|Tn(u)|
p0(x)−1

|x|p0(x) + 1/n
|v| dx

6 ns+
∫

Ω

|v| dx+ λnp+

0

∫

Ω

|v| dx 6 C0‖v‖1,~p(·).

Lemma 3.1. The bounded operator Bn = An +Gn acting from W
1,~p(·)
0 (Ω) into

W−1,~p′(·)(Ω) is pseudo-monotone. Moreover, Bn is coercive in the following sense:

〈Bnv, v〉

‖v‖1,~p(·)
→ ∞ as ‖v‖1,~p(·) → ∞ for v ∈ W

1,~p(·)
0 (Ω).

P r o o f. In view of Hölder’s inequality and the growth condition (1.12), it is easy

to see that the operator An is bounded, and by (3.5) we conclude that Bn is bounded.
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For the coercivity, we have for any u ∈ W
1,~p(·)
0 (Ω),

〈Bnu, u〉 = 〈Anu, u〉+ 〈Gnu, u〉

=

N
∑

i=1

∫

Ω

ai(x, Tn(u),∇u)Diu dx+

∫

Ω

|Tn(u)|
s(x)|u| dx

+
1

n

∫

Ω

|u|p0(x) dx− λ

∫

Ω

|Tn(u)|
p0(x)−1

|x|p0(x) + 1/n
|u| dx

> α

N
∑

i=0

∫

Ω

|Diu|pi(x) dx+

∫

Ω

|Tn(u)|
s(x)+1 dx− 2λnp+

0 ‖1‖p′

0
(·)‖u‖1,~p(·)

> α ‖u‖
p

1,~p(·) − α(N + 1)− C1‖u‖1,~p(·)

with α = min(α, 1/n). It follows that

〈Bnu, u〉

‖u‖1,~p(·)
→ ∞ as ‖u‖1,~p(·) → ∞.

It remains to show that Bn is pseudo-monotone. Let (uk)k∈N be a sequence in

W
1,~p(·)
0 (Ω) such that

(3.6)















uk ⇀ u in W
1,~p(·)
0 (Ω),

Bnuk ⇀ χn in W−1,~p′(·)(Ω),

lim sup
k→∞

〈Bnuk, uk〉 6 〈χn, u〉.

We will prove that

χn = Bnu and 〈Bnuk, uk〉 → 〈χn, u〉 as k → ∞.

In view of the compact embedding W
1,~p(·)
0 (Ω) →֒→֒ Lp(Ω), we have uk → u in Lp(Ω)

for a subsequence still denoted as (uk)k∈N.

As (uk)k∈N is a bounded sequence inW
1,~p(·)
0 (Ω), using the growth condition (1.12)

it is clear that the sequence (ai(x, Tn(uk),∇uk))k∈N is bounded in Lp′

i
(·)(Ω), hence

there exists a function ϕi ∈ Lp′

i
(·)(Ω) such that

(3.7) ai(x, Tn(uk),∇uk) ⇀ ϕi in Lp′

i
(·)(Ω) as k → ∞.

In view of Lebesgue’s dominated convergence theorem, we obtain

(3.8) |Tn(uk)|
s(x)−1Tn(uk) → |Tn(u)|

s(x)−1Tn(u) in Lp′

0(·)(Ω),
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and

(3.9)
|Tn(uk)|

p0(x)−2Tn(uk)

|x|p0(x) + 1/n
→

|Tn(u)|
p0(x)−2Tn(u)

|x|p0(x) + 1/n
in Lp′

0(·)(Ω).

Also, we have

(3.10)
1

n
|uk|

p0(x)−2uk ⇀
1

n
|u|p0(x)−2u in Lp′

0(·)(Ω).

For any v ∈ W
1,~p(·)
0 (Ω), we have

(3.11) 〈χn, v〉 = lim
k→∞

〈Bnuk, v〉

= lim
k→∞

N
∑

i=1

∫

Ω

ai(x, Tn(uk),∇uk)D
iv dx

+ lim
k→∞

∫

Ω

|Tn(uk)|
s(x)−1Tn(uk)v dx

+ lim
k→∞

1

n

∫

Ω

|uk|
p0(x)−2uk v dx

− lim
k→∞

λ

∫

Ω

|Tn(uk)|
p0(x)−2Tn(uk)

|x|p0(x) + 1/n
v dx

=

N
∑

i=1

∫

Ω

ϕi D
iv dx+

∫

Ω

|Tn(u)|
s(x)−1Tn(u)v dx

+
1

n

∫

Ω

|u|p0(x)−2u v dx− λ

∫

Ω

|Tn(u)|
p0(x)−2Tn(u)

|x|p0(x) + 1/n
v dx.

Having in mind (3.6) and (3.11), we obtain

(3.12) lim sup
k→∞

〈Bn(uk), uk〉 = lim sup
k→∞

{ N
∑

i=1

∫

Ω

ai(x, Tn(uk),∇uk)D
iuk dx

+

∫

Ω

|Tn(uk)|
s(x)−1Tn(uk)uk dx+

1

n

∫

Ω

|uk|
p0(x) dx

− λ

∫

Ω

|Tn(uk)|
p0(x)−2Tn(uk)

|x|p0(x) + 1/n
uk dx

}

6

N
∑

i=1

∫

Ω

ϕiD
iu dx+

∫

Ω

|Tn(u)|
s(x)−1Tn(u)u dx

+
1

n

∫

Ω

|u|p0(x) dx− λ

∫

Ω

|Tn(u)|
p0(x)−2Tn(u)

|x|p0(x) + 1/n
u dx.
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Thanks to (3.8) and (3.9), we have

(3.13)

∫

Ω

|Tn(uk)|
s(x)−1Tn(uk)uk dx →

∫

Ω

|Tn(u)|
s(x)−1Tn(u)u dx,

and

(3.14)

∫

Ω

|Tn(uk)|
p0(x)−2Tn(uk)

|x|p0(x) + 1/n
uk dx →

∫

Ω

|Tn(u)|
p0(x)−2Tn(u)

|x|p0(x) + 1/n
u dx.

Therefore

(3.15) lim sup
k→∞

( N
∑

i=1

∫

Ω

ai(x, Tn(uk),∇uk)D
iuk dx+

1

n

∫

Ω

|uk|
p0(x) dx

)

6

N
∑

i=1

∫

Ω

ϕiD
iu dx+

1

n

∫

Ω

|u|p0(x) dx.

On the other hand, in view of (1.14) we have

(3.16)

N
∑

i=1

∫

Ω

(ai(x, Tn(uk),∇uk)− ai(x, Tn(uk),∇u))(Diuk −Diu) dx

+
1

n

∫

Ω

(|uk|
p0(x)−2uk − |u|p0(x)−2u)(uk − u) dx > 0,

hence

N
∑

i=1

∫

Ω

ai(x, Tn(uk),∇uk)D
iuk dx+

1

n

∫

Ω

|uk|
p0(x) dx

>

N
∑

i=1

∫

Ω

ai(x, Tn(uk),∇uk)D
iu dx+

1

n

∫

Ω

|uk|
p0(x)−2uku dx

+

N
∑

i=1

∫

Ω

ai(x, Tn(uk),∇u)(Diuk −Diu) dx+
1

n

∫

Ω

|u|p0(x)−2u(uk − u) dx.

In view of Lebesgue’s dominated convergence theorem we have Tn(uk) → Tn(u) in

Lpi(·)(Ω), thus ai(x, Tn(uk),∇u) → ai(x, Tn(u),∇u) in Lp′

i
(·)(Ω), and using (3.7) we

get

lim inf
k→∞

( N
∑

i=1

∫

Ω

ai(x, Tn(uk),∇uk)D
iuk dx+

1

n

∫

Ω

|uk|
p0(x) dx

)

>

N
∑

i=1

∫

Ω

ϕiD
iu dx+

1

n

∫

Ω

|u|p0(x) dx.
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Having in mind (3.15), we conclude that

(3.17) lim
k→∞

( N
∑

i=1

∫

Ω

ai(x, Tn(uk),∇uk)D
iuk dx+

1

n

∫

Ω

|uk|
p0(x) dx

)

=

N
∑

i=1

∫

Ω

ϕiD
iu dx+

1

n

∫

Ω

|u|p0(x) dx.

Therefore, by combining (3.11) and (3.13)–(3.14), we obtain

〈Bnuk, uk〉 → 〈χn, u〉 as k → ∞.

Now, by (3.17) we can prove that

lim
k→∞

( N
∑

i=1

∫

Ω

(ai(x, Tn(uk),∇uk)− ai(x, Tn(uk),∇u))(Diuk −Diu) dx

+
1

n

∫

Ω

(|uk|
p0(x)−2uk − |u|p0(x)−2u)(uk − u) dx

)

= 0,

and so, by virtue of Lemma 2.3, we get

uk → u in W
1,~p(·)
0 (Ω) and Diuk → Diu a.e. in Ω.

Then

ai(x, Tn(uk),∇uk) ⇀ ai(x, Tn(u),∇u) in Lp′

i
(·)(Ω) for i = 1, . . . , N

and thanks to (3.8)–(3.10), we obtain χn = Bnu, which concludes the proof of

Lemma 3.1. �

In view of Lemma 3.1, there exists at least one weak solution un ∈ W
1,~p(·)
0 (Ω) of

the problem (3.4) (cf. [22], Theorem 8.2).

Step 2: A priori estimates.

Lemma 3.2. Let un be a weak solution of the approximate problem (3.4), then

the following regularity results hold true:

(3.18) u ∈ W
1,~q(·)
0 (Ω) with ~q(·) = (s(·), q1(·), . . . , qN (·))
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where the exponent s(·) verifies the condition (1.10) and 1 6 qi(x) < pi(x)s(x)/

(s(x) + 1), almost everywhere in Ω. Then

N
∑

i=1

∫

Ω

|Diun|
pi(x)

(1 + |un|)θ
dx 6 C ∀ 1 < θ <

s(pi(x) − qi(x))

qi(x)
,(3.19)

N
∑

i=1

∫

Ω

|DiTk(un)|
pi(x) dx 6 C(1 + k)θ ∀ k > 0,(3.20)

with C a positive constant that does not depend on k and n.

P r o o f. Let θ > 1 which will be chosen later. We consider the function ϕ(t) :

R 7→ R defined by

ϕ(t) =
(

1−
1

(1 + |t|)θ−1

)

sign(t).

It is clear that ϕ(un) ∈ W
1,~p(·)
0 (Ω) ∩ L∞(Ω). By taking ϕ(un) as a test function

in (3.4) we get

(θ − 1)
N
∑

i=1

∫

Ω

ai(x, Tn(un),∇un) ·D
iun

(1 + |un|)θ
dx+

∫

Ω

|Tn(un)|
s(x)−1Tn(un)ϕ(un) dx

+
1

n

∫

Ω

|un|
p0(x)−2unϕ(un) dx

=

∫

Ω

fnϕ(un) dx+ λ

∫

Ω

|Tn(un)|
p0(x)−2Tn(un)

|x|p0(x) + 1/n
ϕ(un) dx.

Since ϕ(un) have the same sign as un, the third term on the left-hand side of the

previous inequality is positive. Also, we have |ϕ(·)| 6 1 and in view of (1.13), we

obtain

(3.21) α(θ − 1)
N
∑

i=1

∫

Ω

|Diun|
pi(x)

(1 + |un|)θ
dx+

∫

Ω

|Tn(un)|
s(x)|ϕ(un)| dx

6 λ

∫

Ω

|Tn(un)|
p0(x)−1

|x|p0(x) + 1/n
dx+

∫

Ω

|f | dx.

It is clear that

1

2
6 1−

1

(1 + |un|)θ−1
for |un| > R = max(21/(θ−1) − 1, 1).

Thus, we have

1

2

∫

{|un|>R}

|Tn(un)|
s(x) dx 6

∫

{|un|>R}

|Tn(un)|
s(x)

(

1−
1

(1 + |un|)θ−1

)

dx

6

∫

Ω

|Tn(un)|
s(x)

(

1−
1

(1 + |un|)θ−1

)

dx,
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which implies

1

2

∫

Ω

|Tn(un)|
s(x) dx =

1

2

∫

{|un|<R}

|Tn(un)|
s(x) dx+

1

2

∫

{|un|>R}

|Tn(un)|
s(x) dx

6
1

2
Rs+ |Ω|+

∫

Ω

|Tn(un)|
s(x)

(

1−
1

(1 + |un|)θ−1

)

dx.

Using (3.21), we deduce that

(3.22) α(θ − 1)

N
∑

i=1

∫

Ω

|Diun|
pi(x)

(1 + |un|)θ
dx+

1

2

∫

Ω

|Tn(un)|
s(x) dx

6
1

2
Rs+ |Ω|+ λ

∫

Ω

|Tn(un)|
p0(x)−1

|x|p0(x)
dx+

∫

Ω

|f | dx.

We have s(x) > p0(x) − 1, in view of Young’s inequality we obtain

λ

∫

Ω

|Tn(un)|
p0(x)−1

|x|p0(x)
dx 6

1

4

∫

Ω

|Tn(un)|
s(x) dx+ C2

∫

Ω

dx

|x|s(x)p0(x)/(s(x)−p0(x)+1)

with C2 a positive constant depending only on s(·), p0(·) and λ. Thus, we obtain

(3.23) α(θ − 1)

N
∑

i=1

∫

Ω

|Diun|
pi(x)

(1 + |un|)θ
dx+

1

4

∫

Ω

|Tn(un)|
s(x) dx

6
1

2
Rs+ |Ω|+ C2

∫

Ω

dx

|x|s(x)p0(x)/(s(x)−p0(x)+1)
+

∫

Ω

|f | dx.

Under the assumption s(x) > N(p0(x) − 1)/(N − p0(x)), the integral
∫

Ω

dx

|x|s(x)p0(x)/(s(x)−p0(x)+1)

is finite. Therefore (3.19) is deduced. Moreover, we have

(3.24)

∫

Ω

|Tn(un)|
s(x) dx 6 C.

Taking qi(·) ∈ C+(Ω) such that 1 6 qi(x) < pi(x) for i = 1, . . . , N , by virtue of

the generalized Hölder’s inequality we get

(3.25)

N
∑

i=1

∫

Ω

|Diun|
qi(x) dx 6 2

N
∑

i=1

∥

∥

∥

|Diun|
qi(x)

(1 + |un|)θqi(x)/pi(x)

∥

∥

∥

pi(·)/qi(·)

× ‖(1 + |un|)
θqi(x)/pi(x)‖pi(·)/(pi(·)−qi(·))

6 2

N
∑

i=1

(
∫

Ω

|Diun|
pi(x)

(1 + |un|)θ
dx+ 1

)q+
i
/p−

i

×

(
∫

Ω

(1 + |un|)
qi(x)θ/(pi(x)−qi(x)) dx+ 1

)1−q−
i
/p+

i

.
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We now choose θ > 1 such that qi(x)θ/(pi(x) − qi(x)) < s(x) a.e. in Ω, such a real

number θ exists if

1 <
s(x)(pi(x)− qi(x))

qi(x)
that is qi(x) <

pi(x)s(x)

s(x) + 1
.

Combining (3.23)–(3.25), we obtain the desired estimates (3.18).

To get (3.20), we have thanks to (3.19) that

N
∑

i=1

∫

Ω

|DiTk(un)|
pi(x) dx =

N
∑

i=1

∫

{|un|<k}

|Diun|
pi(x) dx

6 (1 + k)θ
N
∑

i=1

∫

Ω

|Diun|
pi(x)

(1 + |un|)θ
dx.

Step 3: The weak convergence of (Tk(un))n in W
1,~p(·)
0 (Ω). To show the weak

convergence of (Tk(un))n in W
1,~p(·)
0 (Ω), we begin by proving that (un)n is a Cauchy

sequence. Indeed, thanks to (3.20), we can obtain

N
∑

i=0

∫

Ω

|DiTk(un)|
pi(x) dx 6 C(1 + k)θ + kp

+

0 |Ω| for k > 1.

Therefore, the sequence (Tk(un))n is bounded in W
1,~p(·)
0 (Ω), and there exists a sub-

sequence still denoted by (Tk(un))n such that

(3.26)

{

Tk(un) ⇀ ηk in W
1,~p(·)
0 (Ω),

Tk(un) → ηk in Lp(Ω) and a.e. in Ω.

On the other hand, we have

N
∑

i=1

∫

Ω

|DiTk(un)|
pi(x) dx >

N
∑

i=1

∫

Ω

(|DiTk(un)|
p − 1) dx

= ‖∇Tk(un)‖
p
p −N |Ω|.

Thanks to (3.20), we deduce that there exists a constant C3 that does not depend

on k and n, such that

(3.27) ‖∇Tk(un)‖p 6 C3k
θ/p for k > 1.
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Thanks to the Poincaré type inequality, we obtain

(3.28) k meas{|un| > k} =

∫

{|un|>k}

|Tk(un)| dx 6

∫

Ω

|Tk(un)| dx

6 C4‖Tk(un)‖p 6 C5‖∇Tk(un)‖p 6 C6k
θ/p.

Choosing θ small enough (1 < θ < p), we conclude that

(3.29) meas{|un| > k} 6 C6
1

k1−θ/p
→ 0 as k → ∞.

For all δ > 0, we have

meas{|un − um| > δ} 6 meas{|un| > k}+meas{|um| > k}

+meas{|Tk(un)− Tk(um)| > δ}.

Let ε > 0, using (3.29) we can choose k = k(ε) large enough such that

(3.30) meas{|un| > k} 6
ε

3
and meas{|um| > k} 6

ε

3
.

On the other hand, thanks to (3.26) we can assume that (Tk(un))n∈N is a Cauchy

sequence in measure. Thus, for any k > 0 and δ, ε > 0, there exists n0 = n0(k, δ, ε)

such that

(3.31) meas{|Tk(un)− Tk(um)| > δ} 6
ε

3
∀m,n > n0(k, δ, ε).

In view of (3.30) and (3.31), we deduce that for any δ, ε > 0, there exists n0 = n0(δ, ε)

such that

meas{|un − um| > δ} 6 ε ∀n,m > n0(δ, ε),

which proves that the sequence (un)n is a Cauchy sequence in measure and then

converges almost everywhere to some measurable function u. Consequently, we have

(3.32) Tk(un) ⇀ Tk(u) in W
1,~p(·)
0 (Ω),

and in view of Lebesgue’s dominated convergence theorem, we obtain

(3.33) Tk(un) → Tk(u) in Lp0(·)(Ω) and a.e in Ω.

Step 4: Strong convergence of truncations. In the sequel, we denote by εi(n),

i = 1, 2, . . . , various real-valued functions of real variables that converge to 0 as n

tends to infinity.
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Let h > k > 0, take zn := un − Th(un) + Tk(un) − Tk(u) and ωn := T2k(zn). By

using ωn as a test function in the approximate problem (3.4) we obtain

N
∑

i=1

∫

Ω

ai(x, Tn(un),∇un)D
iωn dx+

∫

Ω

|Tn(un)|
s(x)−1Tn(un)ωn dx

+
1

n

∫

Ω

|un|
p0(x)−2unωn dx = λ

∫

Ω

|Tn(un)|
p0(x)−2Tn(un)

|x|p0(x) + 1/n
ωn dx+

∫

Ω

fnωn dx.

For M = 4k + h, it is clear that Diωn = 0 on the set {|un| > M}, and ωn have the

same sign as un on the set {|un| > k}, therefore

N
∑

i=1

∫

{|un|6M}

ai(x, TM (un),∇TM (un))D
iωn dx+

∫

Ω

|Tn(un)|
s(x)−1Tn(un)ωn dx

+
1

n

∫

{|un|6k}

|un|
p0(x)−2unωn dx

6 λ

∫

Ω

|Tn(un)|
p0(x)−2Tn(un)

|x|p0(x) + 1/n
ωn dx+

∫

Ω

fnωn dx.

In view of Young’s inequality, we have

λ

∫

{|un|>k}

|Tn(un)|
p0(x)−1

|x|p0(x) + 1/n
|ωn| dx

6

∫

{|un|>k}

|Tn(un)|
s(x)|ωn| dx+ C7

∫

{|un|>k}

|ωn|

|x|p0(x)s(x)/(s(x)−p0(x)+1)
dx,

and since ωn = Tk(un)− Tk(u) on the set {|un| 6 k}, we have

(3.34)

N
∑

i=1

∫

{|un|6M}

ai(x, TM (un),∇TM (un))D
iωn dx

+

∫

{|un|6k}

|Tk(un)|
s(x)−1Tk(un)(Tk(un)− Tk(u)) dx

+
1

n

∫

{|un|6k}

|Tk(un)|
p0(x)−2Tk(un)(Tk(un)− Tk(u)) dx

6 λ

∫

{|un|6k}

|Tk(un)|
p0(x)−2Tk(un)

|x|p0(x) + 1/n
(Tk(un)− Tk(u)) dx

+

∫

Ω

fnωn dx+ C7

∫

{|un|>k}

|ωn|

|x|p0(x)s(x)/(s(x)−p0(x)+1)
dx.

Now, we will study each terms in the previous inequality.
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For the second and third terms on the left-hand side of (3.34), in view of Lebesgue’s

dominated convergence theorem, we have

|Tk(un)|
s(x)−1Tk(un) → |Tk(u)|

s(x)−1Tk(u) in L1(Ω),

and

|Tk(un)|
p0(x)−2Tk(un) → |Tk(u)|

p0(x)−2Tk(u) in L1(Ω),

and since Tk(un) ⇀ Tk(u) weak-∗ in L∞(Ω), we have

(3.35) ε1(n) =

∫

{|un|6k}

|Tk(un)|
s(x)−1Tk(un)(Tk(un)−Tk(u)) dx → 0 as n → ∞,

and

(3.36) ε2(n) =
1

n

∫

{|un|6k}

|Tk(un)|
p0(x)−2Tk(un)(Tk(un)− Tk(u)) dx → 0

as n → ∞.

Concerning the terms on the right-hand side of (3.34), we have

(3.37) ε3(n) =

∣

∣

∣

∣

∫

{|un|6k}

|Tk(un)|
p0(x)−2Tk(un)

|x|p0(x) + 1/n
(Tk(un)− Tk(u)) dx

∣

∣

∣

∣

6 kp
+

0
−1

∫

{|un|6k}

|Tk(un)− Tk(u)|

|x|p0(x)
dx → 0 as n → ∞;

also, we have

(3.38)

∫

Ω

fnωn dx =

∫

Ω

f T2k(u− Th(u)) dx+ ε4(n),

and

(3.39)

∫

{|un|>k}

|ωn|

|x|p0(x)s(x)/(s(x)−p0(x)+1)
dx

=

∫

{|u|>h}

|T2k(u− Th(u))|

|x|p0(x)s(x)/(s(x)−p0(x)+1)
dx+ ε5(n).

By combining (3.34)–(3.39), we deduce that

(3.40)

N
∑

i=1

∫

{|un|6M}

ai(x, TM (un),∇TM (un))D
iωn dx

6

∫

Ω

fT2k(u− Th(u)) dx

+ C7

∫

{|u|>h}

|T2k(u − Th(u))|

|x|p0(x)s(x)/(s(x)−p0(x)+1)
dx+ ε6(n).
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On the other hand, we have ωn = Tk(un)− Tk(u) on {|un| 6 M}, then

(3.41)

N
∑

i=1

∫

{|un|6M}

ai(x, TM (un),∇TM (un))D
iωn dx

=
N
∑

i=1

∫

Ω

(ai(x, Tk(un),∇Tk(un))− ai(x, Tk(un),∇Tk(u)))

× (DiTk(un)−DiTk(u)) dx

+

N
∑

i=1

∫

Ω

ai(x, Tk(un),∇Tk(u))(D
iTk(un)−DiTk(u)) dx

+

N
∑

i=1

∫

{|un|>k}

ai(x, Tk(un),∇Tk(un))D
iTk(u) dx

+

N
∑

i=1

∫

{k<|un|6M}

ai(x, TM (un),∇TM (un))D
iωn dx.

For the second and third terms on the right-hand side of (3.41), thanks to Lebesgue’s

dominated convergence theorem, we have Tk(un) → Tk(u) in Lpi(·)(Ω), then

ai(x, Tk(un),∇Tk(u)) → ai(x, Tk(u),∇Tk(u)) in Lp′

i
(·)(Ω), and since DiTk(un) ⇀

DiTk(u) in Lpi(·)(Ω) it follows that

(3.42) ε7(n) =

∫

Ω

ai(x, Tk(un),∇Tk(u))(D
iTk(un)−DiTk(u)) dx → 0 as n → ∞,

and since a(x, s, 0) = 0, we get

(3.43)

∫

{|un|>k}

ai(x, Tk(un),∇Tk(un))D
iTk(u) dx

=

∫

{|un|>k}

ai(x, Tk(un), 0)D
iTk(u) dx = 0.

Concerning the last term on the right-hand side of (3.41), thanks to (1.12) we have

that (ai(x, TM (un),∇TM (un)))n is bounded in L
p′

i
(·)(Ω), then there exists a function

ϕi ∈ Lp′

i
(·)(Ω) such that |ai(x, TM (un),∇TM (un))| → ϕi in L

p′

i
(·)(Ω). It follows that

lim
n→∞

∫

{k<|un|6M}

ai(x, TM (un),∇TM (un))D
iωn dx(3.44)

= lim
n→∞

∫

{k<|un|6M}∩{|zn|62k}

ai(x, TM (un),∇TM (un))

× (Diun −DiTh(un)−DiTk(u)) dx
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> − lim
n→∞

∫

{k<|un|6M}

|ai(x, TM (un),∇TM (un))| |D
iTk(u)| dx

> −

∫

{k<|u|6M}

ϕi |D
iTk(u)| dx = 0.

By combining (3.40) and (3.41)–(3.44), we get

(3.45)

N
∑

i=1

∫

Ω

(ai(x, Tk(un),∇Tk(un))− ai(x, Tk(un),∇Tk(u)))

× (DiTk(un)−DiTk(u)) dx

6 2k

∫

{|u|>h}

|f | dx+ 2kC7

∫

{|u|>h}

dx

|x|p0(x)s(x)/(s(x)−p0(x)+1)
+ ε8(n).

Since N(p0(x) − 1)/(N − p0(x)) < s(x), we have p0(x)s(x)/(s(x) − p0(x) + 1) < N ,

then 1/|x|p0(x)s(x)/(s(x)−p0(x)+1) ∈ L1(Ω).

By letting n and then h tend to infinity in the inequality above, thanks to (3.33)

we can obtain

(3.46) lim
n→∞

( N
∑

i=1

∫

Ω

(ai(x, Tk(un),∇Tk(un))− ai(x, Tk(un),∇Tk(u)))

× (DiTk(un)−DiTk(u)) dx

+

∫

Ω

(|Tk(un)|
p0(x)−2Tk(un)− |Tk(u)|

p0(x)−2Tk(u))

× (Tk(un)− Tk(u)) dx

)

= 0.

In view of Lemma 2.3, we conclude that

(3.47)

{

Tk(un) → Tk(u) strongly in W
1,~p(·)
0 (Ω),

Diun → Diu a.e. in Ω for i = 1, . . . , N.

Step 5: The equi-integrability of the nonlinear functions. Now, we shall show that

(3.48) |Tn(un)|
s(x)−1Tn(un) → |u|s(x)−1u in L1(Ω),

(3.49)
1

n
|un|

p0(x)−2un → 0 in L1(Ω),

and

(3.50)
|Tn(un)|

p0(x)−2Tn(un)

|x|p0(x) + 1/n
→

|u|p0(x)−2u

|x|p0(x)
in L1(Ω).
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In view of Vitali’s theorem, it suffices to prove the uniform equi-integrability of these

functions. By taking T1(un − Th(un)) as a test function in (3.4), we can obtain

α

N
∑

i=1

∫

{h<|un|6h+1}

|Diun|
pi dx+

∫

{|un|>h}

|Tn(un)|
s(x)|T1(un − Th(un))| dx

+
1

n

∫

{|un|>h+1}

|un|
p0(x)−1 dx

6 λ

∫

{|un|>h}

|Tn(un)|
p0(x)−1

|x|p0(x) + 1/n
|T1(un − Th(un))| dx+

∫

{|un|>h}

|fn| dx.

Thanks to Young’s inequality, we have

λ

∫

{|un|>h}

|Tn(un)|
p0(x)−1

|x|p0(x) + 1/n
|T1(un − Th(un))| dx

6
1

3

∫

{|un|>h}

|Tn(un)|
s(x)|T1(un − Th(un))| dx

+ C8

∫

{|un|>h}

|T1(un − Th(un))|

|x|s(x)p0(x)/(s(x)−p0(x)+1)
dx,

it follows that

1

3

∫

{|un|>h+1}

|Tn(un)|
s(x) dx+ λ

∫

{|un|>h+1}

|Tn(un)|
p0(x)−1

|x|p0(x) + 1/n
dx

+
1

n

∫

{|un|>h+1}

|un|
p0(x)−1 dx

6 2C8

∫

{|un|>h}

|T1(un − Th(un))|

|x|s(x)p0(x)/(s(x)−p0(x)+1)
dx+

∫

{|un|>h}

|fn| dx.

Thus, for any η > 0, there exists h(η) > 0 such that

(3.51)

∫

{|un|>h(η)}

|Tn(un)|
s(x) dx+

∫

{|un|>h(η)}

|Tn(un)|
p0(x)−1

|x|p0(x) + 1/n
dx

+
1

n

∫

{|un|>h(η)}

|un|
p0(x)−1 dx 6

η

2
.

On the other hand, for any measurable subset E ⊆ Ω, we have

∫

E

|Tn(un)|
s(x) dx+

∫

E

|Tn(un)|
p0(x)−1

|x|p0(x) + 1/n
dx+

1

n

∫

E

|un|
p0(x)−1 dx(3.52)
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6

∫

E

|Th(η)(un)|
s(x) dx+

∫

E

|Th(η)(un)|
p0(x)−1

|x|p0(x) + 1/n
dx

+
1

n

∫

E

|Th(η)(un)|
p0(x)−1 dx+

∫

{|un|>h(η)}

|Tn(un)|
s(x) dx

+

∫

{|un|>h(η)}

|Tn(un)|
p0(x)−1

|x|p0(x) + 1/n
dx+

1

n

∫

{|un|>h(η)}

|un|
p0(x)−1 dx.

Due to (3.47), there exists β(η) > 0 such that: for any E ⊆ Ω with meas(E) 6 β(η)

(3.53)

∫

E

|Th(η)(un)|
s(x) dx+

∫

E

|Th(η)(un)|
p0(x)−1

|x|p0(x) + 1/n
dx

+
1

n

∫

E

|Th(η)(un)|
p0(x)−1 dx 6

η

2
.

Finally, by combining (3.51), (3.52) and (3.53), one easily has

(3.54)

∫

E

|Tn(un)|
s(x) dx+

∫

E

|Tn(un)|
p0(x)−1

|x|p0(x) + 1/n
dx+

1

n

∫

E

|un|
p0(x)−1 dx 6 η,

with meas(E) 6 β(η).We deduce that (|Tn(un)|
s(x)−1Tn(un))n, (|un|

p0(x)−2un)n and

(|Tn(un)|
p0(x)−2Tn(un)/(|x|

p0(x) + 1/n))n are equi-integrable, and

|Tn(un)|
s(x)−1Tn(un) → |u|s(x)−1u a.e. in Ω,

1

n
|un|

p0(x)−2un → 0 a.e. in Ω

and
|Tn(un)|

p0(x)−2Tn(un)

|x|p0(x) + 1/n
→

|u|p0(x)−2u

|x|p0(x)
a.e. in Ω.

In view of Vitali’s theorem, the convergences (3.48)–(3.50) are concluded.

Step 6: Passage to the limit. Let ϕ ∈ W
1,~p(·)
0 (Ω) ∩ L∞(Ω) and M = k + ‖ϕ‖∞.

By taking Tk(un − ϕ) as a test function in (3.4), we get

(3.55)

N
∑

i=1

∫

Ω

ai(x, Tn(un),∇un)D
iTk(un − ϕ) dx

+

∫

Ω

|Tn(un)|
s(x)−1Tn(un)Tk(un − ϕ) dx

+
1

n

∫

Ω

|un|
p0(x)−2unTk(un − ϕ) dx

= λ

∫

Ω

|Tn(un)|
p0(x)−2Tn(un)

|x|p0(x) + 1/n
Tk(un − ϕ) dx+

∫

Ω

fnTk(un − ϕ) dx.
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On the one hand, we have {|un − ϕ| 6 k} ⊆ {|un| 6 M}, hence

∫

Ω

ai(x, Tn(un),∇un)D
iTk(un − ϕ) dx

=

∫

Ω

ai(x, TM (un),∇TM (un))(D
iTM (un)−Diϕ)χ{|un−ϕ|6k} dx

=

∫

Ω

(ai(x, TM (un),∇TM (un))− ai(x, TM (un),∇ϕ))

× (DiTM (un)−Diϕ)χ{|un−ϕ|6k} dx

+

∫

Ω

ai(x, TM (un),∇ϕ)(DiTM (un)−Diϕ)χ{|un−ϕ|6k} dx.

It is clear that

lim
n→∞

∫

Ω

ai(x, TM (un),∇ϕ)(DiTM (un)−Diϕ)χ{|un−ϕ|6k} dx

=

∫

Ω

ai(x, TM (u),∇ϕ)(DiTM (u)−Diϕ)χ{|u−ϕ|6k} dx.

According to Fatou’s lemma, we obtain

(3.56) lim inf
n→∞

N
∑

i=1

∫

Ω

ai(x, Tn(un),∇un)D
iTk(un − ϕ) dx

>

N
∑

i=1

∫

Ω

(ai(x, TM (u),∇TM (u))− ai(x, TM (u),∇ϕ))

× (DiTM (u)−Diϕ)χ{|u−ϕ|6k} dx

+

N
∑

i=1

∫

Ω

ai(x, TM (u),∇ϕ)(DiTM (u)−Diϕ)χ{|u−ϕ|6k} dx

=

N
∑

i=1

∫

Ω

ai(x, TM (u),∇TM (u))(DiTM (u)−Diϕ)χ{|u−ϕ|6k} dx

=
N
∑

i=1

∫

Ω

ai(x, u,∇u)DiTk(u − ϕ) dx.

On the other hand, we have Tk(un − ϕ) ⇀ Tk(u − ϕ) weak-∗ in L∞(Ω) and thanks

to (3.48)–(3.50), we deduce that

∫

Ω

|Tn(un)|
s(x)−1Tn(un)Tk(un − ϕ) dx →

∫

Ω

|u|s(x)−1uTk(u− ϕ) dx,(3.57)

1

n

∫

Ω

|un|
p0(x)−1unTk(un − ϕ) dx → 0,(3.58)
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∫

Ω

|Tn(un)|
p0(x)−2Tn(un)

|x|p0(x) + 1/n
Tk(un − ϕ) dx →

∫

Ω

|u|p0(x)−2u

|x|p0(x)
Tk(u − ϕ) dx,(3.59)

and

(3.60)

∫

Ω

fnTk(un − ϕ) dx →

∫

Ω

fTk(u − ϕ) dx.

Hence, putting all the terms together, we conclude the proof of Theorem 3.1. �

A c k n ow l e d g em e n t s. The authors thank the referees for their very construc-

tive comments and suggestions that helped improving the original manuscript.
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