
Czechoslovak Mathematical Journal

Sahbi Boussandel
Existence and uniqueness of solutions for gradient systems without a compactness
embedding condition

Czechoslovak Mathematical Journal, Vol. 69 (2019), No. 3, 637–651

Persistent URL: http://dml.cz/dmlcz/147782

Terms of use:
© Institute of Mathematics AS CR, 2019

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/147782
http://dml.cz


Czechoslovak Mathematical Journal, 69 (144) (2019), 637–651

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR GRADIENT

SYSTEMS WITHOUT A COMPACTNESS EMBEDDING CONDITION

Sahbi Boussandel, Bizerte

Received September 5, 2017. Published online June 20, 2019.

Abstract. This paper is devoted to the existence and uniqueness of solutions for gradi-
ent systems of evolution which involve gradients taken with respect to time-variable inner
products. The Gelfand triple (V,H,V ′) considered in the setting of this paper is such that
the embedding V →֒ H is only continuous.
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1. Introduction

Let V be a Banach space which is densely and continuously embedded into

a Hilbert space H , let E : V → R be a continuously differentiable and weakly coer-

cive functional such that the derivative operator E′ is monotone and bounded. Let

further g : [0, T ] → Inner(H) be a function. Here, Inner(H) denotes the set of all

inner products on H . Then we have 〈u, v〉g(t) = 〈Q(t)u, v〉H , where Q(t) ∈ L(H) is

symmetric positive definite. We assume that the norms associated with the inner

products 〈·, ·〉g(t) are uniformly equivalent to a fixed one on H . We suppose further

that the function t→ Q(t) is continuously differentiable on [0, T ], −Q′(t) is positive

and Q(t) is invertible for every t ∈ [0, T ]. Let us consider the gradient system

(1.1)

{

u′(t) +∇g(t)E(u(t)) = f(t) for a.e. t ∈ (0, T ),

u(0) = u0,

where ∇g(t)E denotes the gradient of E in H with respect to the inner prod-

uct 〈·, ·〉g(t). Our main result, Theorem 2.1, says the following: under the pre-

ceding assumptions on V , H , E and g for every f ∈ L2(0, T ;H) and every u0 ∈ V
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there exists a unique u ∈ W 1,2(0, T ;H) ∩ L∞(0, T ;V ) such that u(t) ∈ D(∇g(t)E)

for a.e. t ∈ (0, T ) which is a solution of problem (1.1). This theorem is a maximal

regularity result in the sense that the two terms on the left-hand side of the above

system have the same regularity as the right-hand side term. Our approach is based

on the application of the Galerkin method combined with techniques and results of

the theory of monotone operators and the theory of weakly lower semicontinuous

quadratic forms on Hilbert spaces. The study of weakly lower semicontinuity for

quadratic forms on Hilbert spaces is one of the important problems in the field of

Calculus of Variations; a good reference about this subject is [11].

When the function g is constant, i.e. g = 〈·, ·〉H , problem (1.1) was considered in

the literature; see for example [9], Theorem 6.1. When g depends further on the

space variable, problem (1.1) was studied in [7], where the embedding V →֒ H is

supposed to be compact, the energy E is assumed to be H-elliptic (i.e., the functional

u→ E(u)+ 1
2ω‖u‖

2
H is convex and weakly coercive for some constant ω ∈ R) instead

of convex and weakly coercive and the metric g satisfied some continuity condition.

We apply our result in order to solve the diffusion equation governed by the

p-Laplace operator
∂u

∂t
−m(t, ·)∆pu = f in (0, T )× Ω,

complemented by the Dirichlet boundary condition

u = 0 on (0, T )× ∂Ω.

Here Ω ⊂ R
N is an open set of RN , 1 6 p 6 2, and m : [0, T ] × Ω → [ε, 1/ε] is

a measurable function satisfying some suitable conditions.

In [1] the authors studied the existence of solutions of the evolution equation with

nonmonotone perturbation

(1.2)

{

u′(t) +Au(t) +G(u(t)) = f(t) for a.e. t ∈ (0, T ),

u(0) = u0

under the following assumptions.

(i) A : V → V ′ is monotone and hemicontinuous.

(ii) There exist positive constants c1, c2 such that for every u ∈ V

‖Au‖V ′ 6 c1(‖u‖
p−1
V + 1), c2‖u‖

p
V 6 c3 + 〈Au, u〉V ′,V .

(iii) G : V → V ′ is both continuous and weakly continuous.

(iv) There exist positive constants a, b and c such that for every u ∈ V

〈G(u), u〉V ′,V > −c, ‖Gu‖V ′ 6 a‖u‖p−1
V + b.
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(v) If un ⇀ u in V , then we have

〈G(un), un − u〉V ′,V → 0.

The authors proved that problem (1.2) can be rewritten as an algebraic equation in

the Banach space Lq(0, T ;V ′) for which they applied the theory of pseudo-monotone

operators. Further results concerning evolution equations involving nonmonotone

perturbations can be found for example in [12], [18], [19].

In [8], the author considered the evolution problem of the form

(1.3)

{

u′(t) + ∂ϕ(u(t)) ∋ f(t) for a.e. t ∈ (0, T ),

u(0) = u0,

where ∂ϕ denotes the subdifferential of a functional ϕ defined on a Hilbert space H .

Under the assumptions that ϕ is convex, lower semicontinuous and minϕ = 0, it

was proved that if f ∈ L2(0, T ;H) and u0 ∈ D(ϕ), problem (1.3) admits a unique

strong solution u ∈ W 1,2(0, T ;H). The approach used in this study is based on

the application of the theory of maximal monotone operators. Problem (1.3) was

considered also in [9] where the authors used the so-called time-discretization method

which consists in the discretization in time. Further existence and uniqueness results

for multivalued evolution equations (namely in the nonautonomous case) can be

found in [5] and the references therein.

Evolution problems of linear and nonlinear parabolic equations describe naturally

several phenomena, e.g. in physical, chemical, biological etc. applications. We refer

the reader to the monographs [2], [10], [13], [15], also to the books [4], [6], [20] and

to the papers [3], [17] for classical results on linear and quasilinear second order

parabolic equations. Let us point out that there is a large literature which deals

with evolution problems involving monotone and pseudomonotone type operators

with applications to problems involving the p-Laplacian with Dirichlet or Neumann

boundary conditions both in bounded or unbounded domains. In this sense, we refer

the reader to [16], [21], [22], [23].

2. Functional setting, main result and some preliminaries

Let V be a real reflexive and separable Banach space with norm ‖·‖V , and let H

be a real Hilbert space with the inner product 〈·, ·〉H and induced norm ‖·‖H such

that V is densely and continuously embedded into H . The duality bracket between

the dual space V ′ and V is denoted by 〈·, ·〉V ′,V . Let Inner(H) be the set of all

inner products on H . Let g : [0, T ] → Inner(H) be a function and denote by 〈·, ·〉g(t)
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the inner product g(t) at a time t ∈ [0, T ] and by ‖·‖g(t) the norm associated with

this inner product. By the Riesz representation theorem, there exists a mapping

Q : [0, T ] → L(H) such that for every t ∈ [0, T ], Q(t) is symmetric, positive definite,

and for every v, w ∈ H

(2.1) 〈Q(t)v, w〉H = 〈v, w〉g(t).

Let E : V → R be a differentiable functional and denote by E′ the Fréchet derivative

of E.

Definition 2.1. We define the gradient of E in H with respect to the inner

product 〈·, ·〉H by

D(∇E) = {u ∈ V : ∃w ∈ H ∀ v ∈ V, E′(u)v = 〈w, v〉H},

∇E(u) = w.

Definition 2.2. For every t ∈ [0, T ], we define the gradient of E in H with

respect to the inner product 〈·, ·〉g(t) by

D(∇g(t)E) = {u ∈ V : ∃w ∈ H ∀ v ∈ V, E′(u)v = 〈w, v〉g(t)},

∇g(t)E(u) = w.

Remark 2.1. We note that in the finite-dimensional setting, the gradients∇E(u)

and ∇g(t)E(u) exist and are unique for every t ∈ [0, T ] and every u ∈ V by the Riesz

representation theorem.

Let us consider the evolution equation

(2.2)

{

u′(t) +∇g(t)E(u(t)) = f(t) for a.e. t ∈ (0, T ),

u(0) = u0,

where f is a given function from [0, T ] into H and u0 is a given initial data in V .

We call this evolution equation an abstract gradient system. We are concerned with

solutions of (2.2) given in the following sense.

Definition 2.3. A function u : [0, T ] → V is called a solution of problem (2.2) if:

u ∈ W 1,2(0, T ;H) ∩ L∞(0, T ;V ), u(t) ∈ D(∇g(t)E) for a.e. t ∈ [0, T ]

and u satisfies the gradient system (2.2).
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Remark 2.2. Note that, by the Sobolev embedding

W 1,2(0, T ;H) →֒ C([0, T ];H),

it makes sense to evaluate an element u ∈ W 1,2(0, T ;H) pointwise, and if u is

a solution of problem (2.2), the initial condition u(0) = u0 has a well defined meaning.

Remark 2.3. The reader shall be referred to [9] for a comprehensive discussion

on the notions of gradients and gradient systems in finite- and infinite-dimensional

spaces.

Now, we state the assumptions on E and g which will be needed in the sequel.

(H1) E is continuously differentiable.

(H2) E is a weakly coercive functional, i.e.,

lim
‖u‖V →∞

E(u) = ∞.

(H3) E′ : V → V ′ is a monotone operator, i.e., for every u, v ∈ V

〈E′(u)− E′(v), u − v〉V ′,V > 0.

(H4) E′ is a bounded operator, i.e., for every R > 0 there exists CR > 0 such that

for every u ∈ V the implication

‖u‖V 6 R⇒ ‖E′(u)‖V ′ 6 CR

holds true.

(H5) There exist two constants c1, c2 > 0 such that for every v ∈ H and for every

t ∈ [0, T ]

c1‖v‖H 6 ‖v‖g(t) 6 c2‖v‖H .

(H6) The function Q : [0, T ] → L(H) is continuously differentiable on [0, T ].

(H7) The negative derivative −Q′ is positive, i.e., for every t ∈ [0, T ] and every

u ∈ H

〈−Q′(t)u, u〉H > 0.

(H8) For every t ∈ [0, T ], Q(t) is invertible.

Let us provide some remarks on assumption (H5).

Remark 2.4. Assume that assumption (H5) is satisfied. Then we have for every

t ∈ [0, T ] and v, w ∈ H

|〈Q(t)v, w〉H | = |〈v, w〉g(t)| 6 ‖v‖g(t)‖w‖g(t) 6 c22‖v‖H‖w‖H .

Therefore

‖Q(t)‖L(H) 6 c22.
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Remark 2.5. Assume that assumption (H5) is satisfied. Then we claim that we

have the following assertion:

un ⇀ u in L2(0, T ;H),

v ∈ L2(0, T ;H)

}

⇒

∫ T

0

〈un, v〉g(t) dt→

∫ T

0

〈u, v〉g(t) dt.

Indeed, if v ∈ L2(0, T ;H), then we deduce from the preceding remark that Q(·)v ∈

L2(0, T ;H), and the desired result follows from the definition of the weak convergence

in L2(0, T ;H).

The purpose of this paper is to prove the following result.

Theorem 2.1. Suppose that assumptions (H1)–(H8) hold. Then for every u0 ∈ V

and every f ∈ L2(0, T ;H), there exists a unique function u which is a solution of

problem (2.2).

The following result is crucial for the proof of uniqueness of solutions for prob-

lem (2.2).

Lemma 2.1. Assume that assumption (H8) is satisfied. Then we have

D(∇g(t)E) = D(∇E),

∇g(t)E(u) = Q(t)−1∇E(u) ∀ t ∈ [0, T ] ∀u ∈ D(∇E).

P r o o f. Let u ∈ D(∇E). Then we have from identity (2.1)

E′(u)v = 〈∇E(u), v〉H = 〈Q(t)Q(t)−1∇E(u), v〉H = 〈Q(t)−1∇E(u), v〉g(t)

for all v ∈ V and all t ∈ [0, T ]. This shows that u ∈ D(∇g(t)E) and ∇g(t)E(u) =

Q(t)−1∇E(u). In a similar way we prove that D(∇g(t)E) ⊂ D(∇E). �

3. Proof of Theorem 2.1

Uniqueness. Let u1, u2 ∈ W 1,2(0, T ;V ) ∩ L∞(0, T ;V ) be two solutions of prob-

lem (2.2). Let us introduce the function ψ : [0, T ] → R defined for every t ∈ [0, T ] by

ψ(t) =
1

2
‖u1(t)− u2(t)‖

2
g(t).
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By assumption (H6), the function ψ is almost everywhere differentiable on [0, T ],

and by using the fact that u1 and u2 are solutions of problem (2.2), assumption (H8)

and Lemma 2.1, we have for almost every t ∈ [0, T ]

ψ′(t) =
1

2
〈Q′(t)(u1 − u2), u1 − u2〉H + 〈Q(t)(u′1 − u′2), u1 − u2〉H

=
1

2
〈Q′(t)(u1 − u2), u1 − u2〉H − 〈∇E(u1)−∇E(u2), u1 − u2〉H

=
1

2
〈Q′(t)(u1 − u2), u1 − u2〉H − (E′(u1)− E′(u2))(u1 − u2).

Then, exploiting assumptions (H3) and (H7), we deduce for almost every t ∈ [0, T ]

that

ψ′(t) 6 0.

The integration of both sides over (0, T ) and the initial conditions u1(0) = u2(0) = u0

yield for every t ∈ [0, T ]

ψ(t) = 0.

Therefore

u1 = u2,

which proves the uniqueness of solutions for problem (2.2).

Existence. The proof of existence of solutions for problem (2.2) is based on the

application of the Galerkin method. We start by constructing approximate finite-

dimensional problems.

3.1. Approximate problems and existence of approximate solutions. Let

u0 ∈ V and f ∈ L2(0, T ;H). Since V is a separable space, there exists a count-

able set of linearly independent elements {wn : n > 1} such that their finite linear

combinations are dense in V . For every m ∈ N, put

Vm = span{wn, 1 6 n 6 m}.

As
⋃

m

Vm is dense in V and (Vm) is increasing, we can choose um0 ∈ Vm such that

(3.1) u0 = lim
m→∞

um0 in V.

Let Em be the restriction of E to Vm, gm : [0, T ] → Inner(Vm) be the function defined

for every t ∈ [0, T ] and for every v, w ∈ Vm by

〈v, w〉gm(t) = 〈v, w〉g(t).
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Let further Pm(t) : H → Vm be the orthogonal projection from H onto Vm with

respect to the inner product 〈·, ·〉g(t). Let us consider the approximate problems in Vm

(3.2)

{

u′m(t) +∇gm(t)Em(um(t)) = Pm(t)f(t), a.e. t ∈ (0, T ),

um(0) = um0 .

Here ∇gm(t)Em denotes the gradient of Em in Vm with respect to the inner prod-

uct 〈·, ·〉gm(t).

Lemma 3.1. Problem (3.2) admits a maximal solution um ∈W 1,2
loc ([0, Tm);Vm).

P r o o f. See [7], Proof of Theorem 4, Part 1. �

Lemma 3.2. We assume that (H1) is satisfied. Then we have the chain rule

d

dt
E(um(t)) = 〈∇gm(t)Em(um(t)), u′m(t)〉gm(t) for almost every t ∈ (0, T ).

P r o o f. We have for almost every t ∈ (0, T )

d

dt
E(um(t)) =

d

dt
Em(um(t)) (by the definition of Em)

= E′
m(um(t))(u′m(t)) (by [9], Lemma 8.4 (a))

= 〈∇gm(t)Em(um(t)), u′m(t)〉gm(t) (by the definition of ∇gm(t)Em).

�

3.2. Estimates. At first, we establish a priori estimates for the solutions um of

problem (3.2).

Lemma 3.3. There exist constants C and C′ independent on m such that

sup
t∈[0,Tm)

‖um(t)‖V 6 C

and

sup
m∈N

∫ Tm

0

‖u′m‖2H dt 6 C′.

P r o o f. Multiply (3.2) by u′m with respect to the inner product 〈·, ·〉gm(t), then

integrate over the interval (0, t), t ∈ (0, Tm), and obtain

∫ t

0

‖u′m(s)‖2g(s) ds+ E(um(t)) − E(um0 ) =

∫ t

0

〈f(s), u′m(s)〉g(s) ds
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using Lemma 3.2. Assumption (H5), the continuity of E, and the fact that (um0 ) is

a bounded sequence in V yield

c21

∫ t

0

‖u′m(s)‖2H ds+ E(um(t)) 6 C1 + c22

∫ t

0

‖f(s)‖H‖u′m(s)‖H ds,

where C1 > 0 is independent of m. Then, by virtue of the Young inequality, this

implies that there exists a constant c3 which is independent of m and t such that

(3.3)
c21
2

∫ t

0

‖u′m(s)‖2H ds+ E(um(t)) 6 c3.

Thus, we obtain the estimate

sup
t∈[0,Tm)

E(um(t)) 6 c3.

Since, by assumption (H2), E is weakly coercive, the last estimate yields that there

exists a constant C independent of m such that

sup
t∈[0,Tm)

‖um(t)‖V 6 C.

The functional E is of class C1, and by assumption (H3), E′ is monotone, so that

by [16], Proposition 1.1, page 158, E is convex, which implies, since E is coercive on

the reflexive Banach space V , that E is bounded from below. Thus, we deduce from

estimate (3.3) that there exists a constant C′ which is independent of m such that

sup
m∈N

∫ Tm

0

‖u′m‖2H dt 6 C′.

�

3.3. Limiting procedure. Next, we derive the convergence of um to a solution u

of (2.2) as m → ∞. From the above a priori estimates we can deduce that the

solutions um are global, that is Tm = T , and therefore the sequence (um) is bounded

in W 1,2(0, T ;H) ∩ L∞(0, T ;V ), and by virtue of assumption (H4) we get that the

sequence (E′(um)) is bounded in L∞(0, T ;V ′). From this boundedness, by extracting

a sequence, which will be also denoted by (um), we can derive convergences of (um).

Lemma 3.4. There exist u ∈ W 1,2(0, T ;H) ∩ L∞(0, T ;V ) and χ ∈ L∞(0, T ;V ′)

such that

um ⇀ u in W 1,2(0, T ;H),(3.4)

um
w∗

→ u in L∞(0, T ;V ),(3.5)

E′(um)
w∗

→ χ in L∞(0, T ;V ′).(3.6)
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Now, we justify that the function u satisfies the initial condition of problem (2.2).

Lemma 3.5. The function u satisfies the condition u(0) = u0.

P r o o f. Since, by (3.4), (um(0)) converges weakly to u(0) in H , and since

um(0) = um0 and (um0 ) converges strongly to u0 in V , we claim by uniqueness of the

limit that u(0) = u0. �

Next, we prove that u satisfies the evolution equation of problem (2.2).

Lemma 3.6. It holds that u(t) ∈ D(∇g(t)E) for a.e. t ∈ (0, T ) and u satisfies the

evolution equation of problem (2.2).

P r o o f. Let m ∈ N, w ∈ Vm and ϕ ∈ L2(0, T ) be a scalar function. Then for

every n > m we have from (3.2)

∫ T

0

〈u′n, ϕ(t)w〉g(t) dt+

∫ T

0

〈E′(un), ϕ(t)w〉V ′,V dt =

∫ T

0

〈f(t), ϕ(t)w〉g(t) dt.

Recalling (3.4), (3.6) and Remark 2.5, we obtain upon passing to weak limits in this

last identity

∫ T

0

〈u′, ϕ(t)w〉g(t) dt+

∫ T

0

〈χ, ϕ(t)w〉V ′,V dt =

∫ T

0

〈f(t), ϕ(t)w〉g(t) dt.

By [21], Lemma 8.28,
⋃

k∈N

L2(0, T ;Vk) is dense in L
2(0, T ;V ), so that this last identity

holds true if we replace ϕ(·)w by any v ∈ L2(0, T ;V ), which implies in particular

(3.7)

∫ T

0

〈u′, u〉g(t) dt+

∫ T

0

〈χ, u〉V ′,V dt =

∫ T

0

〈f(t), u〉g(t) dt.

Returning once more to (3.2), integrating by parts, and using assumption (H6) and

the fact that Q(t) is a symmetric operator, we obtain

(3.8)

∫ T

0

E′(un)un dt =

∫ T

0

〈f(t), un〉g(t) dt−

∫ T

0

〈u′n, un〉g(t) dt

=

∫ T

0

〈f(t), un〉g(t) dt−

∫ T

0

〈Q(t)u′n, un〉H dt

=

∫ T

0

〈f(t), un〉g(t) dt+
1

2

∫ T

0

〈Q′(t)un, un〉H dt

+
1

2
〈Q(0)un0 , u

n
0 〉H −

1

2
〈Q(T )un(T ), un(T )〉H .
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By assumption (H7), u 7→ −
∫ T

0
〈Q′(t)u, u〉H dt defines a positive quadratic form on

L2(0, T ;H). Since this quadratic form is continuous on L2(0, T ;H), it is weakly

lower semicontinuous on L2(0, T ;H). Using the convergence (3.4), we have

(3.9) −

∫ T

0

〈Q′(t)u, u〉H dt 6 − lim inf
n→∞

∫ T

0

〈Q′(t)un, un〉H dt.

Similarly, using the fact that Q(T ) is a positive operator, we deduce that u 7→

〈Q(T )un(T ), un(T )〉H defines a weakly lower semicontinuous quadratic form on H .

The convergence (3.4) yields that un(T )⇀ u(T ) in H , and consequently

(3.10) 〈Q(T )u(T ), u(T )〉H 6 lim inf
n→∞

〈Q(T )un(T ), un(T )〉H .

The convergence (3.1) yields

(3.11) 〈Q(0)un0 , u
n
0 〉H → 〈Q(0)u(0), u(0)〉H .

Employing Remark 2.5 and (3.4), we get

(3.12)

∫ T

0

〈f(t), un〉g(t) dt→

∫ T

0

〈f(t), u〉g(t) dt.

By combining (3.12), (3.11), (3.10), (3.9) and (3.8) we get

lim sup
n→∞

∫ T

0

E′(un)un dt 6

∫ T

0

〈f(t), u〉g(t) dt+
1

2

∫ T

0

〈Q′(t)u, u〉H dt

+
1

2
〈Q(0)u(0), u(0)〉H −

1

2
〈Q(T )u(T ), u(T )〉H.

Integrate by parts again to get the identity

∫ T

0

〈u′, u〉g(t) = −
1

2

∫ T

0

〈Q′(t)u, u〉H dt−
1

2
〈Q(0)u(0), u(0)〉H+

1

2
〈Q(T )u(T ), u(T )〉H.

From (3.7) we deduce that

(3.13) lim sup
n→∞

∫ T

0

E′(un)un dt 6

∫ T

0

〈f(t), u〉g(t) dt−

∫ T

0

〈u′, u〉g(t)

=

∫ T

0

〈χ, u〉V ′,V dt.

By assumption (H3) we have

∫ T

0

〈E′(un), un − u〉V ′,V dt >

∫ T

0

〈E′(u), un − u〉V ′,V dt.
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Letting n→ ∞ and recalling (3.5) and (3.6), we obtain

lim inf
n→∞

∫ T

0

E′(un)un dt >

∫ T

0

〈χ, u〉V ′,V dt.

This limit together with (3.13) yield

(3.14) lim
n→∞

∫ T

0

E′(un)un dt =

∫ T

0

〈χ, u〉V ′,V dt.

Let v ∈ L∞(0, T ;V ), λ ∈ R and put wλ = (1−λ)u+λv. Using again assumption (H3)

we have

∫ T

0

〈E′(un), un − wλ〉V ′,V dt >

∫ T

0

〈E′(wλ), un − wλ〉V ′,V dt,

which can be rewritten as

λ

∫ T

0

〈E′(un), u− v〉V ′,V dt > λ

∫ T

0

〈E′(wλ), u− v〉V ′,V dt

+

∫ T

0

〈E′(wλ), un − u〉V ′,V dt−

∫ T

0

〈E′(un), un − u〉V ′,V dt.

Letting n→ ∞ and recalling (3.5), (3.6) and (3.14), we obtain

∫ T

0

〈χ, u− v〉V ′,V dt >

∫ T

0

〈E′(wλ), u− v〉V ′,V dt.

Let λ→ 0 and use the continuity of E′ to discover

∫ T

0

〈χ, v〉V ′,V dt 6

∫ T

0

〈E′(u), v〉V ′,V dt.

Since v ∈ L∞(0, T ;V ) is arbitrary, we deduce that in fact the equality above holds,

which implies

E′(u) = χ.

Then equality (3.7) becomes for every v ∈ L2(0, T ;V )

∫ T

0

〈u′, v〉g(t) dt+

∫ T

0

E′(u)v dt =

∫ T

0

〈f(t), v〉g(t) dt.

Thus u(t) ∈ D(∇g(t)E) for a.e. t ∈ (0, T ) and the function u satisfies the evolution

equation of system (2.2). �

Combining these lemmas, we have proved the statement of Theorem 2.1.
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4. Application

Let 1 < p <∞ and let N ∈ N
∗ satisfy one of the conditions

N = 1 and 1 < p 6 2, or N = p = 2, or

N = 2 and 1 < p < 2, or N > 3 and 2N/(N + 2) 6 p 6 2.

Let further Ω ⊂ R
N be an open set of class C1 which has a finite width, that

is, it lies between two parallel hyperplanes. Let ε ∈ (0, 1) and let m : [0, T ]× Ω →

[ε, 1/ε] be a measurable function such that for every x ∈ Ω, m(·, x) is continuously

differentiable and ∂m/∂t is positive on (0, T )×Ω. We consider the diffusion equation

(4.1)



















∂u

∂t
−m(t, ·)∆pu = f in (0, T )× Ω,

u = 0 on (0, T )× ∂Ω,

u(0, ·) = u0 in Ω,

where ∆p is the p-Laplace operator

∆pu := div(|∇u|p−2∇u).

Let V =W 1,p
0 (Ω). By [14], Theorem 12.17, the expression

‖u‖V = ‖∇u‖Lp(Ω)N

defines a norm on W 1,p
0 (Ω) which is equivalent to the usual norm on W 1,p

0 (Ω). Let

E : V → R be the functional defined for every u ∈ V by

E(u) =
1

p

∫

Ω

|∇u|p dx.

As well known, E is continuously differentiable, convex, coercive and we have

E′(u)v =

∫

Ω

|∇u|p−2∇u · ∇v dx ∀u, v ∈ V.

Moreover, the derivative E′ is bounded. We refer the reader to [9], Theorem 4.3 for

more details about these facts. Let further

H = L2(Ω)

be endowed with the usual inner product and norm. If one of the preceding con-

ditions on N and p is satisfied, then, by the Sobolev embedding theorem, we have

that W 1,p
0 (Ω) is continuously embedded into L2(Ω).
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We consider the function g : [0, T ] → Inner(H) defined for every t ∈ [0, T ] and

every v, w ∈ H by

〈v, w〉g(t) =

∫

Ω

vw
dx

m(t, x)
.

Then we have for every t ∈ [0, T ]

Q(t) =
1

m(t, ·)
IH ,

where IH : H → H denotes the identity mapping of H . We define the p-Laplace

operator with the Dirichlet boundary conditions on L2(Ω) by

D(∆p) =

{

u ∈ W 1,p
0 (Ω): ∃w ∈ L2(Ω) ∀ v ∈W 1,p

0 (Ω),

∫

Ω

|∇u|p−2∇u · ∇v dx =

∫

Ω

wv dx

}

,

∆pu = w.

From Lemma 2.1, we have D(∇g(t)E) = D(∆p) and

∇g(t)E(u) = −m(t, ·)∆pu

for every t ∈ [0, T ] and every u ∈ D(∆p). As a consequence of Theorem 2.1, we

obtain the following result.

Corollary 4.1. For every f ∈ L2(0, T ;L2(Ω)) and every u0 ∈ W 1,p
0 (Ω), there

exists a unique u ∈ W 1,2(0, T ;L2(Ω)) ∩ L∞(0, T ;W 1,p
0 (Ω)) such that u(t) ∈ D(∆p)

for almost every t ∈ (0, T ), which is the solution of problem (4.1).
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