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On some properties of the upper

central series in Leibniz algebras

Leonid A. Kurdachenko, Javier Otal, Igor Ya. Subbotin

Abstract. This article discusses the Leibniz algebras whose upper hypercenter
has finite codimension. It is proved that such an algebra L includes a finite
dimensional ideal K such that the factor-algebra L/K is hypercentral. This
result is an extension to the Leibniz algebra of the corresponding result obtained
earlier for Lie algebras. It is also analogous to the corresponding results obtained
for groups and modules.

Keywords: Leibniz algebra; Lie algebra; center; central serie; hypercenter; nilpo-
tent residual

Classification: 17A32, 17A60, 17A99

Some algebraic structures, which at first glance look very far from each other,
in fact have common deep connections. These relationships are expressed in the
presence of objects that can be called analogs, and in the presence of properties
of these analogs, which in one sense or another, can also be called similar. As
a well-known example, one can point out the connection between different types of
generalized nilpotent groups and Lie algebras. Nilpotency is a concept that arises
(in one form or another) in different algebraic structures. In turn, nilpotency
entails the existence of specific series of substructure—the central series, and hence
the existence of such an object as a center. The concept of center is also connected
with commutativity: it is an indicator of the noncommutativity of the structure
(the difference between the algebraic structure and its center shows how close or
far from a commutative structure it is). Therefore, the concept of a center arises
in different ways in distinct algebraic structures. In groups, associative rings,
and associative algebras, the center is the set of all those elements that commute
with any other element. In nonassociative rings and algebras this concept is
transformed. Thus, in a Lie algebra L, the center is the set of all those elements z
for which [z, x] = 0 for every element x ∈ L. In a module M over a ring R, the
center is the set of all elements a ∈ M such that αa = a for all elements α ∈ R,
and so on. The following question naturally arises: what properties associated
with the center in one of such algebraic structures have their analogs in other
algebraic structures? In other words, what properties are common, i.e. which
have some deep nature?
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One of the important results of the theory of infinite groups which became the
basis for a whole direction, is the following theorem:

If the center ζ(G) of a group G has finite index, then the derived subgroup
[G,G] is finite.

This result was proved by B.H. Neumann in the paper [13], but was named
Schur’s theorem by P. Hall. This result was discussed in many works and led to
natural questions, one of which was the following:

Which properties of the factor group over the center are carried over to its
commutator subgroup?

A series of works, among which we can mention [7], [11], [2], were dedicated to
the development of this topic. Another direction in the development of this result
is connected with the replacement of the center by hypercenters. The first result
here, derived from the work of B.H. Neumann, was due to R. Baer, see [1], where
he proved the following:

If the factor-group G/ζk(G) is finite, where ζk(G) is the kth term of the upper
central series, then the (k + 1)st term of the lower central series is also finite.

Baer’s result was extended in various ways. One of the final is the following
statement, see [6], [9]:

If the upper hypercenter of G has finite index, then G includes a finite normal
subgroup K such that G/K is hypercentral.

This result also had further extensions, see for example [4], [5]. The above
mentioned fundamental results and other results of this topic have analogs in
other algebraic structures, see for example [12]. In particular, they have analogs
also in Lie algebras. These analogs were obtained in [10]. A natural and essential
generalization of Lie algebras are Leibniz algebras.

Let L be an algebra over a field F with the binary operations + and [ , ]. Then
L is called a Leibniz algebra (more precisely a left Leibniz algebra ) if it satisfies
the Leibniz identity

[a, [b, c]] = [[a, b], c] + [b, [a, c]]

for all a, b, c ∈ A.
If L is a Lie algebra, then L is a Leibniz algebra. Conversely, if L is a Leibniz

algebra such that [a, a] = 0 for each element a ∈ L, then L is a Lie algebra.
Therefore, Lie algebras can be characterized as the Leibniz algebras in which
[a, a] = 0 for every element a. In other words, Lie algebras can be described as
anticommutative Leibniz algebras.

This shows that the differences between Lie algebras and Leibniz algebras are
very significant. An analogy with groups is relevant here, differences of approxi-
mately the same nature exist between abelian and nonabelian groups. The very
first example that shows this is cyclic algebras. Cyclic Lie algebras are abelian
and have dimension 1. The situation with cyclic Leibniz algebras is significantly
complicated, as can be seen from the results of [3] where their structure was
described.

A Leibniz algebra L has one important ideal. Denote by Leib(L) the subspace,
generated by the elements [a, a], a ∈ L. It is possible to prove that Leib(L) is an
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ideal of L. Moreover, L/Leib(L) is a Lie algebra. Conversely, if H is an ideal
of L such that L/H is a Lie algebra, then Leib(L) ≤ H .

The ideal Leib(L) is called the Leibniz kernel of the algebra L.
With regard to the left center it can be mentioned in passing that it is an ideal

because it is the kernel of the Leibniz algebra homomorphism Φ: L → ad(L);
x → ad(x) where ad(x)(y) = [x, y]. The difference between Lie algebras and
Leibniz algebras is in that fact that the latter have a nonzero Leibniz kernel.
Again an analogy with group theory arises: the difference between abelian groups
and nonabelian groups consists in the presence of a nontrivial derived subgroup
in the latter.

In the paper [8], it has been considered a Leibniz algebra L whose hypercenter
of finite number k has finite codimension. The constraints for the dimension of
finite γk+1(L) were obtained in this case.

The fact that the operation in Leibniz algebras is not anticommutative, leads
us to three centers.

The left (or right) center ζ left(L) (ζright(L), respectively) of L is defined by the
rule

ζ left(L) = {x ∈ L : [x, y] = 0 for each element y ∈ L}

(ζright(L) = {x ∈ L : [y, x] = 0 for each element y ∈ L}, respectively).
In general, ζ left(L) 6= ζright(L); it is possible to prove that the left center of L is

an ideal, but the right center of L is only a subalgebra, see corresponding examples
in [8].

Put
ζ(L) = {x ∈ L : [x, y] = 0 = [y, x] for each element y ∈ L}.

The subset ζ(L) is called the center of L. It is not hard to see that the center
is an ideal of L, so that we can speak about the factor–algebra L/ζ(L).

As usual, a Leibniz algebra L is called abelian, if [x, y] = 0 for all elements
x, y ∈ L. We note that ζ left(L) and ζright(L) (and hence the center of L) are
abelian.

We note the following important property of the Leibniz kernel:

[[a, a], x] = [a, [a, x]]− [a, [a, x]] = 0.

This property shows that Leib(L) ≤ ζ left(L), in particular, Leib(L) is an
abelian subalgebra of L.

We have the usual correspondence between subalgebras of a factor algebra by
a given ideal and subalgebras of the original algebra containing the ideal. Starting
from the center, we can define the upper central series

〈0〉 = ζ0(L) ≤ ζ1(L) ≤ ζ2(L) ≤ · · · ≤ ζα(L) ≤ ζa+1(L) ≤ · · · ≤ ζγ(L) = ζ∞(L)

of a Leibniz algebra L by the following rule: ζ1(L) = ζ(L) is the center of L,
and recursively ζa+1(L)/ζa(L) = ζ(L/ζα(L)) for all ordinals α, and ζλ(L) =
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⋃

µ<λ ζµ(L) for limit ordinals λ. By definition, each term of this series is a two-

sided ideal of L. The last term ζ∞(L) of this series is called the upper hypercenter
of L.

A Leibniz algebra L is said to be hypercentral if it coincides with the upper
hypercenter.

Denote by zl(L) the length of upper central series of L.
Dual to the concept of the upper central series is the concept of the lower

central series of L. This is the series

L = γ1(L) ≥ γ2(L) ≥ · · · ≥ γα(L) ≥ γα+1(L) ≥ · · · ≥ γσ(L)

defined by the following rule: L = γ1(L), γ2(L) = [L,L], γα+1(L) = [L, γα(L)] for
all ordinals α, and γλ(L) =

⋂

µ<λ γµ(L) for the limit ordinals λ. The last term

γσ(L) is called the lower hypocenter of L. We have γσ(L) = [L, γσ(L)].
If σ = k is a positive integer, then γk(L) = [L, [L, [L, . . . , L] . . . ]]

︸ ︷︷ ︸

k

.

The Leibniz algebra concepts of upper and lower central series, introduced
here for the first time, are analogs of similar concepts defined in other algebraic
structures such as Lie algebras and groups. These concepts play a key role there.

An important notion of nilpotency of a Leibniz algebra L is associated with
these two series. In the majority of works it is introduced using the lower central
series.

We say that a Leibniz algebra L is called nilpotent, if there exists a positive
integer k such that γk(L) = 〈0〉. More precisely, L is said to be nilpotent of
nilpotency class c if γc+1(L) = 〈0〉, but γc(L) 6= 〈0〉. We denote the nilpotency
class of L by ncl(L).

It is a well-known fact that the lower and the upper central series in nilpotent
Lie algebras and nilpotent groups have the same length. For Leibniz algebras this
statement also holds, it was proved in [8]. In other words, a Leibniz algebra L is
nilpotent of nilpotency class c if and only if ζc(L) = L.

The paper [10] considered Lie algebras whose upper hypercenters have finite
codimension. In addition, some restrictions were obtained for the dimension of
this finite dimensional ideal. A similar result for groups was obtained in [9]. These
results relate to a rather extensive topic linked to the study of the relationships
between the upper and lower central series in various algebraic structures, see the
survey [12]. The paper [8] considered a Leibniz algebra L with hypercenter of
finite index k having finite codimension. It was proved that in this case, γk+1(L)
has finite dimension and some limitations for the dimension of a finite γk+1(L)
were obtained.

In the current paper, we expanded to Leibniz algebras the main result of the
paper [10]. More precisely we prove the following

Theorem B. Let L be a Leibniz algebra over a field F . Suppose that ζ∞(L) has
finite codimension, say d. Then L includes a finite dimensional ideal E such that

the factor-algebra L/E is hypercentral. Moreover, dimF (E) ≤ d(d+ 1).
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Another main result relates to the refinement of Theorem A of the paper [8].
The fact that γk+1(L) has finite dimension, entails the finite dimensionality of
the nilpotent residual of L. As it turned out, the constraints on the dimension of
the nilpotent residual are much simpler than the restrictions for the dimension of
finite γk+1(L). This statement is justified by another main result of our work.

Theorem A. Let L be a Leibniz algebra over a field F , and R be the nilpo-

tent residual of L. Suppose that there exists a positive integer n such that

codimF (ζn(L)) = d. Then L/R is nilpotent, and R has dimension at most d(d+1).

We note that the last theorem is one of the steps of the proof of Theorem B.

1. On some direct decomposition in abelian ideals of Leibniz algebras

The first section of the current work is of a preparatory nature. It is devoted to
obtaining important direct decompositions in abelian ideals of Leibniz algebras.
The presence of such direct decompositions plays a significant role in the proving
the main results of this work.

Let L be a Leibniz algebra over a field F . If A,B are subspaces of L, then
[A,B] denotes a subspace generated by all elements [a, b] where a ∈ A, b ∈ B.

Let L be a Leibniz algebra over a field F , M be a nonempty subset of L. Then
〈M〉 denotes the subalgebra of L generated by M .

Let L be a Leibniz algebra over a field F , M be a nonempty subset of L and H
be a subalgebra of L. Put

Annleft
H (M) = {a ∈ H : [a,M ] = 0}, Annright

H (M) = {a ∈ H : [M,a] = 0}.

The subset Annleft
H (M) is called the left annihilator or left centralizer of M in

a subalgebra H; the subset Annright
H (M) is called the right annihilator or right

centralizer of M in a subalgebra H. The intersection

AnnH(M) = AnnleftH (M) ∩ AnnrightH (M) = {a ∈ H : [a,M ] = 〈0〉 = [M,a]}

is called the annihilator or centralizer of M in a subalgebra H.
It is not hard to see that all these subsets are subalgebras of L. Moreover, if M

is a left ideal of L, then AnnleftH (M) is an ideal of L. Indeed, let x be an arbitrary

element of L, a ∈ Annleft
H (M), b ∈ M . Then

[[a, x], b] = [a, [x, b]]− [x, [a, b]] = 0− [x, 0] = 0,
and

[[x, a], b] = [x, [a, b]]− [a, [x, b]] = [x, 0]− 0 = 0.

If M is an ideal of L, then AnnL(M) is an ideal of L. Indeed, let x be an
arbitrary element of L, a ∈ AnnH(M), b ∈ M . Using the above arguments, we
obtain that [[a, x], b] = [[x, a], b] = 0. Further,

[b, [a, x]] = [[b, a], x]] + [a, [b, x]] = [0, x] + 0 = 0,
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and
[b, [x, a]] = [[b, x], a] + [x, [b, a]] = 0 + [x, 0] = 0.

Let A,B be ideals of L such that B ≤ A. Then we define Annleft
L (A/B),

Annright
L (A/B), and AnnL(A/B) by the following

AnnleftL (A/B) = {x ∈ L : [x,A] ≤ B},

AnnrightL (A/B) = {y ∈ L : [A, y] ≤ B},

AnnL(A/B) = Annleft
L (A/B) ∩ AnnrightL (A/B)

= {z ∈ L : [z, A] ≤ B and [A, z] ≤ B}.

By the statements proved above the left center of L is an ideal, moreover
Leib(L) ≤ ζ left(L), so that L/ζ left(L) is a Lie algebra.

The center ζ(L) of L is the intersection of annihilators of all elements of L.
In other words, the center is the annihilator of the whole algebra L, and by the
statements proved above it is an ideal of L. In particular, we can consider the
factor-algebra L/ζ(L).

Let L be a Leibniz algebra, B,C be ideals of L such that B ≤ C. The factor
C/B is called L-central, if C/B ≤ ζz(L/B). In other words, [C,L], [L,C] ≤ B or
AnnL/B(C/B) = L/B.

The factor C/B is called L-eccentric if AnnL/B(C/B) 6= L/B.

Lemma 1.1. Let L be a Leibniz algebra over a field F , and A be an ideal of L.
Suppose that A satisfies the following conditions:

(i) A is abelian;

(ii) L/AnnL(A) is hypercentral;
(iii) A includes an ideal C of L such that AnnL(C) 6= L and C is L-chief;
(iv) A/C ≤ ζ(L/C).

Then A includes an ideal D of L such that A = C ⊕ D, in particular, D is

L-central.

Proof: Let Y = AnnL(A) and Y ∈ z + Y 6= ζ(L/Y ). Consider the mapping
ξz : A −→ A defined by the rule ξz(a) = [z, a] for each a ∈ A. Clearly, this

mapping is F -linear, Ker(ξz) = AnnrightA (z), Im(ξz) = [z, A], and we have the
following F -isomorphism A/Ker(ξz) ∼=F Im(ξz).

Let x ∈ L and c ∈ AnnrightA (z). We have

[z, [c, x]] = [[z, c], x] + [c, [z, x]].

From the choice of z we obtain that [z, x] ∈ AnnL(A), so that [c, [z, x]] = 0.
The choice of c implies that [z, c] = 0, thus [[z, c], x] = 0, which shows that

[c, x] ∈ Annright
A (z). Further,

[z, [x, c]] = [[z, x], c] + [x, [z, c]].
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Again, the inclusion [z, x] ∈ AnnL(A) implies [[z, x], c] = 0, and [x, [z, c]] =

[x, 0] = 0, so that [x, c] ∈ Annright
A (z). This proves that Annright

A (z) is an ideal
of L.

Since A is abelian, D = [z, A] is a subalgebra. Let x ∈ L, a ∈ A. We have

[[z, a], x] = [z, [a, x]]− [a, [z, x]].

Since A is an ideal, [a, x] ∈ A, so that [z, [a, x]] ∈ [z, A]. The choice of z implies
that [z, x] ∈ AnnL(A), and hence 0 = [a, [z, x]]. Furthermore,

[x, [z, a]] = [[x, z], a] + [z, [x, a]].

Since A is an ideal, [x, a] ∈ A, so that [z, [x, a]] ∈ [z, A]. The choice of z implies
that [x, z] ∈ AnnL(A), and hence [[x, z], a] = 0. It follows that D is an ideal of L.

By our condition, [z, A] ≤ C. Since C is L-chief, then either [z, A] = C or
[z, A] = 〈0〉.

Consider the first case. Then Im(ζz) = C. Suppose that [z, C] = 〈0〉. Then we
obtain the inclusion C ≤ Ker(ζz). Since A/C is L-central, the factor A/Ker(ζz)
is also L-central. Put K = Ker(ζz). Let c be an arbitrary element of C. Then
c = [z, a] for some element a ∈ A. Since A/K is L -central, K = [a+K,x+K] =
[x+K, a+K] for every element x ∈ L.

The equations [a+K,x+K] = [a, x]+K and [x+K, a+K] = [x, a]+K imply
that [a, x], [x, a] ∈ K = Ker(ζz). It implies that [z, [a, x]] = 0 = [z, [x, a]]. Then

[c, x] = [[z, a], x] = [z, [a, x]]− [a, [z, x]].

From the choice of z we obtain that [z, x] ∈ AnnL(A), so that [a, [z, x]] = 0.
Then [c, x] = [z, [a, x]] = 0. Similarly,

[x, c] = [x, [z, a]] = [[x, z], a]] + [z, [x, a]].

We have again [x, z] ∈ AnnL(A), so that [[x, z], a] = 0. Then [x, c] =
[z, [x, a]] = 0.

But this means that C is L-central, and we obtain a contradiction with the
choice of C. This contradiction shows that [z, C] 6= 〈0〉.

Let b be an arbitrary element of [z, C], and x be an arbitrary element of L,
then b = [z, u] for some element u ∈ C. Since [u, [z, x]] = 0, we have

[b, x] = [[z, u], x] = [z, [u, x]]− [u, [z, x]] = [z, [u, x]].

The fact that C is an ideal of L implies that [u, x] ∈ C, and therefore,
[z, [u, x]] ∈ [z, C]. Furthermore,

[x, b] = [x, [z, u]] = [[x, z], u] + [z, [x, u]] = [z, [x, u]].

The fact that C is an ideal of L implies that [x, u] ∈ C, and therefore,
[z, [x, u]] ∈ [z, C], which proves that [z, C] is an ideal of L.
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Since [z, C] 6= 〈0〉, condition (iii) implies that [z, C] = C = [z, A]. Then for
every element a ∈ A∩C there exists an element v ∈ C such that [z, a] = [z, v]. It
follows that [z, a− v] = 0. The choice of a yields that a− v 6= 〈0〉. The equation

a = v+(a− v) shows that A = C+AnnrightA (z). We noted above that Annright
A (z)

is an ideal of L. Finally, the intersection C ∩AnnrightA (z) is an ideal of L, so that

either 〈0〉 = C ∩ Annright
A (z), or C ∩ Annright

A (z) = C. As we saw above, the last

equation is impossible. Hence A = C ⊕AnnrightA (z).
Suppose now that [z, A] = 〈0〉. The choice of z implies that z ∈ AnnL(A) =

Annright
A (z) ∩ Annleft

A (z). Then our assumption implies that z /∈ Annright
L (A).

Consider the mapping ηz : A −→ A defined by the rule ηz(a) = [a, z] for each

a ∈ A. Clearly, this mapping is F -linear, Ker(ηz) = AnnleftA (z), Im(ηz) = [A, z]
and we have the following F -isomorphism A/Ker(ηz) ∼= F Im(ηz).

Let x ∈ L and c ∈ AnnleftA (z). We have

[[c, x], z] = [c, [x, z]]− [x, [c, z]].

From the choice of z we obtain that [x, z] ∈ AnnL(A), so that [c, [x, z]] = 0.
The choice of c yields that [c, z] = 0, thus [x, [c, z]] = 0, which shows that [c, x] ∈

Annleft
A (z). Further,

[[x, c], z] = [x, [c, z]]− [c, [x, z]].

As we have seen above, [x, [c, z]] = [c, [x, z]] = 0, so that [x, c] ∈ C. This proves

that Annleft
A (z) is an ideal of L.

Since A is abelian, V = [A, z] is a subalgebra. Let again x ∈ L, a ∈ A. We
have

[[a, z], x] = [a, [z, x]]− [z, [a, x]].

Since A is an ideal, [a, x] ∈ A, so that [z, [a, x]] = 0, because [z, A] = 〈0〉. As
above [a, [z, x]] = 0, and thus [[a, z], x] = 0. Furthermore,

[x, [a, z]] = [[x, a], z] + [a, [x, z]] = [[x, a], z] ∈ [A, z].

It follows that V is an ideal of L.
By our condition, [A, z] ≤ C. Since C is L-chief, then either [A, z] = C, or

[A, z] = 〈0〉. But in the last case, z ∈ Annright
L (A), and we obtain a contradiction.

Thus [A, z] = C. Suppose that [C, z] = 〈0〉. Then we obtain the inclusion
C ≤ Ker(ηz). Since A/C is L-central, the factor A/Ker(ηz) is also L-central.
Put T = Ker(ηz). Let c be an arbitrary element of C, then c = [a, z] for some
element a ∈ A. Since A/K is L-central, then as above [a, x], [x, a] ∈ T . It implies
that [[a, x], z] = 0 = [[x, a], z]. Since [z, x] ∈ AnnL(A) and [z, A] = 〈0〉, we obtain

[c, x] = [[a, z], x] = [a, [z, x]]− [z, [a, x]] = 0,

so that [c, x] = 0.
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Similarly,

[x, c] = [x, [a, z]] = [[x, a], z]] + [a, [x, z]] = [[x, a], z] = 0.

Thus [x, c] = 0. As we seen above, this means that C is L-central, and we obtain
a contradiction with a choice of C. This contradiction shows that [C, z] 6= 〈0〉.
Let b be an arbitrary element of [C, z] and x be an arbitrary element of L. Then
b = [c, z] for some element c ∈ C. We have

[b, x] = [[c, z], x] = [c, [z, x]]− [z, [c, x]] = 0,

because [c, [z, x]] = 0 and [z, A] = 〈0〉. In particular, [b, x] ∈ [C, z]. Furthermore,

[x, b] = [x, [c, z]] = [[x, c], z] + [c, [x, z]] = [[x, c], z].

The fact that C is an ideal of L implies that [x, c] ∈ C, and, therefore,
[[x, c], z] ∈ [C, z], which proves that [C, z] is an ideal of L. Since [C, z] 6= 〈0〉, condi-
tion (iii) implies that [C, z] = C = [A, z]. Then for every element a ∈ A∩C there
exists an element w ∈ C such that [a, z] = [w, z]. It follows that [a − w, z] = 0.
The choice of a yields that a−w 6= 0. The equation a = w + (a−w) shows that

A = C +AnnleftA (z). We noted above that AnnleftA (z) is an ideal of L. Finally, the

intersection C ∩ AnnleftA (z) is an ideal of L, so that either C ∩ Annleft
A (z) = 〈0〉,

or C ∩ Annleft
A (z) = C. As we saw above, the last equation is impossible. Hence

A = C ⊕AnnleftA (z). �

Corollary 1.2. Let L be a Leibniz algebra over a field F and A be an ideal of L.
Suppose that A satisfies the following conditions:

(i) A is abelian;

(ii) L/AnnL(A) is hypercentral;
(iii) A has a series

〈0〉 = C0 ≤ C1 ≤ · · · ≤ Cn = C ≤ A

of ideals of L such that the factors Cj/Cj−1 are L-eccentric and L-chief,
1 ≤ j ≤ n and A/C is a L-central factor.

Then A includes an ideal D of L such that A = C ⊕D.

If A is an ideal of L, then we define the upper L-central series

〈0〉 = ζ0L(A) ≤ ζ1L(A) ≤ ζ2L(A) ≤ · · · ≤ ζaL(A) ≤ ζγL(A) = ζ∞L(A)

of an ideal A by the following rule ζ1L(A) = A ∩ ζ(L), ζα+1L(A)/ζαL
(A) =

ζ(L/ζαL
(A)) ∩ A/ζαL

(A) for all ordinals α, and ζλL(A) =
⋃

µ<λ ζµL(A) for the

limit ordinals λ. The last term ζ∞L(A) of this series is called the upper L-
hypercenter of A. By this definition, every term ζaL(A) of the upper central series
of A is an ideal of L.
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An ideal C of L is said to be L-hypereccentric, if it has an ascending series

〈0〉 ≤ C0 ≤ C1 ≤ · · · ≤ Cα ≤ Cα+1 ≤ · · · ≤ Cγ = C

of ideals of L such that each factor Cα+1/Cα is an L-eccentric and L-chief for
every α < γ.

We say that the ideal A of L has the Z-decomposition if

A = ζ∞L(A) ⊕ η∞L(A)

where η∞L(A) is the maximal L-hypereccentric ideal of A.
Note that in this case, η∞L(A) includes every L-hypereccentric ideal of L, in

particular, it is unique.
In fact, let B be an L-hypercentric ideal of L such that B ≤ A and put E =

η∞L(A). If (B+E)/E is nonzero, it includes a nonzero L-chief ideal U/E of L/E.
Then U = (B ∩U) +E. Put V = B ∩U . Since V ≤ B and the factor V/(V ∩E)
is L-chief, AnnL(V/(V ∩ E)) 6= L. On the other hand, U/E is a nonzero L-chief
ideal of the hypercentral algebra L/E, which implies that L = AnnL(U/E). By
Lemma 2.1 of [3], AnnL(U/E) = AnnL((V +E)/E) = AnnL(V/(V ∩E)), and we
obtain a contradiction. This contradiction proves the inclusion B ≤ E. Hence
η∞L(A) includes every L-hypereccentric ideal of L and, as we claimed, it is unique.

Corollary 1.2 and Corollary 2.3 of [3] together imply

Proposition 1.3. Let L be a Leibniz algebra over a field F , and A be an abelian

ideal of L. Suppose that A has a finite series of ideals of L, whose factors are

either L-central or L-eccentric and L-chief. If the factor-module L/AnnL(A) is

nilpotent, then A has a Z-decomposition.

Corollary 1.4. Let L be a Leibniz algebra over a field F and A be an abelian

ideal of L. Suppose that dimF (A) is finite. If the factor-module L/AnnL(A) is

nilpotent, then A has a Z-decomposition.

In fact, since A has finite dimension over F , then A has a finite L-chief series
of ideals of L, and we can apply Proposition 1.3.

Proposition 1.5. Let L be an Leibniz algebra over a field F , and K be an ideal

of L. Suppose that K has a finite series

〈0〉 = K0 ≤ K1 ≤ · · · ≤ Kn = K

of ideals of L such that every factor Kj/Kj−1 is L-central, 1 ≤ j ≤ n. Then the

factor-algebra L/AnnL(K) is nilpotent of class at most n− 1.

Proof: We use induction on n. Let n = 2 and x, y be an arbitrary elements
of L. If a ∈ K, then [[x, y], a] = [x, [y, a]]− [y, [x, a]]. Since the factor K2/K1 is L-
central, [x, a], [y, a] ∈ K1. Then the inclusion K1 ≤ ζ(L) implies that [x, [y, a]] =
[y, [x, a]] = 0. Furthermore, [a, [x, y]] = [[a, x], y] + [x, [a, y]]. We have [a, x],
[a, y] ∈ K1, which implies that [[a, x], y] = [x, [a, y]] = 0. Thus [x, y] ∈ AnnL(K).
This means that L/AnnL(K) is abelian.
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Suppose now that n > 2 and our assertion is proved for ideals having finite
central series of length less than n. Let B1 = AnnL(Kn−1), B2 = AnnL(K/K1).
By the induction hypothesis, L/B1 and L/B2 are nilpotent of class at most n− 2.
Put B3 = B1 ∩ B2. Then by Remak theorem L/B3 is embedded in the direct
product L/B1 × L/B2, which implies that L/B3 is nilpotent of class at most
n − 2. Let b ∈ B3, g ∈ L, and a be an arbitrary element of K. We have
[[g, b], a] = [g, [b, a]] − [b, [g, a]. Since [b, a] ∈ K1 and K1 ≤ ζ(L), [g, [b, a]] = 0.
Since [g, a] ∈ Kn−1 and b ∈ AnnL(Kn−1), [b, [g, a]] = 0. Thus [[g, b], a] = 0.
Further, [a, [g, b]] = [[a, g], b] + [g, [a, b]]. We have [a, g] ∈ Kn−1 and, therefore,
[[a, g], b] = 0. Since [a, b] ∈ K1 and K1 ≤ ζ(L), [g, [a, b]] = 0. Thus [a, [g, b]] = 0.
It follows that [g, b] ∈ AnnL(K). Similarly,

[[b, g], a] = [b, [g, a]]− [g, [b, a]] = 0 and [a, [b, g]] = [[a, b], g] + [b, [a, g]] = 0,

which implies that [b, g] ∈ AnnL(K). In turn out, this shows that B3/AnnL(K) ≤
ζ(L/AnnL(K)). It follows that the factor-algebra L/AnnL(K)) is nilpotent of
class at most n− 1. �

2. Proofs of the main results

Let L be a Leibniz algebra and X be a class of Leibniz algebras, then put

ResX(L) = {H : H is an ideal of L such that L/H ∈ X}.

Then the intersection LX of all ideals from a family ResX(L) is called the X-
residual of L. If ResX(L) has the least element R, then R = LX and L/LX ∈ X .
But, in general, L/LX /∈ X .

If X = A is the class of all abelian Leibniz algebras, then the A-residual LA is
exactly the derived ideal [L,L] of L. In particular, L/LA ∈ A.

If X = Nc is the class of all nilpotent Leibniz algebras having nilpotency
class at most c, then the Nc-residual L

Nc is exactly the subalgebra γc+1(L). In
particular, L/LNc ∈ Nc.

However, such situations do not always occur. In particular, if X = N is the
class of all nilpotent Leibniz algebras, then, in general, the factor-algebra L/LN

is not nilpotent.

Theorem A. Let L be a Leibniz algebra over a field F , and R be the nilpo-

tent residual of L. Suppose that there exists a positive integer n such that

codimF (ζn(L)) = d. Then L/R is nilpotent, and R has dimension at most d(d+1).

Proof: Put Z = ζn(L) and C = AnnL(Z). Since L/Z has finite dimension,
L/Z has a finite series of ideals, whose factors are L-chief. Proposition 1.5 shows
that the factor-algebra L/C is nilpotent of class at most n− 1. The intersection
B = Z∩C is an ideal of L (in particular, of C) and B ≤ γ(C). Using this inclusion
and the isomorphism C(Z∩C) ∼= (C+Z)/Z, we obtain that dimF (C/ζ(C)) ≤ d.
An application of Corollary B1 of the paper [8] implies that the derived subalgebra
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[C,C] = D of C has dimension at most d2. The factor-algebra C/D is abelian.
By Proposition 2.2 of [8], D is an ideal of L.

Since C/D is abelian, C/D ≤ AnnL/D(C/D). The fact that L/C is nilpo-
tent implies that (L/D)/AnnL/D(C/D) is a nilpotent Leibniz algebra. Using
Proposition 1.3 we obtain that C/D has the Z-decomposition:

C/D = ζ∞L/D(C/D)⊕ η∞L/D(C/D).

The choice of Z secures the inclusion (Z +D)/D ≤ ζ∞L/D(C/D), from which,
in its turn, it follows that dimF ((C/D)/ζ∞L/D(C/D)) ≤ d. The latter inclu-
sion shows that ideal ζ∞L/D(C/D)) has dimension at most d. Put E/D =
η∞L/D(C/D). The isomorphism C/E ∼= (C/D)/(E/D) ∼= ζ∞L/D(C/D) shows
that C/E ≤ ζ∞L/E(C/E). Since L/C is nilpotent, L/E is also nilpotent. It

follows that R ≤ E. Finally, dimF (E) = dimF (D) + dimF (E/D) ≤ d2 + d =
d(d+ 1). �

Corollary 2.1. Let L be a finite dimensional Leibniz algebra over a field F and R
be the nilpotent residual of L. If codimF (ζ∞(L)) = d, then R has dimension at

most d(d+ 1). Moreover, L/R is nilpotent.

To prove the second main result of this paper, we need some additional ones,
which, however, have an independent interest.

Proposition 2.2. Let L be a finitely generated Leibniz algebra over a field F .

Suppose that H is an ideal of L having finite codimension. Then H is finitely

generated as an ideal.

Proof: Let M = {a1, . . . , an} be a finite subset which generates L, and let B be
a subspace of L such that L = B ⊕H . Let codimF (H) = d, then dimF (B) = d.
Choose in B some basis {b1, . . . , bd}. Denote by prB (or prH) the canonical
projection of L on B (H , respectively). Let E be the ideal, generated by the
elements

{prH(aj), prH([aj , bm]), prH([bm, aj]) : 1 ≤ j ≤ n, 1 ≤ m ≤ d}.

By such a choice H includes E and E is finitely generated as an ideal of L.
If x is an arbitrary element of E + B, then x = u + b where u ∈ E, b ∈ B.
Furthermore, b = α1b1+ · · ·+αdbd for suitable elements α1, . . . , αd ∈ F . We have

[b, aj ] = [α1b1 + · · ·+ αdbd, aj ] = α1[b1, aj ] + · · ·+ αd[bd, aj ]

= α1(prH([b1, aj ]) + prB([b1, aj ]) + · · ·+ αd(prH([bd, aj ]) + prB([bd, aj ])

= α1 prH([b1, aj ]) + · · ·+ αd prH([bd, aj ])

+ α1 prB([b1, aj ]) + · · ·+ αd prB([bd, aj ]);

[aj , b] = [aj , α1b1 + · · ·+ αdbd] = α1[aj , b1] + · · ·+ αd[aj , bd]

= α1(prH([aj , b1]) + prB([aj , b1]) + · · ·+ αd(prH([aj , bd]) + prB([aj , bd])
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= α1 prH([aj , b1]) + · · ·+ αd prH([aj , bd])

+ α1 prB([aj , b1]) + · · ·+ αd prB([aj , bd]).

The elements
∑

1≤m≤d(αm prH([bm, aj]) + αm prB([bm, aj ])) and
∑

1≤m≤d(αm ×

prH([aj , bm]) + αm prB([aj , bm])) clearly belong to E +B. It follows that E +B
is an ideal of A. Since aj = prH(aj) + prB(aj) ∈ E + B, 1 ≤ j ≤ n, then
E+B = A = H+B. The inclusion E ≤ H and the equation H ∩B = 〈0〉 implies
that H = E. In particular, H is a finitely generated as an ideal. �

Proposition 2.3. Let L be a finitely generated Leibniz algebra over a field F . If

ζ∞(L) has finite codimension, then zl(L) is finite, so that ζ∞(L) is nilpotent.

Proof: Let

〈0〉 = Z0 ≤ Z1 ≤ · · · ≤ Zα ≤ Zα+1 ≤ · · · ≤ Zγ = ζ∞(L) ≤ L

be the upper central series of L. Since dimF (L/ζ∞(L)) is finite, Proposition 2.2
shows that ζ∞(L) is finitely generated as an ideal. This fact implies that γ
is not a limit ordinal. Suppose that γ is infinite, then γ = τ + n for some
limit ordinal τ . Let M = {v1, . . . , vn} be a finite subset of L such that Zγ is
generated byM as an ideal. The fact that Zγ/Zγ−1 is the center of L/Zγ−1 implies
the equation Zγ/Zγ−1 = (v1F + · · · + vnF )Zγ−1/Zγ−1. In particular, Zγ/Zγ−1

has finite dimension at most n. Proposition 2.2 implies that Zγ − 1 is finitely
generated as an ideal. Using the above arguments and the equation Zγ−1/Zγ−2 =
ζ(L/Zγ−2), we obtain that the factor Zγ−1/Zγ−2 has finite dimension, and an
application of Proposition 2.2 shows that Zγ−2 is finitely generated as an ideal.
Using the same arguments, after finitely many steps, we obtain that Zτ is finitely
generated as an ideal. We noted that A/Zτ is nilpotent and has finite dimension
over F . Let W = {w1, . . . , wm} be a finite subset such that Zτ is generated by W
as an ideal. From the equation Zτ =

⋃

β<τ Zβ(A) we obtain that wj ∈ Zβ(j)

for some β(j) < τ , 1 ≤ j ≤ m. Let σ be the greatest ordinal from the set
{β(1), . . . , β(m)}. Then wj ∈ Zσ for all j, 1 ≤ j ≤ m. Since Zσ is an ideal, it
follows that it includes the ideal of L generated by elements w1, . . . , wm. But the
last coincides with Zτ , so that Zτ ≤ Zσ, and we obtain a contradiction. This
contradiction shows that γ must be finite. �

Corollary 2.4. Let L be a finitely generated Lie algebra over a field F . If L is

hypercentral, then L is nilpotent. Moreover, L has finite dimension.

In fact, L is nilpotent by Proposition 2.3. Using the arguments from the proof
of Proposition 2.3, we obtain that dimF (L) is finite.

A Leibniz algebra L is said to be locally nilpotent, if every finite subset of L
generates a nilpotent subalgebra.

Corollary 2.5. Let L be a hypercentral Leibniz algebra over a field F . Then L
is locally nilpotent.
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Corollary 2.6. Let L be a finitely generated Leibniz algebra over a field F . If

ζ∞(L) has finite codimension, then L has finite dimension.

Proof: In fact, zl(L) is finite by Proposition 2.3. Now we can repeat the argu-
ments from the first part of the proof of Proposition 2.3, and obtain that L is
finite dimensional. �

Theorem B. Let L be a Leibniz algebra over a field F . Suppose that ζ∞(L) has
finite codimension, say d. Then L contains a finite dimensional ideal E such that

the factor-algebra L/E is hypercentral. Moreover, dimF (E) ≤ d(d+ 1).

Proof: Put Z = ζ∞(L) and choose the basis {a1 + Z, . . . , ad + Z} in L/Z.
Denote by H the subalgebra of L generated by the elements a1, . . . , ad, and let Φ
be a family of all finitely generated subalgebras including H . By Corollary 2.6,
every subalgebra S ∈ Φ is finite dimensional. Denote the nilpotent residual of S
by R(S). If U, V ∈ Φ and U ≤ V , then, taking into account the isomorphism
U/(U∩R(V )) ∼= (U+R(V ))/R(V ) and the obvious inclusion (U+R(V ))/R(V ) ≤
V/R(V ), we obtain that the factor-algebra U/(U ∩R(V )) is nilpotent. It follows
that R(U) ≤ U ∩R(V ) ≤ R(V ). Hence the family {R(S) : S ∈ Φ} is local, which
implies that

⋃

S∈ΦR(S) = E is a subalgebra. Moreover, since R(S) is an ideal
of S, then E is an ideal of L. By Corollary 2.1, dimF (R(S)) ≤ d(d + 1) for each
S ∈ Φ. Then we can choose the subalgebra T ∈ Φ such that dimF (R(T )) is the
largest. If W is a subalgebra such that W ∈ Φ and T ≤ W , then R(T ) ≤ R(W )
by above proved. On the other hand, the choice of T yields that dimF (R(T )) =
dimF (R(W )), which proves that R(T ) = R(W ). If S is an arbitrary subalgebra of
the family Φ, then the subalgebra Y , generated by S∪T , is finitely generated and
includes H , so that Y ∈ Φ. Since T ≤ Y , by above proved, R(T ) = R(Y ). On the
other hand, R(S) ≤ R(Y ), and hence R(S) ≤ R(T ). It follows that E = R(T ).
In particular, dimF (E) ≤ d(d+ 1).

Let F/E be an arbitrary finitely generated subalgebra of L/E, more precisely,
suppose that F/E is generated by the elements d1+E, . . . , dm+E. Denote by K
the subalgebra, generated by H ∪ {d1, . . . , dm}. Then K ∈ Φ, and, therefore,
R(K) ≤ R(T ) = E. The last inclusion implies that K/(K ∩ E) ∼= (K + E)/E
is nilpotent. The choice of K yields that F/E ≤ K/E, and, therefore, F/E is
also nilpotent. Hence L/E is a locally nilpotent Leibniz algebra. The fact that
L/(Z +E) is finite dimensional implies that L/(Z +E) is nilpotent. Finally, the
inclusion (Z + E)/E ≤ ζ∞(L/E) shows that L/E is hypercentral. �
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