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A remark on functions continuous on all lines

Luděk Zaj́ıček

Abstract. We prove that each linearly continuous function f on Rn (i.e., each
function continuous on all lines) belongs to the first Baire class, which answers

a problem formulated by K.C. Ciesielski and D. Miller (2016). The same result
holds also for f on an arbitrary Banach space X, if f has moreover the Baire
property. We also prove (extending a known finite-dimensional result) that such
f on a separable X is continuous at all points outside a first category set which
is also null in any usual sense.

Keywords: linear continuity; Baire class one; discontinuity set; Banach space

Classification: 26B05, 46B99

1. Introduction

Separately continuous functions on R
n (i.e., functions continuous on all lines

parallel to a coordinate axis) and also linearly continuous functions (i.e., functions
continuous on all lines) were investigated in a number of articles, see the survey [1].

Recall here Lebesgue’s result of [4] which asserts that

(1.1)
each separately continuous function on R

n

belongs to the (n− 1)th Baire class.

We prove, see Theorem 3.5 below, that each linearly continuous function f with
the Baire property on a Banach space X belongs to the first Baire class. Of
course, if X is infinite-dimensional, then there exists an (everywhere) discontin-
uous linear functional f on X (which is linearly continuous), which shows that,
in Theorem 3.5, it is not possible to omit the assumption that f has the Baire
property. However, using Lebesgue result (1.1), we obtain that each linearly
continuous function f on R

n belongs to the first Baire class, which answers [1,
Problem 2, page 12].

The natural question how big can be the set D(f) of all discontinuity points of
a separately (linearly, respectively) continuous function was considered in several
works, see [1].

A complete characterization of sets D(f) for separately continuous functions
in R

n was given in [2] (and independently in [8]), cf. [1]. This characterization,
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in particular, shows that D(f) is a first category set, but it can have positive
Lebesgue measure (even its complement can be Lebesgue null).

S.G. Slobodnik proved in [8] that for each linearly continuous f on R
n

(1.2) D(f) is contained in a countable union of Lipschitz hypersurfaces,

in particular, the Hausdorff dimension of D(f) is at most (n− 1) (and so D(f) is
Lebesgue null). We show that (1.2) holds also in each separable Banach space X
under the additional assumption that f has the Baire property. Consequently,
D(f) is null in any usual sense, in particular it is Aronszajn null and Γ-null.

2. Preliminaries

In the following, by a Banach space we mean a real Banach space. If X is
a Banach space, we set SX := {x ∈ X : ‖x‖ = 1}. The symbol B(x, r) will
denote the open ball with center x and radius r. The oscillation of a function f
at a point x will be denoted by osc(f, x).

Let X be a Banach space, ∅ 6= G ⊂ X an open set and f : G → R a function.
Then we say that f is linearly continuous if the restriction f ↾L∩G is continuous
for each line L ⊂ X intersecting G.

We will essentially use the following well-known characterization of Baire class
one functions, see e.g. [5, Theorem 2.12].

Lemma 2.1. Let X be a strong Baire metric space and f : X → R a function.

Then the following conditions are equivalent.

(i) The function f is a Baire class one function.

(ii) For every nonempty closed set F ⊂ X and for any two real numbers

α < β, the sets {z ∈ F : f(z) ≤ α} and {z ∈ F : f(z) ≥ β} cannot be

dense in F simultaneously.

Recall that X is called strong Baire if every closed subspace of X is a Baire
space. Thus each topologically complete metric space (and so each Gδ subspace
of a complete space) is strong Baire.

We will use the classical Baire terminology concerning his category theory. So
complements of first category sets (= meager sets) are called residual (= comea-
ger) sets and sets of the second category are those which are not of the first
category. We will need the following well-known fact which follows e.g. from [3,
§10, (7) and (11)] (cf. the text below (11)).

Lemma 2.2. If M is a second category subset of a metric space X , then there

exists an open set ∅ 6= U ⊂ X such that M ∩ V is of the second category for each

open ∅ 6= V ⊂ U .

In a metric space (X, ̺), the system of all sets with the Baire property is the
smallest σ-algebra containing all open sets and all first category sets. We will
say that a mapping f : (X, ̺1) → (Y, ̺2) has the Baire property if f is measurable
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with respect to the σ-algebra of all sets with the Baire property. In other words,
f has the Baire property if and only if f−1(B) has the Baire property for all Borel
sets B ⊂ Y , see [3, § 32]. We will need the following fact, see e.g. [3, § 32, II].

Lemma 2.3. If Y is separable, then f has the Baire property if and only if

there exists a residual set R in X such that the restriction f ↾R is continuous.

Let X be a Banach space, x ∈ X , v ∈ SX and δ > 0. Then we define the open
cone C(x, v, δ) as the set of all y 6= x for which ‖v − (y − x)/‖y − x‖ ‖ < δ.

The following easy inequality is well known, see e.g. [6, Lemma 5.1]:

(2.1) if v, w ∈ X \ {0}, then
∥∥∥

v

‖v‖
−

w

‖w‖

∥∥∥ ≤
2

‖v‖
‖v − w‖.

We will need the following special case of [7, Lemma 2.4]. It can be proved by
the Kuratowski–Ulam theorem (as is noted in [7]), but the proof given in [7] is
more direct.

Lemma 2.4. Let U be an open subset of a Banach space X . Let M ⊂ U be a set

residual in U and z ∈ U . Then there exists a line L ⊂ X such that z is a point of

accumulation of M ∩ L.

3. Baire class one

Lemma 3.1. Let X be a Banach space, ∅ 6= G ⊂ X an open set and let f : G → R

be a linearly continuous function having the Baire property. Then for each x ∈ G
and η > 0 there exist u ∈ SX , δ > 0 and p ∈ N such that

(3.1) |f(y)− f(x)| ≤ η whenever y ∈ C(x, u, δ) ∩B
(
x,

1

p

)
.

Proof: Let x ∈ G and η > 0 be given; we can and will suppose that x = 0. For
each k ∈ N, set

Sk :=
{
v ∈ SX : |f(x+ tv)− f(x)| ≤ η for each 0 < t <

1

k

}
.

Since SX is clearly covered by all sets Sk, by the Baire theorem (in SX) we can
choose p ∈ N such that Sp is a second category set (in SX). Since the sequence (Sk)
is increasing, we can suppose that B(0, 1/p) ⊂ G. So Lemma 2.2 implies that we
can find u ∈ SX and δ > 0 such that Sp ∩ V is of the second category in SX

whenever ∅ 6= V ⊂ SX ∩B(u, δ) is an open subset in SX . Set

U := C(0, u, δ) ∩B
(
0,

1

p

)
and M := {y ∈ U : |f(y)− f(x)| ≤ η}.

Then (3.1) is equivalent to the equality M = U .



214 L. Zaj́ıček

We will first prove that M is residual in U . To this end consider the product
metric space

U∗ := (SX ∩B(u, δ))×
(
0,

1

p

)

and the mapping
ϕ : U∗ → U, ϕ((v, t)) := tv.

Then ϕ is clearly a homeomorphism (with ϕ−1(z) = (z/‖z‖, ‖z‖) for z ∈ U). Since
f has the Baire property, we obtain that M has the Baire property in G (and
consequently also in U). Therefore M∗ := ϕ−1(M) has the Baire property in U∗.
Consequently (cf. e.g. [3, § 11, IV, Corollary 2]), to prove that M∗ is residual
in U∗, it is sufficient to prove that M∗ ∩ (V ×W ) is of the second category in U∗

whenever ∅ 6= V ⊂ SX ∩B(u, δ) is an open subset of SX and ∅ 6= W ⊂ (0, 1/p) is
open. To prove this last statement, observe that the definition of Sp implies that

(Sp ∩ V )×W ⊂ M∗ ∩ (V ×W ).

Further, since Sp ∩ V is of the second category in SX ∩ B(u, δ) and W is of the
second category in (0, 1/p), we obtain, see e.g. [3, § 22, V, Corollary 1b], that
M∗ ∩ (V ×W ) is of the second category in U∗.

Thus we have proved that M∗ is residual in U∗ and consequently M is residual
in U . Now consider an arbitrary z ∈ U . By Lemma 2.4 there exists a line L ⊂ X
and points zn ∈ M ∩ L ∩ U with zn → z. Since the restriction of f to L ∩ U is
continuous, we obtain f(zn) → f(z), and consequently z ∈ M . So M = U , which
implies (3.1). �

Lemma 3.2. Let X be a Banach space, u ∈ SX , 0 < δ ≤ 1 and 0 < ξ < δ/2.
Then, for each x, y ∈ X with ‖x− y‖ < δξ/4, we have

(i) z := y + (ξ/2)u ∈ C(x, u, δ) ∩B(x, δ) and

(ii) C(x, u, δ) ∩B(x, δ) ∩ C(y, u, δ) ∩B(y, δ) 6= ∅.

Proof: Since

‖z − x‖ ≤ ‖z − y‖+ ‖y − x‖ ≤
ξ

2
+

δξ

4
≤

δ

4
+

δ

4
< δ,

we have z ∈ B(x, δ). Since

‖z − x‖ ≥ ‖z − y‖ − ‖y − x‖ ≥
ξ

2
−

ξ

4
> 0,

we can apply (2.1) to v := (ξ/2)u = z − y and w := z − x 6= 0. Because
‖w − v‖ = ‖y − x‖ < δξ/4, the inequality (2.1) gives

∥∥∥u−
w

‖w‖

∥∥∥ =
∥∥∥

v

‖v‖
−

w

‖w‖

∥∥∥ <
2

ξ/2

δξ

4
= δ.

Consequently z ∈ C(x, u, δ) and so (i) follows.
Since z ∈ C(y, u, δ) ∩B(y, δ), (i) implies (ii). �
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The following result is not labeled as a theorem, since it will be generalized to
all Banach spaces.

Proposition 3.3. Let X be a separable Banach space, ∅ 6= G ⊂ X an open set

and let f : G → R be a linearly continuous function having the Baire property.

Then f belongs to the first Baire class.

Proof: We can suppose dimX > 1. Suppose to the contrary that f is not in the
first Baire class. Then by Lemma 2.1 there exists a set ∅ 6= F ⊂ G closed in G
and reals α < β such that both sets

A := {z ∈ F : f(z) ≤ α} and B := {z ∈ F : f(z) ≥ β}

are dense in F . Set η := (1/7)(β−α). Now choose a dense sequence (un)
∞

1
in SX

and for each n ∈ N set

Pn :=
{
x ∈ F : |f(y)− f(x)| ≤ η whenever y ∈ C

(
x, un,

1

n

)
∩B

(
x,

1

n

)}
.

Lemma 3.1 implies that F =
⋃

∞

1
Pn. Indeed, for each x ∈ F we can choose

u ∈ SX , δ > 0 and p ∈ N for which (3.1) holds. Further choose n > p such that
1/n < δ/2 and ‖un − u‖ < δ/2. Then clearly

C
(
x, un,

1

n

)
∩B

(
x,

1

n

)
⊂ C(x, u, δ) ∩B

(
x,

1

p

)

and consequently x ∈ Pn by (3.1).
Since F is closed in G, the Baire theorem in F holds and thus there exists

k ∈ N such that Pk is not nowhere dense in F . Therefore there exist c ∈ F and
0 < r < 1/(32k2) such that Pk is dense in B(c, r) ∩ F .

Now choose y ∈ A∩B(c, r) and y∗ ∈ B∩B(c, r). Since f is linearly continuous,
we can choose 0 < ξ < 1/(2k) such that

(3.2) f(z) ≤ α+ η for z := y +
(ξ
2

)
uk.

Further choose x ∈ Pk ∩B(c, r) with ‖y − x‖ < ξ/(4k). Applying Lemma 3.2 (i)
with u := uk and δ := 1/k we obtain that z ∈ C(x, uk, 1/k) ∩ B(x, 1/k), and
consequently |f(z)− f(x)| ≤ η since x ∈ Pk. So (3.2) gives f(x) ≤ α+ 2η.

Proceeding quite analogously as above (working now with y∗ and B instead
of y and A) we find x∗ ∈ Pk∩B(c, r) with f(x∗) ≥ β−2η. Since 0 < r < 1/(32k2),
we have ‖x − x∗‖ < 1/(16k2). So we can apply Lemma 3.2 (ii) with u := uk,
δ := 1/k, ξ := 1/(4k), x and y := x∗ to find a point

b ∈ C
(
x, uk,

1

k

)
∩B

(
x,

1

k

)
∩ C

(
x∗, uk,

1

k

)
∩B

(
x∗,

1

k

)
.

Since x, x∗ ∈ Pk, we have |f(b) − f(x)| ≤ η, |f(b) − f(x∗)| ≤ η, and therefore
β − 3η ≤ f(b) ≤ α+ 3η. Consequently, β − α ≤ 6η, which contradicts the choice
of η. �
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Since each function from (n−1)th Baire class has the Baire property, Lebesgue’s
result (1.1) and Proposition 3.3 give the following main result of the present note
which answers [1, Problem 2].

Theorem 3.4. Each linearly continuous function on R
n belongs to the first Baire

class.

Using easy “separable reduction” arguments, we obtain that the assumption
of separability of X in Proposition 3.3 can be deleted.

Theorem 3.5. Let X be an arbitrary Banach space, ∅ 6= G ⊂ X an open set and

let f : G → R be a linearly continuous function having the Baire property. Then

f belongs to the first Baire class.

Proof: Suppose to the contrary that f is not in the first Baire class. Then by
Lemma 2.1 there exist a set ∅ 6= F ⊂ G closed in G and reals α < β such that the
both sets

A := {z ∈ F : f(z) ≤ α} and B := {z ∈ F : f(z) ≥ β}

are dense in F .
Now we will define inductively a nondecreasing sequence (Mn)

∞

n=1
of countable

subsets of F . We set M1 := {a}, where a ∈ F is an arbitrarily chosen point. If
n > 1 and a countable set Mn−1 is defined, we choose for each point µ ∈ Mn−1

sequences (aµk)
∞

k=1
, (bµk )

∞

k=1
converging to µ with aµk ∈ A and bµk ∈ B, k ∈ N. Then

we set

Mn := Mn−1 ∪
⋃

µ∈Mn−1

⋃

k∈N

{aµk , b
µ
k}.

Setting

F̃ :=
⋃

n∈N

Mn ∩G,

we easily see that F̃ is a separable subset of F which is closed in F and

(3.3) both A ∩ F̃ and B ∩ F̃ are dense in F̃ .

Denote by X1 the closure of the linear span of F̃ . Then X1 is a closed separable
subspace of X . By Lemma 2.3 there exists a residual set R in G such that
the restriction f ↾R is continuous. [11, Lemma 4.6] implies that there exists
a separable closed subspace X2 of X such that X2 ⊃ X1 and R ∩X2 is residual
in X2. Consequently, the function g := f ↾X2∩G has the Baire property. Since
g is linearly continuous on X2 ∩ G, Proposition 3.3 implies that g is in the first
Baire class. But this contradicts Lemma 2.1, since X2 ∩G is a strong Baire space

(even a topologically complete space), F̃ is closed in X2 ∩G and (3.3) holds. �
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4. Set of discontinuity points

In this short section we will show that Lemma 3.1 easily implies a result
of S.G. Slobodnik from [8] (Corollary 4.3 below) and its analogues in infinite-
dimensional Banach spaces. First we recall some definitions and facts.

Let X be a Banach space. We say that A ⊂ X is a Lipschitz hypersurface if
there exists a 1-dimensional linear space F ⊂ X , its topological complement E
and a Lipschitz mapping ϕ : E → F such that A = {x+ ϕ(x) : x ∈ E}.

Recall, see [10, 4C], that if X is separable, then each M ⊂ X which can
be covered by countably many Lipschitz hypersurfaces (note that such sets are
sometimes called “sparse”, see [10]) is not only a first category set but is also
Aronszajn (≡ Gauss) null and Γ-null (in Lindenstrauss–Preiss sense).

A natural generalization of “sparse sets” to arbitrary (nonseparable) spaces are
σ-cone supported sets. Their definition, see e.g. [10, Definition 4.4], works with
cones defined in a slightly different way than the cones C(x, v, δ) in Preliminar-
ies; namely with cones A(v, c) :=

⋃
λ>0

λB(v, c), where ‖v‖ = 1 and 0 < c < 1.
However, for such v and c, obviously C(0, v, c) ⊂ A(v, c) and (2.1) easily im-
plies A(v, c/2) ⊂ C(0, v, c). Consequently, [10, Definition 4.4] can be equivalently
rewritten as follows:

We say that a subset M of a Banach space X is cone supported if for each
x ∈ M there exist v ∈ SX , δ > 0 and r > 0 such that M ∩C(x, v, δ)∩B(x, r) = ∅.
A set is called σ-cone supported if it is a countable union of cone supported sets.

Recall that [9, Lemma 1] easily implies that if X is separable, then

(4.1)
M ⊂ X is σ-cone supported if and only if

it can be covered by countably many Lipschitz hypersurfaces.

Theorem 4.1. Let X be an arbitrary Banach space, ∅ 6= G ⊂ X an open set and

let f : G → R be a linearly continuous function having the Baire property. Then

the set D(f) of all discontinuity points of f is σ-cone supported.

Proof: Denote Dn := {x ∈ G : osc(f, x) ≥ 1/n}, n ∈ N. Since D(f) =⋃
∞

n=1
Dn, it is sufficient to prove that each Dn is a cone supported set. To

this end fix an arbitrary n ∈ N and consider an arbitrary point x ∈ Dn. By
Lemma 3.1 there exist v ∈ SX , δ > 0 and r > 0 such that

|f(y)− f(x)| ≤
1

3n
whenever y ∈ C(x, v, δ) ∩B(x, r).

Consequently the oscillation of f on the open set C(x, v, δ) ∩ B(x, r) is at most
2/(3n) and therefore Dn ∩C(x, v, δ) ∩B(x, r) = ∅. So we have proved that Dn is
cone supported. �

Using (4.1), we obtain the following corollary.

Corollary 4.2. Let X be a separable Banach space, ∅ 6= G ⊂ X an open set

and let f : G → R be a linearly continuous function having the Baire property.
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Then the set D(f) of all discontinuity points of f can be covered by countably

many Lipschitz hypersurfaces. In particular, D(f) is a first category set which is

Aronszajn null and also Γ-null.

We obtain also the following result which was proved by S.G. Slobodnik in [8]
by an essentially different way.

Corollary 4.3. Let ∅ 6= G ⊂ R
n be an open set and let f : G → R be a linearly

continuous function. Then the set D(f) of all discontinuity points of f can be

covered by countably many Lipschitz hypersurfaces.

Proof: If G = R
n, it is sufficient to use Theorem 4.1 together with (1.1). If

G is an open interval we can use instead of (1.1) its generalization [3, § 31, V,
Theorem 2]. Using this special case, we easily obtain the general one, if we write
G =

⋃
n∈N

In, where In are open intervals. �
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ing the manuscript.

References

[1] Ciesielski K.C., Miller D., A continuous tale on continuous and separately continuous

functions, Real Anal. Exchange 41 (2016), no. 1, 19–54.
[2] Kershner R., The continuity of functions of many variables, Trans. Amer. Math. Soc. 53

(1943), 83–100.
[3] Kuratowski K., Topology. Vol. I, Academic Press, New York, Państwowe Wydawnictwo
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[10] Zaj́ıček L., On σ-porous sets in abstract spaces, Abstr. Appl. Anal. 2005 (2005), no. 5,

509–534.
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Charles University, Faculty of Mathematics and Physics, Sokolovská 83,
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