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DIEUDONNÉ-TYPE THEOREMS FOR LATTICE
GROUP-VALUED K-TRIANGULAR SET FUNCTIONS

Antonio Boccuto and Xenofon Dimitriou

Some versions of Dieudonné-type convergence and uniform boundedness theorems are proved,
for k-triangular and regular lattice group-valued set functions. We use sliding hump techniques
and direct methods. We extend earlier results, proved in the real case. Furthermore, we pose
some open problems.

Keywords: lattice group, (D)-convergence, k-triangular set function, (s)-bounded set
function, Fremlin lemma, limit theorem, Brooks–Jewett theorem, Dieudonné
theorem, Nikodým boundedness theorem

Classification: 28A12, 28A33, 28B10, 28B15, 40A35, 46G10

1. INTRODUCTION

Dieudonné-type theorems (see [34]) are the object of several studies about convergence
and uniform boundedness theorems for regular set functions and related topics about
(weak) compactness of measures. A historical comprehensive survey can be found in [16].
Among the most important developments existing in the literature about these subjects,
see for instance [2, 3, 30, 31, 32, 33, 38, 45], and in particular, concerning the setting of
lattice group-valued measures, we quote [6, 9, 10, 12, 13]. In [14, 24] some Dieudonné-
type theorems were proved for lattice group-valued finitely additive regular measures
in the context of filter convergence, while some versions of uniform boundedness the-
orems in this setting are proved in [11, 25]. In [39, 40, 41, 47] some Dieudonné-type
theorems were proved for k-triangular and non-additive regular set functions. Some ex-
amples of k-triangular set functions are the M -measures, that is monotone set functions
m with m(∅) = 0, continuous from above and from below and compatible with respect
to supremum and infimum, which have several applications in various branches, among
which intuitionistic fuzzy sets and observables (see also [1, 17, 27, 35, 42]). Some ex-
amples of non-monotone 1-triangular set functions are the Saeki measuroids (see [43]).
In [17, 19, 20, 21, 22, 23] some limit theorems were proved for lattice group-valued
k-subadditive capacities and k-triangular set functions.

In this paper we prove some Dieudonné convergence theorems and a version of
Nikodým boundedness theorem for regular and k-triangular lattice group-valued set
functions, extending earlier results proved in the real case in [39, 40, 41] using some
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diagonal matrix theorems. Our techniques are direct and inspired by sliding hump-
type methods. We use the tool of (D)-convergence, because we can apply the powerful
Fremlin lemma (see also [37, 42]), which replaces the ε

2n -technique and allows to re-
place a sequence of regulators with a single (D)-sequence. Observe that, in the lattice
group context, in the Nikodým boundedness theorem we assume the existence of a single
increasing sequence of positive elements of the involved lattice group, with respect to
which the set functions are supposed to be pointwise bounded on a suitable sublattice,
playing a role similar to that of the class of all open subsets of a topological space. We
see that in general this condition cannot be replaced by a simple setwise boundedness
(see also [11, 25, 46]). Finally, some open problems are posed.

2. PRELIMINARIES

We begin with recalling the following basic facts on lattice groups (see also [16, 28]).

Definition 2.1. (a) A lattice groupR is said to be Dedekind complete if every nonempty
subset of R, bounded from above, has supremum in R.

(b) A Dedekind complete lattice group R is super Dedekind complete iff for every
nonempty set A ⊂ R, bounded from above, there is a countable subset A′, with∨
A′ =

∨
A.

(c) A nonempty subset S of a lattice group R is bounded iff there exists an element
u ∈ R with |x| ≤ u for each x ∈ S.

(d) Let (tn)n be an increasing sequence of positive elements of R, and let ∅ 6= S ⊂ R.
We say that S is bounded by (tn)n iff for every x ∈ S there is n∗ ∈ N such that
|x| ≤ tn∗ .

(e) A sequence (σp)p in a lattice group R is called an (O)-sequence iff it is decreasing
and

∧∞
p=1 σp = 0.

(f) A bounded double sequence (at,l)t,l in R is a (D)-sequence or a regulator iff (at,l)l
is an (O)-sequence for any t ∈ N.

(g) A lattice group R is weakly σ-distributive iff
∧

ϕ∈NN

(∨∞
t=1 at,ϕ(t)

)
= 0 for every

(D)-sequence (at,l)t,l in R.

(h) A sequence (xn)n in R is said to be order convergent (or (O)-convergent ) to x
iff there exists an (O)-sequence (σp)p in R such that for every p ∈ N there is a
positive integer n0 with |xn − x| ≤ σp for each n ≥ n0, and in this case we write
(O) limn xn = x.

(i) We say that (xn)n is (O)-Cauchy iff there is an (O)-sequence (τp)p in R such that
for every p ∈ N there is a positive integer n0 with |xn−xq| ≤ τp for each n, q ≥ n0.

(j) A sequence (xn)n in R is (D)-convergent to x iff there is a (D)-sequence (at,l)t,l in
R such that for every ϕ ∈ NN there is n0 ∈ N with |xn − x| ≤

∨∞
t=1 at,ϕ(t) whenever

n ≥ n0, and we write (D) limn xn = x.
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(k) We say that (xn)n is (D)-Cauchy iff there exists a (D)-sequence (bt,l)t,l in R such
that for each ϕ ∈ NN there is n0 ∈ N with |xn − xq| ≤

∨∞
t=1 bt,ϕ(t) whenever n,

q ≥ n0.

(l) A lattice group R is said to be (O)-complete (resp. (D)-complete) iff every (O)-
Cauchy (resp. (D)-Cauchy) sequence is (O)-convergent (resp. (D)-convergent).

(m) We call sum of a series
∑∞

n=1 xn in R the limit (O) limn

∑n
r=1 xr, if it exists in R.

(n) If R is a vector lattice, then we say that (xn)n (r)-converges to x iff there exists
u ∈ R, u ≥ 0, such that for every ε > 0 there is n0 ∈ N with |xn − x| ≤ ε u
whenever n ≥ n0.

(o) A vector lattice R satisfies property (σ) iff for every sequence (un)n of positive
elements of R there are a sequence (an)n of positive real numbers and an element
u ∈ R with an un ≤ u for each n ∈ N.

(p) A lattice E of subsets of an infinite set G satisfies property (E) iff for each disjoint
sequence (Ch)h in E there is a subsequence (Chr

)r, such that E contains the σ-
algebra generated by the sets Chr

, r ∈ N (see also [44]).

Remark 2.2. Note that every Dedekind complete lattice group is both (O)- and (D)-
complete. Moreover, observe that every (O)-convergent sequence is also (D)-convergent
to the same limit in any lattice group, while the converse is true if and only if the
involved (`)-group is weakly σ-distributive. Furthermore, it is known that every (r)-
convergent sequence in any vector lattice is (O)-convergent too (see also [28, 48]). The
converse, in general, is not true. For example, let B be the σ-algebra of all Borel subsets
of [0, 1], λ be the Lebesgue measure on [0, 1], L0 := L0([0, 1],B, λ) be the space of all
measurable real-valued functions defined on [0, 1], with the identification of λ-null sets,
and R := {f ∈ L0([0, 1],B, λ): f is bounded}. If (un)n is any sequence of positive
elements of R, then there exists a sequence (Ln)n of positive real numbers such that
un ≤ Ln for every n ∈ N, where Ln denotes the function which assumes the constant
value Ln. Since R fulfils property (σ), there are a sequence (an)n of positive real numbers
and a positive real number v with an Ln ≤ v, and hence an un ≤ anLn ≤ v, for every
n ∈ N. Hence, R satisfies property (σ). It is known that in L0 order and (r)-convergence
coincide with almost everywhere convergence, while in R, order convergence coincides
with the almost everywhere convergence dominated by a constant function, and (r)-
convergence coincides with uniform convergence (see also [48]). Moreover, since L0 is
weakly σ-distributive (see also [8]), then in L0 (O)- and (D)-convergence coincide in L0,
and so they coincide also in R. Hence, R is weakly σ-distributive too. Finally, observe
that, in the space L0, order, (D)- and (r)-convergence are equivalent (see also [8, 48]).

We now recall the following property of convergence in lattice groups (see also [22,
Proposition 3.1]).

Proposition 2.3. Let R be a Dedekind complete lattice group, x ∈ R, and (xn)n be
a sequence in R, such that
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2.3.1) for every subsequence (xnq )q of (xn)n there is a sub-subsequence (xnqr
)r, conver-

gent to x with respect to a single (D)-sequence (at,l)t,l.

Then (D) limn xn = x with respect to (at,l)t,l.

P r o o f . Suppose by contradiction that there are ϕ ∈ NN and a strictly increasing
sequence (nq)q with |xnq

− x| 6≤
∨∞

t=1 at,ϕ(t) for each q ∈ N. Thus any subsequence of
(xnq

)q does not (D)-converge to x with respect to (at,l)t,l, obtaining a contradiction
with 2.3.1). �

Remark 2.4. An analogous of Proposition 2.3 holds, if (D)-convergence is replaced by
(O)-convergence.

We now recall the Fremlin lemma, by means of which it is possible to replace a se-
quence of regulators with a single (D)-sequence, and which will be fundamental in the
sequel, to prove our main results, because it has the same role as the ε

2n -argument. This
is one of the reasons for which we often prefer to deal with (D)-convergence rather than
(O)-convergence.

Lemma 2.5. (see also Fremlin [37, Lemma 1C], Riečan and Neubrunn [42, Theorem

3.2.3]) Let R be any Dedekind complete (`)-group and (a
(n)
t,l )t,l, n ∈ N, be a sequence of

regulators in R. Then for every u ∈ R, u ≥ 0 there is a (D)-sequence (at,l)t,l in R with

u ∧
( q∑
n=1

( ∞∨
t=1

a
(n)
t,ϕ(t+n)

))
≤
∞∨
t=1

at,ϕ(t) for every q ∈ N and ϕ ∈ NN.

We now deal with the main properties of k-triangular lattice group-valued set func-
tions. Let R be a Dedekind complete and weakly σ-distributive lattice group, G be an
infinite set, L ⊂ P(G) be an algebra, m : L → R be a bounded set function and k be
a fixed positive integer.

Definition 2.6. (a) The semivariation of m is defined by setting

v(m)(A) :=
∨
{|m(B)| : B ∈ L, B ⊂ A}, A ∈ L.

If E ⊂ L is a lattice, then we put

vE(m)(A) :=
∨
{|m(B)| : B ∈ E , B ⊂ A}, A ∈ L.

The set function vE(m) is called the semivariation of m with respect to E .

(b) We say that m is

m(A)− km(B) ≤ m(A ∪B) ≤ m(A) + km(B) whenever A,B ∈ Σ, A ∩B = ∅ (1)

and

0 = m(∅) ≤ m(A) for each A ∈ Σ. (2)



Dieudonné-type theorems . . . 237

(c) Let E ⊂ L be a sublattice of L. We say that a set function m : L → R is E-(s)-
bounded iff there exists a (D)-sequence (at,l)t,l such that, for every disjoint sequence
(Ch)h in E , (D) limh vE(m)(Ch) = 0 with respect to (at,l)t,l. A set function m is
(s)-bounded iff it is L-(s)-bounded.

(d) We say that the set functions mj : L → R are E-uniformly (s)-bounded iff there
exists a (D)-sequence (at,l)t,l such that, for every disjoint sequence (Ch)h in E ,

(D) lim
h

(∨
j

vE(mj)(Ch)
)

= 0

with respect to (at,l)t,l. The mj ’s are uniformly (s)-bounded iff they are L-
uniformly (s)-bounded.

(e) We say that the set functions mj : L → R, j ∈ N, are equibounded on L iff there
is u ∈ R with |mj(A)| ≤ u for every j ∈ N and A ⊂ L.

Now we recall the following

Proposition 2.7. (see also Boccuto and Dimitriou [22, Proposition 2.6]) If m : L → R
is k-triangular, then v(m) is k-triangular too.

Proposition 2.8. (see also Boccuto and Dimitriou [22, Proposition 2.7]) Letm : L → R
be a k-triangular set function. Then for every n ∈ N, n ≥ 2, and for every pairwise
disjoint sets E1, E2, . . . , En ∈ L we have

m(E1)− k
n∑

q=2

m(Eq) ≤ m
( n⋃
q=1

Eq

)
≤ m(E1) + k

n∑
q=2

m(Eq), (3)

and in particular

m(E1) ≤ m
( n⋃
q=1

Eq

)
+ k

n∑
q=2

m(Eq). (4)

We now turn to regular lattice group-valued set functions.

Definition 2.9. Let G, H be two sublattices of L, such that G is closed under countable
unions, and the complement of every element of H belongs to G. A set function m :
L → R is said to be regular iff there exists a (D)-sequence (at,l)t,l such that

2.9.1) for every E ∈ L there are two sequences (Vn)n in G and (Kn)n in H with Vn ⊃
E ⊃ Kn for each n ∈ N and such that for any ϕ ∈ NN there exists n0 ∈ N with

v(m)(Vn \Kn) ≤
∞∨
t=1

at,ϕ(t)

whenever n ≥ n0, and
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2.9.2) for every W ∈ H there are two sequences (Gn)n in G and (Fn)n in H with
W ⊂ Fn+1 ⊂ Gn ⊂ Fn for every n ∈ N, and such that for each ϕ ∈ NN there is
n∗ ∈ N with

v(m)(Gn \W ) ≤
∞∨
t=1

at,ϕ(t)

whenever n ≥ n∗.

We now prove the following property of regular set functions.

Proposition 2.10. (see also Boccuto and Dimitriou [17, Theorem 3.10]) If G is a com-
pact Hausdorff topological space, L, G, H are the classes of all Borel, open and compact
subsets of G, respectively, and m : L → R is a k-triangular, increasing and regular set
function, then

(O) lim
n
m(In) = 0 (5)

whenever (In)n is a decreasing sequence in L with
⋂∞

n=1 In = ∅, with respect to a single
regulator independent of the choice of (In)n.

P r o o f . Let (In)n be as in (5). Let (at,l)t,l be a (D)-sequence satisfying 2.9.1). For
every n ∈ N there is Kn ∈ H with Kn ⊂ In and m(In \Kn) ≤

∨∞
t=1 at,ϕ(t+n). By virtue

of Lemma 2.5, there is a (D)-sequence (αt,l)t,l with

m(G) ∧
( q∑
n=1

( ∞∨
t=1

at,ϕ(t+n)

))
≤
∞∨
t=1

αt,ϕ(t) for each q ∈ N and ϕ ∈ NN.

Let On := G \ Kn, n ∈ N. Note that On ∈ G for every n and G =
⋃∞

n=1On, since⋂∞
n=1Kn = ∅. AsG is compact, there is n0 ∈ N withG =

⋃n
i=1Oi, and hence

⋂n
i=1Ki = ∅,

whenever n ≥ n0. For such n’s, taking into account (3), we have

m(In) ≤ m(G) ∧
(
m(In \

( n⋂
i=1

Ki

))
≤ m(G) ∧

(
m
( n⋃
i=1

(Ii \Ki)
))

(6)

≤ m(G) ∧
(
k

n∑
i=1

m(Ii \Ki)
)
≤ k

∞∨
t=1

αt,ϕ(t)

(see also [39, Lemma 1]). Thus the assertion follows. �

Remark 2.11. Observe that, if L is an algebra with property (E) and m : L → R is
positive, increasing and satisfies (5), then m is also (s)-bounded (with respect to a single
regulator). To prove this, let (An)n be any disjoint sequence in L and (Bn)n be any
subsequence of (An)n. By property (E), there is a subsequence (Cn)n of (Bn)n, such
that

⋃
n∈P Cn ∈ L for every P ⊂ N. Since m is increasing and m(∅) = 0, we get

0 ≤ m(Cn) ≤ m
( ∞⋃
i=n

Ci

)
.
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From (5) and (7) we get (O) limnm(Cn) = 0 with respect to a single regulator (in-
dependent of (An)n, (Bn)n and (Cn)n). By arbitrariness of the sequence (Bn)n and
Proposition 2.3 it follows that (D) limnm(Cn) = 0 with respect to a single regulator,
and this proves the claim.

The converse, in general, is not true (see also [22, Remark 2.12]). �

Proposition 2.12. (see also Boccuto and Dimitriou [17, Proposition 3.4]) If m : L → R
is a k-triangular and increasing set function satisfying (5), then we get

m
( ∞⋃
n=1

En

)
≤ m(E1) + k

∞∑
n=2

m(En) (7)

for every sequence (En)n in L, such that
⋃

n∈AEn ∈ L whenever A ⊂ N.

The following proposition will be useful in proving our Dieudonné convergence theo-
rem (see also [10, Lemma 3.1]).

Proposition 2.13. With the same notations and assumptions as above, let m : L → R
be a regular and k-triangular set function. Then for each V ∈ G we get

vL(m)(V ) = vG(m)(V ). (8)

P r o o f . Pick arbitrarily V ∈ G, and let (γt,l)t,l be a (D)-sequence related to regularity
of m. Choose B ∈ L with B ⊂ V , and fix arbitrarily ϕ ∈ NN. By regularity of m, there
is O ∈ G, O ⊃ B, with

vL(m)(O \B) ≤
∞∨
t=1

γt,ϕ(t). (9)

Let U := O ∩ V , then U ⊃ B. From (9) and k-triangularity of m we get

m(B) ≤ m(U) + km(U \B)

≤ vG(m)(V ) + k vL(m)(O \B) (10)

≤ vG(m)(V ) + k

∞∨
t=1

γt,ϕ(t).

Taking in (10) the supremum as B ∈ L, B ⊂ V , we obtain

vL(m)(V ) ≤ vG(m)(V ) + k

∞∨
t=1

γt,ϕ(t). (11)

From (11) and weak σ-distributivity of R we deduce

vL(m)(V ) ≤ vG(m)(V ) + k
∧

ϕ∈NN

( ∞∨
t=1

γt,ϕ(t)

)
= vG(m)(V ). (12)

Since the converse inequality is straightforward, then (8) follows from (12). This ends
the proof. �
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Definition 2.14. A sequence mj : L → R, j ∈ N, of set functions is said to be (RD)-
regular on L iff there is a (D)-sequence (at,l)t,l such that

2.14.1) for every E ∈ L there are two sequences (Vn)n in G and (Kn)n in H such that
for every ϕ ∈ NN and j ∈ N there is n0 ∈ N with v(mj)(Vn \Kn) ≤

∨∞
t=1 at,ϕ(t)

for every n ≥ n0, and

2.14.2) for every disjoint sequence (Hn)n in L there is a sequence (On)n in G such that

On ⊃ Hn for each n ∈ N and (D) limn v(mj)
(⋃∞

i=nOi

)
= 0 for every j ∈ N with

respect to (at,l)t,l.

We now recall the following

Proposition 2.15. (see also Boccuto and Candeloro [10, Proposition 2.6]) Let R be any
Dedekind complete and weakly σ-distributive lattice group, and mj : L → R, j ∈ N,
be a sequence of regular equibounded set functions. Then they satisfy 2.14.1) and the
following property:

2.15.1) there exists a regulator (βt,l)t,l such that for every W ∈ H there are two se-
quences (Gn)n in G and (Fn)n in H, with W ⊂ Fn+1 ⊂ Gn ⊂ Fn for every n ∈ N
and such that for each ϕ ∈ NN and j ∈ N there is n∗ ∈ N with

vL(mj)(Gn \W ) ≤
∞∨
t=1

βt,ϕ(t)

for every n ≥ n∗.

Definition 2.16. Let L, G, H be as in Definition 2.9. The set functions mj : L → R,
j ∈ N, are uniformly regular iff there exists a (D)-sequence (at,l)t,l such that

2.16.1) for each E ∈ L there exist two sequences (Vn)n in G and (Kn)n in H with
Vn ⊃ E ⊃ Kn for every n ∈ N and such that for each ϕ ∈ NN there exists n0 ∈ N
with ∨

j

v(mj)(Vn \Kn) ≤
∞∨
t=1

at,ϕ(t)

for all n ≥ n0, and

2.16.2) for any W ∈ H there are two sequences (Gn)n in G and (Fn)n in H with
W ⊂ Fn+1 ⊂ Gn ⊂ Fn for each n ∈ N, and such that for every ϕ ∈ NN there exists
n∗ ∈ N with ∨

j

v(mj)(Gn \W ) ≤
∞∨
t=1

at,ϕ(t)

whenever n ≥ n∗.
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3. THE MAIN RESULTS

In this section we prove a Dieudonné convergence-type theorem and a Dieudonné-
Nikodým boundedness theorem for regular and k-triangular lattice group-valued set
functions. Let R be a Dedekind complete and weakly σ-distributive lattice group. We
begin with recalling the following Brooks–Jewett–type theorem for k-triangular set func-
tions.

Theorem 3.1. (see Boccuto and Dimitriou [22, Theorem 3.3]) Let G be any infinite set,
L ⊂ P(G) be an algebra, E ⊂ L be a lattice, satisfying property (E), mj : L → R, j ∈ N,
be a sequence of equibounded, k-triangular and E-(s)-bounded set functions. If the limit
m0(E) := limj mj(E) exists in R for every E ∈ E with respect to a single regulator, then
the mj ’s are E-uniformly (s)-bounded, and m0 is k-triangular and (s)-bounded.

The following technical lemma will be useful in the sequel.

Lemma 3.2. (see Boccuto and Dimitriou [22, Lemma 3.4]) Let L ⊂ P(G) be an algebra,
G andH be two sublattices of L, such that the complement of every element ofH belongs
to G, mj : L → R, j ∈ N, be a sequence of k-triangular and G-uniformly (s)-bounded
set functions. Fix W ∈ H and a decreasing sequence (Hn)n in G, with W ⊂ Hn for each
n ∈ N. If

(D) lim
n

( ∨
A∈G,A⊂Hn\W

mj(A)
)

=
∧
n

( ∨
A∈G,A⊂Hn\W

mj(A)
)

= 0 for every j ∈ N (13)

with respect to a single (D)-sequence (at,l)t,l, then

(D) lim
n

(∨
j

( ∨
A∈G,A⊂Hn\W

mj(A)
))

=
∧
n

(∨
j

( ∨
A∈G,A⊂Hn\W

mj(A)
))

= 0

with respect to (at,l)t,l.

The next step is to prove a Dieudonné-type theorem for k-triangular lattice group-
valued set functions, which extends [10, Lemma 3.2].

Theorem 3.3. Let L ⊂ P(G) be an algebra, G and H be two sublattices of L, such that
G is closed under countable unions and the complement of every element of H belongs
to G, mj : L → R, j ∈ N, be a sequence of equibounded, regular, k-triangular and
G-uniformly (s)-bounded set functions. Then the mj ’s are L-uniformly (s)-bounded and
uniformly regular on L.

P r o o f . Let (Hn)n be a disjoint sequence of elements of L, (at,l)t,l be a (D)-sequence,
satisfying 2.14.1), u =

∨
j∈N,A∈Lmj(A), and according to Lemma 2.5, let (bt,l)t,l be a

regulator in R, with

u ∧
( q∑
h=1

( ∞∨
t=1

at,ϕ(t+h)

))
≤
∞∨
t=1

bt,ϕ(t) for every ϕ ∈ NN and q ∈ N. (14)

Let (ct,l)t,l be a (D)-sequence associated with G-uniform (s)-boundedness, and set dt,l =
(k + 1)(bt,l + ct,l), et,l = (k + 1)(at,l + dt,l), for every t, l ∈ N. We prove that the mj ’s
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are L-uniformly (s)-bounded with respect to the regulator (et,l)t,l. Otherwise, there is
ϕ ∈ NN with the property that for every h ∈ N there are jh, nh ∈ N with nh ≥ h and
Bh ∈ L with Bh ⊂ Hnh

and

mjh(Bh) 6≤
∨
t=1

et,ϕ(t). (15)

By 2.14.1), for every h ∈ N there is Ah ∈ H, Ah ⊂ Bh, with

mjh(Bh \Ah) ≤
∞∨
t=1

at,ϕ(t). (16)

From (15) and (16) it follows that

mjh(Ah) 6≤
∞∨
t=1

dt,ϕ(t) : (17)

otherwise, thanks to k-triangularity of mjh , we should get

mjh(Bh) ≤ mjh(Ah) + kmjh(Bh \Ah) ≤
∞∨
t=1

dt,ϕ(t),

which contradicts (15). Moreover, observe that from 2.14.1), in correspondence with ϕ,
for every h there are Gh ∈ G and Fh ∈ H, with Ah ⊂ Gh ⊂ Fh and

[v(m1) ∨ . . . ∨ v(mjh)](Fh \Ah) ≤
∞∨
t=1

at,ϕ(t+h).

Set now G∗1 = G1, G∗h+1 = Gh+1 \
(⋃h

r=1 Fr

)
, h ≥ 2. Since the G∗h’s are disjoint ele-

ments of G, then, thanks to G-uniform (s)-boundedness and taking into account Propo-
sition 2.13, we find a positive integer h0 with∨

j

vL(mj)(G
∗
h) =

∨
j

vG(mj)(G
∗
h) ≤

∞∨
t=1

ct,ϕ(t)

whenever h ≥ h0. Since for every h we get Ah+1 \G∗h+1 ⊂
⋃h

r=1(Fr \Ar), then

mjh(Ah) ≤ mjh(Ah ∩G∗h) +mjh(Ah \G∗h)

≤
∞∨
t=1

ct,ϕ(t) + k

∞∨
t=1

bt,ϕ(t) ≤
∞∨
t=1

dt,ϕ(t) for every h ≥ h0,

which contradicts (17), getting L-uniform (s)-boundedness of the mj ’s. Conditions
2.16.2) and 2.16.1) on uniform regularity of the mj ’s follow easily from Proposition 2.15
and Lemma 3.2 used with Hn = Gn \W , n ∈ N, and Hn = Vn \Kn, G = H = L, W = ∅
respectively, where Gn is as in 2.15.1), Vn and Kn are as in 2.14.1). �

Now we are in position to prove the following theorem, which extends [10, Theorem
3.3].
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Theorem 3.4. Let G, R, L, G, H be as above, and suppose that mj : L → R, j ∈ N,
is a sequence of equibounded, regular, k-triangular and (s)-bounded set functions, such
that there exists

m0(E) := (D) lim
j
mj(E) for every E ∈ G

with respect to a single regulator. Then,

3.4.1) the measures mj , j ∈ N, are L-uniformly (s)-bounded and uniformly regular;

3.4.2) there exists in R the limit m0(E) = (D) limj mj(E) for each E ∈ L with respect
to a single regulator;

3.4.3) the set function m0 is regular, k-triangular and (s)-bounded.

P r o o f . 3.4.1) is a consequence of Theorems 3.1 and 3.3.
3.4.2). Choose arbitrarily E ∈ L, and let (yt,l)t,l be a (D)-sequence associated with

uniform regularity. For each ϕ ∈ NN there is U ∈ G with U ⊃ E and vL(mj)(U \ E)
≤
∨∞

t=1 yt,ϕ(t) for every j ∈ N. Moreover, in correspondence with U there is j0 ∈ N with

|mj(U)−mj+p(U)| ≤
∞∨
t=1

αt,ϕ(t)

for every j ≥ j0 and p ∈ N, where (αt,l)t,l is a regulator related to (D)-convergence on
G. By k-triangularity of mj and mj+p we get

mj(E)−mj+p(E) ≤ mj(U)−mj+p(U) + kmj(U \ E) + kmj+p(U \ E),

mj+p(E)−mj(E) ≤ mj+p(U)−mj(U) + kmj(U \ E) + kmj+p(U \ E),

and hence

|mj(E)−mj+p(E)| ≤ |mj(U)−mj+p(U)|+ kmj(U \ E) + kmj+p(U \ E)

≤
∞∨
i=1

(2 k + 1)(yi,ϕ(i) + αi,ϕ(i)) (18)

for every j ≥ j0 and p ∈ N. From (18) it follows that the sequence (mj(E))j is (D)-
Cauchy in R. Since R is a Dedekind complete lattice group, then the sequence (mj(E))j
is (D)-convergent, with respect to a regulator independent of E (see also [7, 28]). Thus
3.4.2) is proved.

3.4.3). Straightforward. �

The next step is to prove a uniform boundedness theorem for k-triangular regular
lattice group-valued set functions. We begin with the following result, which extends
[11, Proposition 4.5].

Proposition 3.5. Let mh : L → R, h ∈ N, be a sequence of k-triangular set functions,
and let (tn)n be an increasing sequence of positive elements of R. Suppose also that
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3.5.1) for every disjoint sequence (Hj)j in L, the set {mh(Hj): h, j ∈ N} is bounded by
(tn)n.

Then the set {mh(A) : h ∈ N, A ∈ L} is bounded in R.

P r o o f . First of all observe that, thanks to 3.5.1), for every fixed element A ∈ L there
is n = n(A) ∈ N with 0 ≤ mh(A) ≤ tn(A) for every h ∈ N. We now prove that the
set {mh(A) : h ∈ N, A ∈ L} is bounded by the sequence ((k + 1)tn)n. Suppose, by
contradiction, that this is not true. By hypothesis, there is n1 ∈ N such thatmh(G) ≤ tn1

for all h ∈ N, where G is as in Theorem 3.1. Moreover, there exist A1 ∈ L and h1 ∈ N
such that mh1

(A1) 6≤ (k + 1)tn1
. We have also mh1

(G \ A1) 6≤ tn1
: otherwise, by

k-triangularity of mh1 and (4) used with q = 2, E1 = A1, E2 = G \A1, we get

mh1
(A1) ≤ mh1

(G) + kmh1
(G \A1) ≤ tn1

+ k tn1
= (k + 1)tn1

.

It is not difficult to check that either {mh(A ∩ A1): A ∈ L, h ∈ N}, or {mh(A \ A1):
A ∈ L, h ∈ N} (or both, possibly) is not bounded in R: otherwise, if

u1 =
∨
{mh(A ∩A1) : A ∈ L, h ∈ N},

u2 =
∨
{mh(A \A1) : A ∈ L, h ∈ N},

then, thanks to triangularity of the mh’s, we have

0 ≤ mh(A) ≤ mh(A ∩A1) + kmh(A \A1) ≤ u1 + k u2

for each A ∈ L and h ∈ N, and hence the set {mh(A): A ∈ L, h ∈ N} is bounded in
R, getting a contradiction. In the first case, set C1 := A1, otherwise put C1 := G \ A1.
Then, set D1 := G \ C1. Now we use the same argument as above, by replacing G
by C1: so we find a set A2 ⊂ C1, A2 ∈ L and two integers n2 > n1, h2 > h1, with
mh2(A2) 6≤ (k+1)tn2 and mh2(C1 \A2) 6≤ tn2 . Put C2 := A2 or C2 := C1 \A2 according
as the {mh(A ∩ A2) : A ∈ L, h ∈ N} or {mh(A \ A2) : A ∈ L, h ∈ N} is bounded, set
D2 := C1 \C2, and let us repeat the same argument as above. Proceeding by induction,
we find a disjoint sequence (Dj)j and two strictly increasing sequences (nj)j , (hj)j in
N with mhj

(Dj) 6≤ tnj
for every j ∈ N, obtaining a contradiction with 3.5.1). This ends

the proof. �

We now turn to our main uniform boundedness theorem for regular and k-triangular
lattice group-valued set functions, which extends [11, Theorem 4.6].

Theorem 3.6. Let µj : L → R, j ∈ N, be a (RD)-regular sequence of k-triangular set
functions, and suppose that there is an increasing sequence (tn)n of positive elements of
R such that for every U ∈ G the set {µj(U): j ∈ N} is bounded by (tn)n.

Then the set {µj(E) : j ∈ N, E ∈ L} is bounded in R.

P r o o f . Choose arbitrarily E ∈ L. By 2.14.1), there are a (D)-sequence (at,l)t,l, which
can be taken independently of E, and a set U ∈ G, U ⊃ E, with

v(µj)(U \ E) ≤
∞∨

t,l=1

at,l for every j ∈ N. (19)
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For each n ∈ N, put wn := tn +
∨∞

t,l=1 at,l. Taking into account k-triangularity of µj , in
correspondence with U there is n ∈ N with

µj(E) ≤ µj(U) + k v(µj)(U \ E) ≤ wn,

−µj(E) ≤ −µj(U) + k v(µj)(U \ E) ≤ wn

for every j ∈ N. Thus the set {µj(E) : j ∈ N} is bounded by the sequence (wn)n.
By virtue of Proposition 3.5, it will be enough to prove that, for every disjoint se-

quence (Hn)n in L, the set {µj(Hn): j, n ∈ N} is bounded by the sequence (yn)n, where
yn = k nwn, n ∈ N.

Proceeding by contradiction, assume that there is a disjoint sequence (H ′n)n in L,
such that the set {µj(H

′
n): j, n ∈ N} is not bounded by (yn)n. For every n ∈ N there

are i(n), h(n) ∈ N with

µh(n)(H
′
i(n)) 6≤ (k n + 1)wn. (20)

For each n ∈ N, set mn = µh(n), Hn = H ′i(n). By 2.14.2), the (D)-sequence (at,l) in (19)
has the property that for every n ∈ N there exists a set On ∈ G with

On ⊃ Hn for each n ∈ N and (D) lim
n
v(mj)

( ∞⋃
i=n

Oi

)
= 0 for every j ∈ N (21)

with respect to (at,l)t,l. Hence, there is an integer n1 > 1 with m1(E) ≤
∨∞

t,l=1 at,l for

every E ∈ L, E ⊂
⋃∞

i=n1
Oi, and a fortiori for each E ∈ L, E ⊂

⋃∞
i=n1

Hi. We get

m1(E ∪H1) 6≤ w1 for each E ∈ L, E ⊂
∞⋃

i=n1

Hi :

otherwise, by k-triangularity of m1 and (4) used with q = 2, E1 = H1, E2 = E, we have

m1(H1) ≤ m1(E ∪H1) + km1(E) ≤ w1 + k

∞∨
t,l=1

at,l ≤ (k + 1)w1,

which contradicts (20). Let j2 > n1 be an integer such that∨
{mn(H1) : n ∈ N} ≤ tj2 .

By 2.14.2), in correspondence with mj2 there is an integer n2 > j2 such that mj2(E) ≤∨∞
t,l=1 at,l for any E ∈ L, E ⊂

⋃∞
i=n2

Hi. For such E’s we have

mj2(E ∪H1 ∪Hj2) 6≤ wj2 :

otherwise, by k-triangularity of mj2 and (4) used with q = 3, E1 = Hj2 , E2 = E,
E3 = H1, we get

mj2(Hj2) ≤ mj2(E ∪H1 ∪Hj2) + kmj2(E) + kmj2(H1)

≤ wj2 + k

∞∨
t,l=1

at,l + k wj2 ≤ 3 k wj2 ≤ (k j2 + 1)wj2 ,
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which contradicts (20). Let j3 > n2 be an integer such that∨
{mn(Hj2) : n ∈ N} ≤ wj3 .

By 2.14.2), in correspondence with mj3 there is n3 > j3 with mj3(E) ≤
∨∞

t,l=1 at,l for

every E ∈ L, E ⊂
⋃∞

i=n3
Hi. For such E’s we have

mj3(E ∪H1 ∪Hj2 ∪Hj3) 6≤ wj3 :

otherwise, by k-triangularity of mj3 and (4) used with q = 4, E1 = Hj3 , E2 = E,
E3 = H1, E4 = Hj2 , we get

mj3(Hj3) ≤ mj3(E ∪H1 ∪Hj2 ∪Hj3) + kmj3(E) + kmj3(H1) + kmj3(Hj2)

≤ wj3 + k

∞∨
t,l=1

at,l + k wj2 + k wj3

≤ 4 k wj3 ≤ (k j3 + 1)wj3 ,

which contradicts (20). Proceeding by induction, it is possible to construct two strictly
increasing sequences (jh)h, (nh)h, such that nh > jh ≥ h for every h ∈ N, and

mjh(E ∪H1 ∪Hj2 ∪ . . . ∪Hjh) 6≤ wjh

whenever h ∈ N and E ∈ L with E ⊂
⋃∞

i=nh
Hi.

Set j1 = 1 and H =
⋃∞

h=1Hjh . Note that H ∈ G and mjh(H) 6≤ wjh for every
h ∈ N. But the set {mh(H) : h ∈ N} is bounded by the sequence (wn)n, and so we get
a contradiction. This ends the proof. �

Remark 3.7. Now we show that, under certain hypotheses, regular and k-triangular
set functions, with values in spaces of type L0 as in Remark 2.2, are (RD)-regular too.
Note that, by means of techniques analogous to those used below, this result can be
proved for finite dimensional space-valued set functions, extending to the k-triangular
context some classical theorems proved in the finitely additive setting (see for instance
[29, Theorem 2]).

Let R = L0 = L0([0, 1],B, λ) be as in Remark 2.2, G be a compact Hausdorff topo-
logical space, L be the σ-algebra of all Borel subsets of G, G and H be the classes of
all open and of all compact subsets of G, respectively. First of all, observe that 2.9.2)
is a consequence of 2.9.1). Indeed, pick arbitrarily W ∈ H and let (Vn)n be a sequence
of elements of G, satisfying 2.9.1). Since G is compact and Hausdorff, G is also normal
(see also [36, Theorem XI.1.2]). As G is normal, thanks to [36, Proposition VII.3.2],
in correspondence with W and V1 there is a set U1 ∈ G with W ⊂ U1 ⊂ U1 ⊂ V1,
where U1 denotes the topological closure of U1 in G. Analogously, we can associate to
W and U1 ∩V2 a set U2 ∈ G with W ⊂ U2 ⊂ U2 ⊂ U1 ∩V2. Proceeding by induction, we
construct a decreasing sequence (Un)n in G, with W ⊂ Un+1 ⊂ Un+1 ⊂ Un∩Vn+1. Since
the sequence (Vn)n satisfies 2.9.1), it is not difficult to see that the sequences (Un)n and
(Un)n fulfil 2.9.2).
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Let mj : L → R, j ∈ N, be a sequence of k-triangular and regular set functions.
We will prove that (mj)j satisfies 2.14.1) and 2.14.2). Since in L0 the (r)-, (O)- and
(D)-convergences coincide (see Remark 2.2), then for every j ∈ N there exists uj ∈ R,

uj ≥ 0, such that for every E ∈ L there are two sequences (V
(j)
n )n in G and (K

(j)
n )n in

H, with V
(j)
n ⊃ E ⊃ K

(j)
n for each n and such that for every ε > 0 there is a positive

integer n0 = n0(ε, j, E) with

v(mj)(V
(j)
n \K(j)

n ) ≤ ε uj whenever n ≥ n0. (22)

For every n ∈ N, set Vn :=
⋂n

j=1 V
(j)
n , Kn :=

⋃n
j=1K

(j)
n : note that Vn ∈ G, Kn ∈ H

and Vn ⊃ E ⊃ Kn for every n. Since R satisfies property (σ), in correspondence with
the sequence (uj)j there exist a sequence (aj)j of positive real numbers and an element
u ∈ R, u ≥ 0, with 0 ≤ aj uj ≤ u for every j ∈ N. Note that u does not depend on the
choice of E ∈ L. For every ε > 0, j ∈ N and E ∈ L, let n∗ = n∗(ε, j, E) = n0(ε aj , j, E),
where n0 is as in (22). We get

v(mj)(Vn \Kn) ≤ v(mj)(V
(j)
n \K(j)

n ) ≤ ε aj uj ≤ ε u (23)

for each n ≥ n∗. If we take σp = 1
pu, p ∈ N, then it is not difficult to check that 2.14.1)

is satisfied.

We now prove 2.14.2). Choose any disjoint sequence (Hn)n in L and let u be as

in (23). In correspondence with j, n ∈ N and 1
k 2n+j+1 set O

(j)
n = O

(j)
n

(
1

k 2n+j+1

)
=

Vn∗(
1

k 2n+j+1 ,j,Hn) and F
(j)
n = F

(j)
n

(
1

k 2n+j+1

)
= Kn∗(

1

k 2n+j+1 ,j,Hn), where n∗ is as in (23).

For each n ∈ N, put On =
⋂n

j=1O
(j)
n and Fn =

⋃n
j=1 F

(j)
n . Note that On ∈ G, Fn ∈ H

and On ⊃ Hn ⊃ Fn for each n. Moreover, from (23) we get

v(mj)(On \ Fn) ≤ v(mj)(O
(j)
n \ F (j)

n ) ≤ 1

k 2n+j+1
u for every j, n ∈ N. (24)

Now, for each n ∈ N set Un :=
⋃∞

i=nOi, Cn :=
⋂∞

i=n Fi. Since the sequence (Hn)n is
disjoint and Fn ⊂ Hn for every n ∈ N, then Cn = ∅ for every n ∈ N. Taking into account
(7), from (24) we get

v(mj)(Un) = v(mj)(Un \ Cn) = v(mj)
(( ∞⋃

i=n

Oi

)
\
(( ∞⋂

i=n

Fi

))
(25)

= v(mj)
( ∞⋃
i=n

(Oi \ Fi)
)
≤ k

∞∑
i=n

v(mj)(Oi \ Fi) ≤ k
∞∑
i=n

1

k 2i+j+1
u =

1

2n+j
u

(see also [39, Lemma 1]). Thus 2.14.2) is proved. �

The following example shows that, in Theorem 3.5, in general the condition 3.5.1)
cannot be replaced by the boundedness of the set {mj(U) : j ∈ N}.
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Example 3.8. (see also Schwartz [46, Example 5] Let R be the vector lattice c0 of all
real sequences convergent to 0, endowed with the usual ordering, B be the σ-algebra of
all Borel subsets of [0, 1]. Note that c0 is Dedekind complete and weakly σ-distributive,
and that in c0 order, (D)- and (r)-convergence coincide with coordinatewise convergence
dominated by an element of c0 (see also [28, 46, 48]). For every n ∈ N and E ∈ B set
mn(E) = (µ1(E), . . . , µn(E), 0, . . . , 0, . . .), where µn(E) =

∫
E

sin(nπ x) dx. It is known
(see [46]) that every mn is a σ-additive measure and the set {mn(E) : n ∈ N} is bounded
in c0 for every E ∈ B. However, it is not possible to find a positive increasing sequence
(tn)n satisfying the hypothesis of Theorem 3.6, since sup{µn(A) : A ∈ B} = 1 for each
n. Moreover, from this it follows that the set {mn(E) : n ∈ N, E ∈ B} is not bounded
in c0.

Open problems:

(a) Prove similar results with respect to other kinds of (s)-boundedness, boundedness
and/or convergence, and relatively to different types of variations in the setting of non-
additive lattice-group valued set functions (see also [21, 41]).

(b) Find some other conditions under which 2.14.1) and/or 2.14.2) hold.
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[2] G. Barbieri: On Dieudonné’s boundedness theorem. Boll. Un. Mat. Ital. II 9 (2009),
343–348.
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