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A NOTE ON RESOLVING THE INCONSISTENCY
OF ONE-SIDED MAX-PLUS LINEAR EQUATIONS

Pingke Li

When a system of one-sided max-plus linear equations is inconsistent, its right-hand side
vector may be slightly modified to reach a consistent one. It is handled in this note by minimiz-
ing the sum of absolute deviations in the right-hand side vector. It turns out that this problem
may be reformulated as a mixed integer linear programming problem. Although solving such a
problem requires much computational effort, it may propose a solution that just modifies few
elements of the right-hand side vector, which is a desired property in some practical situations.
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Classification: 15A80, 90C11

1. INTRODUCTION

Max-plus algebra is the dioid (Rmax,⊕,⊗) endowed with the maximization operation as
addition and the usual sum as multiplication, that is, Rmax = R ∪ {−∞} and

a⊕ b = max{a, b}, a⊗ b = a+ b, ∀a, b ∈ Rmax.

Analogously, min-plus algebra is the dioid (Rmin,⊕′,⊗′) with Rmin = R ∪ {+∞} and

a⊕′ b = min{a, b}, a⊗′ b = a+ b, ∀a, b ∈ Rmin.

The pair of operations (⊕,⊗), as well as that of (⊕′,⊗′), can be extended to vectors and
matrices in the same way as in linear algebra, preserving the analogous commutative,
associative, and distributive properties for the matrices of compatible sizes.

Max-plus algebra, as well as some analogous algebraic structures, has been intensively
investigated and widely applied since it provides an attractive approach to formulating
many real-world problems of scheduling, production, transportation, decision making,
etc. For more details on the theory and application of max-plus algebra, the reader may
refer to Baccelli et al. [3], Heidergott et al. [12], Gondran and Minoux [11], Butkovič [4],
and references therein.
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A basic problem in max-plus algebra is to solve a system of one-sided max-plus linear
equations of the form

n⊕
j=1

aij ⊗ xj = max
j∈N
{aij + xj} = bi, ∀i ∈M,

or equivalently, in its matrix form

A⊗ x = b,

where M = {1, 2, . . . ,m} and N = {1, 2, . . . , n} are two index sets, the coefficient matrix
A = (aij)m×n ∈ Rm×n

max and the right-hand side vector b = (bi)m×1 ∈ Rm
max are given,

while x = (xj)n×1 ∈ Rn
max is a vector to be determined. Without loss of generality,

A is assumed to be doubly R-astic, i. e., A has at least one finite element in each row
and in each column, and b consists of only finite elements. Furthermore, noticing that
maxj∈N{aij + xj} = bi is equivalent to maxj∈N{aij − bi + xj} = 0 for each i ∈ M ,
any system of one-sided max-plus linear equations may be normalized such that all the
right-hand side constants are zero.

A system A⊗x = b is said to be consistent if its solution set, denoted by S(A,b), is
nonempty and inconsistent otherwise. The principal solution x̂ = (x̂1, x̂2, . . . , x̂n)T of a
given system A⊗ x = b is constructed as

x̂j = min
i∈M
{−aij + bi}, ∀j ∈ N,

that is,
x̂ = A] ⊗′ b,

where A] = −AT is the conjugate matrix of A in the context of max-plus algebra,
obtained by negation and transposition. It is well known that A⊗ x̂ ≤ b and the system
A ⊗ x = b is consistent if and only if A ⊗ x̂ = b. However, the consistency of max-
plus linear equations is somewhat sensitive to the perturbation or noise in the data. It
happens quite often that the system obtained in a practical situation may not possess
an exact solution. In such a case, the principal solution x̂ provides only a best under
approximation A⊗ x̂ to the right-hand side vector b, which is not necessarily desirable
in the process of modeling.

For resolving the inconsistency, one of the possible approaches is to modify the vec-
tor b slightly to reach a consistent system. This issue is concerned in the context of
max-plus algebra as to minimize ‖A ⊗ x − b‖∞ where ‖ · ‖∞ denotes the conventional
L∞ norm for vectors, that is, to find a best L∞ approximation to the vector b such
that the corresponding system is consistent. Note that throughout this text, the max-
plus matrix multiplication takes precedence over the conventional vector addition and
subtraction whenever they appear simultaneously. It turns out that this optimization
problem of minimizing the maximum absolute deviation in b can be readily solved. An
optimal solution may be constructed in the closed form as x̂ + ∆ where ∆ is the vector
of length n with each element being 1

2‖A⊗ x̂−b‖∞. See, e. g., Cechlárová and Diko [8],
Cechlárová and Cuninghame-Green [7], Krivulin [13], and Zimmermann [16] for more de-
tails. Besides, the inconsistency can be resolved efficiently as well with respect to the L∞



On resolving the inconsistency of one-sided max-plus linear equations 533

norm for one-sided linear equations defined over some other dioid structures, see, e. g.,
Cuninghame-Green and Cechlárová [10], Tharwat and Zimmermann [15], Cechlárová [6],
Li and Fang [14], and Cimler et al. [9].

Although the L∞ norm based optimization criterion has a sound interpretation in
max-plus algebra, it may lead to a consistent system A⊗x = A⊗ (x̂+ ∆) with most, if
not all, elements of b modified as illustrated in Section 3, since all the elements in ∆ are
equal and hence A⊗(x̂+∆) = A⊗ x̂+∆. However, in some situations, it is desired that
the number of modified elements in the right-hand side vector keeps as few as possible.
This property may be partially captured by minimizing ‖A⊗x−b‖1 where ‖ · ‖1 is the
conventional L1 norm for vectors, i.e, by minimizing the sum of absolute deviations in
b. This problem, to the best of our knowledge, has not been explicitly tackled in the
related literature of max-plus algebra. However, the concerned optimization problem
can be reformulated as

min ‖y − b‖1
s.t. A⊗ x = y,

and considered as a nonlinear programming problem constrained by a system of two-
sided max-plus linear equations with separated variables. Such a problem has been
investigated in its more general form, see, e. g., Butkovič and Aminu [5], Aminu and
Butkovič [2], and Allamigeon et al. [1]. In this note, a mixed integer linear programming
formulation is proposed for the problem of minimizing ‖A ⊗ x − b‖1 taking advantage
of the particular properties of the L1 norm for vectors.

This note proceeds as follows. An equivalent formulation is provided in Section 2 for
minimizing ‖A ⊗ x − b‖1 within the framework of mixed integer linear programming.
Some numerical examples are presented in Section 3 to demonstrate this procedure and
to compare the results with those given by minimizing ‖A⊗x−b‖∞. Some concluding
remarks are addressed in Section 4.

2. DECOMPOSITION AND REFORMULATION

Given an inconsistent system of one-sided max-plus linear equations A ⊗ x = b with
the principal solution x̂, it holds that A ⊗ x̂ ≤ b and A ⊗ x ≤ A ⊗ x̂ whenever x ≤ x̂.
Hence, for any x ≤ x̂,

‖A⊗ x̂− b‖1 ≤ ‖A⊗ x− b‖1.
Moreover, since A⊗ x̂ ≤ b, it holds for any x ∈ Rn

max that

‖(A⊗ x̂)⊕ (A⊗ x)− b‖1 ≤ ‖A⊗ x− b‖1.

This implies that
‖A⊗ (x̂⊕ x)− b‖1 ≤ ‖A⊗ x− b‖1,

by the max-plus distributive property

A⊗ (x̂⊕ x) = (A⊗ x̂)⊕ (A⊗ x).

Consequently, due to x̂⊕ x ≥ x̂, one may impose the restriction x ≥ x̂ to figure out the
best L1 approximation to the vector b in order to resolve the inconsistency.
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Let δ = (δ1, δ2, . . . , δn)T and t = (t1, t2, . . . , tm)T be two nonnegative vectors in the
conventional sense. Then, ‖t‖1 = eT t where e = (1, 1, . . . , 1)T of the compatible size.
The problem to minimize ‖A⊗x−b‖1 subject to x ≥ x̂ can be formulated equivalently
as

min eT t

s.t.
−t + b ≤ A⊗ (x̂ + δ) ≤ t + b,

t ≥ 0, δ ≥ 0.

This formulation involves the nonlinear constraint −t+b ≤ A⊗ (x̂+ δ) ≤ t+b, which
can be further decomposed by the techniques routinely used in mixed integer linear
programming.

Note that A⊗ (x̂ + δ) ≤ t + b stands for

max
j∈N
{aij + x̂j + δj} ≤ ti + bi, ∀i ∈M,

which can be equivalently represented by a system of linear inequalities

aij + x̂j + δj ≤ ti + bi, ∀i ∈M, j ∈ N.

On the other hand, A⊗ (x̂ + δ) ≥ −t + b stands for

max
j∈N
{aij + x̂j + δj} ≥ −ti + bi, ∀i ∈M,

which means that for each i ∈M there exists at least one index ji ∈ N such that

aiji + x̂ji + δji ≥ −ti + bi.

By introducing a group of mn auxiliary binary variables to record such associations,
A⊗ (x̂ + δ) ≥ −t + b can be reformulated as

aij + x̂j + δj +K(1− zij) ≥ −ti + bi, ∀i ∈M, j ∈ N,

where K is a suitably large positive constant and∑
j∈N zij = 1, ∀i ∈M,

zij ∈ {0, 1}, ∀i ∈M, j ∈ N.

Consequently, the problem of minimizing ‖A ⊗ x − b‖1 may be reformulated into a
mixed integer linear programming problem as

min t1 + t2 + . . .+ tm

s.t.
−ti + δj ≤ −aij − x̂j + bi, ∀i ∈M, j ∈ N,

ti + δj +K(1− zij) ≥ −aij − x̂j + bi, ∀i ∈M, j ∈ N,∑
j∈N zij = 1, ∀i ∈M,

ti ≥ 0, ∀i ∈M,

δj ≥ 0, ∀j ∈ N,

zij ∈ {0, 1}, ∀i ∈M, j ∈ N.
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It then may be solved to optimality by some widely available solvers for mixed inte-
ger linear programming, often based on branch-and-bound methods. Other than the
restrictions on the total mn + m + n decision variables, this formulation consists of
2mn inequality constraints and m equality constraints but possesses somewhat a sparse
structure. Some additional information may also be used for preprocessing in order to
simplify this formulation, for instance, the rule that aij = −∞ implies zij = 0 may be
applied whenever A contains such elements. Nevertheless, a more compact formulation
or an efficient direct solving algorithm, if possible, is still desirable.

3. NUMERICAL EXAMPLES

Consider the following normalized system A⊗x = b of one-sided max-plus linear equa-
tions  3 1 5

4 4 6

7 7 3

⊗
 x1

x2

x3

 =

 0

0

0

 ,

of which the equations involved are

max{3 + x1, 1 + x2, 5 + x3} = 0,

max{4 + x1, 4 + x2, 6 + x3} = 0,

max{7 + x1, 7 + x2, 3 + x3} = 0.

The associated principal solution is x̂ = (−7,−7,−6)T and A⊗ x̂ is 3 1 5

4 4 6

7 7 3

⊗
 −7

−7

−6

 =

 −1

0

0

 ≤
 0

0

0

 .

Hence, the given system is inconsistent and the right-hand side vector has to be modified
to achieve the consistency. If the best L∞ approximation is desired, it follows that
‖A⊗ x̂− b‖∞ = 1 and ∆ = (0.5, 0.5, 0.5)T so that A⊗ (x̂ + ∆) is 3 1 5

4 4 6

7 7 3

⊗
 −6.5

−6.5

−5.5

 =

 −0.5

0.5

0.5


and ‖A⊗ (x̂+ ∆)−b‖∞ = 0.5. This instance has been illustrated by Zimmermann [16]
for resolving the inconsistency of one-sided max-plus linear equations under the criterion
of L∞ norm of vectors.

However, since ‖A ⊗ (x̂ + ∆) − b‖1 = 1.5 while ‖A ⊗ x̂ − b‖1 = 1 for this instance,
the best L∞ approximation A⊗ (x̂+ ∆) obtained is not optimal with respect to the L1

norm, which is usually the case as expected. Actually, it can be verified later that for
this instance A⊗ x̂ happens to be a best L1 approximation to the right-hand side vector.



536 P. LI

According to Section 2, the corresponding mixed integer linear programming problem
to find the best L1 approximation can be constructed as

min t1 + t2 + t3

s.t.
−t1 + δ1 ≤ 4, −t1 + δ2 ≤ 6, −t1 + δ3 ≤ 1,

−t2 + δ1 ≤ 3, −t2 + δ2 ≤ 3, −t2 + δ3 ≤ 0,

−t3 + δ1 ≤ 0, −t3 + δ2 ≤ 0, −t3 + δ3 ≤ 3,

t1 + δ1 +K(1− z11) ≥ 4, t1 + δ2 +K(1− z12) ≥ 6, t1 + δ3 +K(1− z13) ≥ 1,

t2 + δ1 +K(1− z21) ≥ 3, t2 + δ2 +K(1− z22) ≥ 3, t2 + δ3 +K(1− z23) ≥ 0,

t3 + δ1 +K(1− z31) ≥ 0, t3 + δ2 +K(1− z32) ≥ 0, t3 + δ3 +K(1− z33) ≥ 3,

z11 + z12 + z13 = 1, z21 + z22 + z23 = 1, z31 + z32 + z33 = 1,

t1, t2, t3, δ1, δ2, δ3 ≥ 0, z11, z12, . . . , z33 ∈ {0, 1}.

By calling a mixed integer linear programming solver, it can be shown that the optimality
is achieved with (t∗1, t

∗
2, t
∗
3)T = (1, 0, 0)T and (δ∗1 , δ

∗
2 , δ
∗
3)T = (0, 0, 0)T , indicating that

A⊗ x̂ = (−1, 0, 0)T is a best L1 approximation to achieve the consistency. Furthermore,
the best L1 approximation is usually not unique as expected. For this instance, let
δ = (0, 0, δ3)T with 0 ≤ δ3 ≤ 1. It follows that 3 1 5

4 4 6

7 7 3

⊗
 −7

−7

−6 + δ3

 =

 −1 + δ3

δ3

0

 ,

and hence ‖A ⊗ (x̂ + δ) − b‖1 = ‖A ⊗ x̂ − b‖1 = 1. Consequently, when δ3 = 0.5,
the resulted vector A⊗ (x̂ + δ) = (−0.5, 0.5, 0)T becomes a both best L1 and best L∞
approximation to the right-hand side vector.

It is intuitive that A ⊗ x̂ may not necessarily be the best L1 approximation. For
instance, consider A⊗ x = b with 3 1 3

4 4 6

7 7 7

⊗
 x1

x2

x3

 =

 0

0

0

 ,

of which x̂ = (−7,−7,−7)T and A ⊗ x̂ = (−4,−1, 0)T . By solving the corresponding
mixed integer linear programming problem, it can be shown that δ∗ = (3, 0, 0)T offers a
best L1 approximation A⊗ (x̂ + δ∗) = (−1, 0, 3)T such that

‖A⊗ (x̂ + δ∗)− b‖1 = 4 < 5 = ‖A⊗ x̂− b‖1.

Besides, ‖A⊗x̂−b‖∞ = 4 and hence ∆ = (2, 2, 2)T such that ‖A⊗(x̂+∆)−b‖∞ = 2. It
is clear that A⊗ (x̂+δ∗) is not a best L∞ approximation since ‖A⊗ (x̂+δ∗)−b‖∞ = 3.
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However, with δ̂ = (2, 0, 1)T obtained by imposing the upper bound constraint t ≤ ∆,

the vector A⊗ (x̂ + δ̂) becomes 3 1 3

4 4 6

7 7 7

⊗
 −5

−7

−6

 =

 −2

0

2

 ,

which is still a best L1 approximation and simultaneously a best L∞ approximation.
With these two numerical examples, it is somewhat tempting to conjecture that there

exists a simultaneously best L1 and L∞ approximation to the right-hand side vector
whenever a system of one-sided max-plus linear equations is inconsistent. However, this
is not the case. As a counterexample, consider A⊗ x = b with 5 1 0

4 4 5

7 7 7

⊗
 x1

x2

x3

 =

 0

0

0

 ,

of which x̂ = (−7,−7,−7)T and A ⊗ x̂ = (−2,−2, 0)T . So, with ∆ = (1, 1, 1)T , a best
L∞ approximation is given by A⊗ (x̂ + ∆) as 5 1 0

4 4 5

7 7 7

⊗
 −6

−6

−6

 =

 −1

−1

−1


and ‖A ⊗ (x̂ + ∆) − b‖∞ = 1. By solving the corresponding mixed integer linear
programming problem, a best L1 approximation may be constructed by A ⊗ (x̂ + δ∗)
with δ∗ = (2, 0, 2)T such that 5 1 0

4 4 5

7 7 7

⊗
 −5

−7

−5

 =

 0

0

2


and ‖A ⊗ (x̂ + δ∗) − b‖1 = 2. Note that only one component in the right-hand side
vector is modified to reach the consistency largely due to the applied L1 norm criterion.
However, with the upper bound constraint t ≤ ∆, the resulting best L1 approximation
A⊗ (x̂ + δ̂) becomes  5 1 0

4 4 5

7 7 7

⊗
 −6

−7

−6

 =

 −1

−1

1


with ‖A ⊗ (x̂ + δ̂) − b‖1 = 3 where δ̂ = (1, 0, 1)T . This means that for this instance
there exists no vector that is simultaneously a best L1 and L∞ approximation to the
right-hand side vector for resolving the inconsistency. This example also illustrates that
the inconsistency of one-sided max-plus linear equations may be resolved by modifying
possibly few components in the right-hand side vector.
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Note that all the mixed integer linear programming problems associated with the
numerical examples in this section are solved with the free linear programming solver
lp solve 5.5 using lpSolve package in R 3.0.1.

4. CONCLUSIONS

The problem of resolving inconsistency of one-sided max-plus linear equations is tackled
in this note by changing the right-hand side vector as slightly as possible such that the
resulting equations are consistent. By minimizing the sum of absolute deviations, this
problem is reformulated equivalently as a mixed integer linear programming problem,
which may be solved to optimality by some well developed techniques. Compared with
the known computationally tractable method that minimizes the maximum absolute
deviation, this approach requires much more computational effort but may propose a
solution that just modifies few elements of the right-hand side vector. Besides, these two
methods may be naturally combined as illustrated in the presented numerical examples.
Nevertheless, the approach developed in this note provides an alternative perspective on
resolving the inconsistency of one-sided max-plus linear equations. It may be extended
as well to handle the programming problems constrained by two-sided max-plus linear
equations as considered in Butkovič and Aminu [5] and Aminu and Butkovič [2].
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[7] K. Cechlárová and R. A. Cuninghame-Green: Soluble approximation of linear systems in
max-plus algebra. Kybernetika 39 (2003), 137–141.
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