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ON A DECOMPOSITION OF NON-NEGATIVE RADON
MEASURES

Bérenger Akon Kpata

Abstract. We establish a decomposition of non-negative Radon measures on
Rd which extends that obtained by Strichartz [6] in the setting of α-dimensional
measures. As consequences, we deduce some well-known properties concerning
the density of non-negative Radon measures. Furthermore, some properties
of non-negative Radon measures having their Riesz potential in a Lebesgue
space are obtained.

1. Introduction – main results

Let d be a positive integer. Let 0 < θ ≤ 1. We denote by dx the Lebesgue
measure on Rd. For any Lebesgue measurable subset E of Rd, |E| stands for its
Lebesgue measure. For 1 ≤ p <∞, ‖ · ‖p denotes the usual norm on the classical
Lebesgue space Lp = Lp(Rd). The dθ-dimensional Hausdorff measure on Rd is
denoted by Hdθ (see Section 2 for the definition of this measure and some of its
basic properties). If µ is a measure on Rd and A ⊂ Rd, we denote by µbA the
restriction of µ to A.
A Borel measure µ on Rd is locally uniformly dθ-dimensional if there exists a
constant C > 0 such that

µ
(
B(x, r)

)
≤ Crdθ ,

for every open ball B(x, r) centered at x with radius r ≤ 1.
This definition easily implies that µ is absolutely continuous with respect to Hdθ,
but since Hdθ is not σ-finite, the Radon-Nikodym theorem does not apply. Instead
Strichartz proved in [6] the following substitute.

Proposition 1.1. If µ is a locally uniformly dθ-dimensional measure, then there
exists a function ϕ and a measure ν such that µ = ϕdHdθ + ν, where ν has the
property Hdθ(A) <∞ implies ν(A) = 0 for any Borel subset A of Rd.

Next, he gave the following definition motivated by Proposition 1.1.
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Definition 1.2. Let ν and µ be two Borel measures on Rd. The measure ν is null
with respect to µ on Rd and we will denote this with ν≪ µ, if for any Borel subset
A of Rd,

µ(A) <∞⇒ ν(A) = 0 .

In [6] the author established the following result concerning the density of
non-negative Radon measures that are null with respect to Hdθ.

Proposition 1.3. Suppose that ν is a non-negative Radon measure on Rd. If
ν≪ Hdθ then

lim sup
r→0

r−dθν(B(x, r)) = 0

for Hdθ-almost every x.

A generalization of Proposition 1.1 and Proposition 1.3 was obtained in [4].
In the present note, we establish the following decomposition of non-negative

Radon measures.

Proposition 1.4. Suppose that µ is a non-negative Radon measure on Rd. Let us
consider the following subsets of Rd:

Nθ =
{
x ∈ Rd : lim sup

r→0
r−dθµ(B(x, r)) = 0

}
,

Pθ =
{
x ∈ Rd : 0 < lim sup

r→0
r−dθµ(B(x, r)) <∞

}
,

E∞θ =
{
x ∈ Rd : lim sup

r→0
r−dθµ(B(x, r)) =∞

}
.

Then µ = µbNθ + µbPθ + µbE∞θ and
(i) for any Borel set F ⊂ Nθ, Hdθ(F ) <∞⇒ µ(F ) = 0,
(ii) Pθ is Hdθ σ-finite and for any Borel set F ⊂ Pθ, Hdθ(F ) = 0⇒ µ(F ) = 0,
(iii) Hdθ(E∞θ ) = 0.

The remark below shows that in the setting of non-negative Radon measures,
Proposition 1.1 derives from Proposition 1.4.

Remark 1.5. If µ is a non-negative locally uniformly dθ-dimensional measure,
then

0 ≤ lim sup
r→0

r−dθµ
(
B(x, r)

)
<∞ .

Therefore, by applying Proposition 1.4, µ has the following decomposition: µ =
µbNθ + µbPθ. In addition, on Pθ, Hdθ and µ are σ-finite and µ is absolutely
continuous with respect to Hdθ. Therefore, according to the Radon-Nikodym
theorem there exists a function ϕ ≥ 0 such that for all Borel sets E ⊂ Pθ, we have

µ(E) =
∫
E

ϕ(x) dHdθ(x) .

As immediate consequences of Proposition 1.4, we have Proposition 1.3 and the
following result.
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Corollary 1.6. Suppose that 0 < θ < 1 and µ is a non-negative Radon measure
on Rd that is absolutely continuous with respect to the Lebesgue measure. Let

A =
{
x ∈ Rd : lim sup

r→0
r−dθµ

(
B(x, r)

)
> 0
}
.

Then Hdθ(A) = 0.
In particular, for u ∈ Lp, 1 ≤ p <∞, if E is defined by

E =
{
x ∈ Rd : lim sup

r→0
r−dθ

∫
B(x,r)

|u(x)|pdx > 0
}
,

then Hdθ(E) = 0.

Let us stress that Corollary 1.6 was already established in [8] in order to
investigate the Lebesgue points for Sobolev functions.

For 0 < γ < 1, we define the Riesz potential operator Iγ by

Iγµ(x) =
∫

Rd
|x− y|d(γ−1)dµ(y), x ∈ Rd ,

for any suitable Radon measure µ on Rd.
The next results that give some properties of non-negative Radon measures having
their Riesz potential in a classical Lebesgue space also arise from Proposition 1.4.

Proposition 1.7. Suppose that 0 < γ < 1 and 1 < p < ∞. Then for any
non-negative Radon measure µ on Rd satisfying Iγµ ∈ Lp, we have

lim
r→0

∫
Rd

(
rd(γ−1)µ

(
B(x, r)

))p
dx = 0 .

Proposition 1.8. Suppose that d
d−1 < p < ∞ and µ is a non-negative Radon

measure. Then we have
I 1
d
µ ∈ Lp ⇒ lim

r→0
rp
′−dµ(B(x, r)) = 0 µ-almost everywhere ,

where p′ = p
p−1 .

Notice that Proposition 1.7 and Proposition 1.8 are related to the solvability in
Lp(Rd, Rd) of the equation
(1) div F = µ

with measure data µ.
Indeed, Phuc and Torrès have obtained the following criterion.

Proposition 1.9 ([5]). Suppose that µ is a non-negative Radon measure on Rd
and d

d−1 < p <∞. Then the following conditions are equivalent:
(i) Equation (1) has a solution in Lp(Rd, Rd).
(ii) I 1

d
µ belongs to Lp(Rd, R).

The remainder of this paper is organized as follows. In Section 2 we prove
Proposition 1.4, Proposition 1.3 and Corollary 1.6. Section 3 is devoted to the
proof of Proposition 1.7. In Section 4 we establish the proof of Proposition 1.8.
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2. Proofs of Proposition 1.4, Proposition 1.3 and Corollary 1.6

In the sequel, we shall use the following notation.
Notation 2.1. For any non-empty subset B of Rd, we denote by diam B its
diameter.

Let us recall the definition of the ξ-dimensional Hausdorff measure Hξ in Rd,
where 0 < ξ ≤ d (see [3] for a detailed exposition on this measure). Let A be a
subset of Rd. For any δ > 0,

Hδξ(A) = inf
{∑
i∈I

(diam Ui)ξ : A ⊂ ∪
i∈I
Ui, I countable and diam Ui < δ for i ∈ I

}
and

Hξ(A) = lim
δ→0
Hδξ(A) .

Remark 2.2. (i) If 0 < t < r, then for any subset E of Rd we have
Ht(E) <∞⇒ Hr(E) = 0 .

(ii) There exists a positive constant C(d) such that for any Lebesgue measurable
subset E of Rd,

Hd(E) = C(d)|E| .

The following result (see [8]) will be useful in the proof of Proposition 1.4.
Lemma 2.3. Let µ be a non-negative Radon measure on Rd. Let 0 < λ < ∞.
Suppose that F is a Borel subset of Rd such that

lim sup
r→0

r−dθµ(B(x, r)) > λ ,

for each x ∈ F . Then there exists a constant C = C(d, θ) such that

Hdθ(F ) ≤ C

λ
µ(F ) .

Proof of Proposition 1.4. a) Let F be a Borel subset of Rd. Let 0 < λ < ∞
and 0 < δ < ∞. Let us set Fλδ = {x ∈ F : sup

0<r≤δ
r−dθµ(B(x, r)) < λ} and

Fλ = {x ∈ F : lim sup
r→0

r−dθµ(B(x, r)) < λ}.

For any countable covering {Ui : i ∈ I} of F such that diam Ui <
δ
2 for all i ∈ I,

we have
Ui ∩ Fλδ 6= ∅ ⇒ ∃ x ∈ Ui ∩ Fλδ ⇒ ∃ x ∈ Fλδ : Ui ⊂ B(x, 2 diam Ui)

Ui ∩ Fλδ 6= ∅ ⇒ ∃ x ∈ Fλδ : µ(Ui) ≤ µ
(
B(x, 2 diam Ui)

)
< λ (2 diam Ui)dθ .

It follows that
µ(Fλδ ) ≤

∑
i∈I

Ui∩Fλδ 6=∅

µ(Ui) ≤ λ 2dθ
∑
i∈I

(diam Ui)dθ .
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Hence,

µ(Fλδ ) ≤ λ 2dθHδdθ(F ) ≤ λ 2dθHdθ(F ) , λ > 0, δ > 0 .

Notice that for any λ > 0,
(
Fλ1
k

)
k≥1 is an increasing sequence which converges to

Fλ. So we have

(2) µ(Fλ) ≤ λ 2dθ Hdθ(F ) , λ > 0 .

b) Suppose that F is a Borel set such that F ⊂ Nθ and Hdθ(F ) <∞. Then, for
any λ > 0, we have F = Fλ =

{
x ∈ F : lim sup

r→0
r−dθµ(B(x, r)) < λ

}
. So by (2),

we have µ(F ) = 0.
c) Suppose that F is a Borel set such that F ⊂ Pθ and Hdθ(F ) = 0. It follows
from (2) that for any λ > 0, µ(Fλ) = 0. Since the increasing sequence

(
F k
)
k≥1

converges to F , we obtain µ(F ) = 0.

d) Let us set

Am,kθ =
{
x ∈ B(0,m) : 1

k
< lim sup

r→0
r−dθµ(B(x, r)) <∞

}
, k ∈ N∗ , m ∈ N∗

and

Bm,kθ =
{
x ∈ B(0,m) : k < lim sup

r→0
r−dθµ(B(x, r)) <∞

}
, k ∈ N∗ , m ∈ N∗ .

By Lemma 2.3, there exists a real constant C = C(d, θ) such that for any positive
integers k and m

Hdθ(Am,kθ ) ≤ Ckµ(Am,kθ ) ≤ Ckµ
(
B(0,m)

)
<∞(3)

and

Hdθ(Bm,kθ ) ≤ C

k
µ
(
B(0,m)

)
<∞ .(4)

Since
Pθ =

⋃
(m,k)∈N∗×N∗

Am,kθ ,

we deduce from (3) that Pθ is Hdθ σ-finite.
From (4) we have

lim
k→∞

Hdθ(Bk,mθ ) = 0 , m ∈ N∗ .

In addition, for any positive integer m, (Bk,mθ )k≥1 is a decreasing sequence which
converges to E∞θ ∩B(0,m). So, by (4),

Hdθ(E∞θ ∩B(0,m)) = 0 , m ∈ N∗

and therefore Hdθ(E∞θ ) = 0. �
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Proof of Proposition 1.3. Since ν is a non-negative Radon measure on Rd then
Proposition 1.4 holds with µ replaced by ν. Let Pθ and E∞θ be as in Proposition 1.4.
Since by Proposition 1.4 Hdθ(E∞θ ) = 0 then it is enough to prove that Hdθ(Pθ) = 0.
Let (m, k) be an element of N∗ × N∗. Let Am,kθ be as in the proof of Proposition
1.4. By (3), Hdθ(Am,kθ ) <∞. Therefore ν(Am,kθ ) = 0 by the hypothesis on ν. Using
again (3), we obtain Hdθ(Am,kθ ) = 0. But

Pθ =
⋃

(m,k)∈N∗×N∗
Am,kθ ,

so Hdθ(Pθ) = 0. �

Proof of Corollary 1.6. a) Let Pθ and E∞θ be as in Proposition 1.4. Let us
notice that A = Pθ ∪E∞θ . Since Proposition 1.4 ensures that Hdθ(E∞θ ) = 0 then it
is enough to prove that Hdθ(Pθ) = 0 to establish the general case.
Let (m, k) be an element of N∗×N∗. Let Am,kθ be as in the proof of Proposition 1.4.
By (3), Hdθ(Am,kθ ) < ∞. Since 0 < dθ < d, it follows from Remark 2.2 that
Hd(Am,kθ ) = 0 and |Am,kθ | = 0. The absolute continuity of µ with respect to the
Lebesgue measure implies µ(Am,kθ ) = 0 and consequently Hdθ(Am,kθ ) = 0 thanks to
(3). But

Pθ =
⋃

(m,k)∈N∗×N∗
Am,kθ ,

so Hdθ(Pθ) = 0.
b) The particular case follows from the general case by defining a measure µ as
dµ(x) = |u(x)|pdx. �

3. Proof of Proposition 1.7

Let us introduce the fractional maximal operator mβ , 1 < β <∞, defined by

mβµ(x) = sup
r>0
|B(x, r)|

1
β−1µ(B(x, r)) , x ∈ Rd ,

for any non-negative Radon measure µ on Rd.
We have the following result.

Proposition 3.1. Suppose that 1 < β < ∞ and 1 ≤ p < ∞. Let µ be a
non-negative Radon measure on Rd such that mβµ ∈ Lp. Then, we have

lim
r→0

∫
Rd

(
rd(

1
β−1)µ

(
B(x, r)

))p
dx = 0 .

Proof. By hypothesis, 0 < 1− 1
β < 1.

Define N1− 1
β
, P1− 1

β
and E∞1− 1

β
as in Proposition 1.4. ThenHd(1− 1

β )
(
E∞1− 1

β

)
= 0 and

there exists a countable family {Ai : i ∈ I} of subsets of Rd satisfying P1− 1
β

= ∪
i∈I
Ai

and Hd(1− 1
β )(Ai) <∞ for all i ∈ I.
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So, according to Remark 2.2 we have
∣∣P1− 1

β
∪ E∞1− 1

β

∣∣ = 0.
Recall that

lim
r→0

rd( 1
β−1)µ

(
B(x, r)

)
= 0 , x ∈ N1− 1

β
= Rd \

(
P1− 1

β
∪ E∞1− 1

β

)
.

In addition,
ω

1
β−1
d rd( 1

β−1)µ (B(x, r)) ≤ mβµ(x) , x ∈ Rd ,
where ωd is the volume of the unit ball in Rd and mβµ ∈ Lp.
An application of the dominated convergence theorem ends the proof. �

For the proof of Proposition 1.7 we need the following well-known connexions
between the fractional maximal operator mβ and the Riesz potential operator I 1

β
.

Proposition 3.2 ([1]). Suppose that 1 < β <∞. Let µ be a non-negative Radon
measure on Rd. Then,
(i) mβµ ≤ I 1

β
µ,

(ii) if 1− 1
β >

1
p > 0, there is a real constant C > 0 not depending on µ such that

C−1‖mβµ‖p ≤ ‖I 1
β
µ‖p ≤ C‖mβµ‖p .

It follows that Proposition 1.7 is a consequence of Proposition 3.1.

4. Proof of Proposition 1.8

In the sequel, for 1 < p <∞, we shall denote by p′ the conjugate of p : p′ = p
p−1 .

For the proof of Proposition 1.8, we need some basic properties of the Bessel
capacity of order (t, p) (t > 0, p > 1) denoted by Ct,p. So we refer the reader to
[1], [2] or [7] for a detailed exposition on this capacity.
To prove the sufficiency part of Proposition 1.9, Phuc and Torrès remarked that if
I 1
d
µ ∈ Lp then the non-negative Radon measure µ belongs to the dual space of the

Sobolev space W 1, p′(Rd). Therefore such a measure is absolutely continuous with
respect to the Bessel capacity C1, p′ (see Section 2 in [2]). Thus we may state the
following result.

Proposition 4.1. Suppose that d
d−1 < p < ∞ and µ is a non-negative Radon

measure such that I 1
d
µ ∈ Lp. Then for any Borel subset E of Rd we have

C1,p′(E) = 0⇒ µ(E) = 0 .

Another useful result is the following well-known relation between the Hausdorff
measure and the Bessel capacity (see [1] for a proof).

Proposition 4.2. Suppose that 1 < p ≤ d. Then for any subset E of Rd we have
Hd−p(E) <∞⇒ C1,p(E) = 0 .

We may now prove Proposition 1.8.
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Proof of Proposition 1.8. Let µ be a non-negative Radon measure on Rd such
that I 1

d
µ ∈ Lp and let d

d−1 < p <∞. Applying Proposition 1.4 to µ with θ = 1− p′

d ,

we get that P1− p′d
is Hd−p′ σ-finite and Hd−p′

(
E∞

1− p′d

)
= 0. We then deduce from

Proposition 4.2 that C1,p′
(
P1− p′d

∪E∞
1− p′d

)
= 0 and so µ

(
P1− p′d

∪E∞
1− p′d

)
= 0 by

Proposition 4.1. We conclude that lim
r→0

rp
′−dµ(B(x, r)) = 0 µ-almost everywhere.

�
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