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ON THE γ-EQUIVALENCE OF SEMIHOLONOMIC JETS

Miroslav Doupovec and Ivan Kolář

Abstract. It is well known that the concept of holonomic r-jet can be geo-
metrically characterized in terms of the contact of individual curves. However,
this is not true for the semiholonomic r-jets, [5], [8]. In the present paper, we
discuss systematically the semiholonomic case.

In [5], the second author introduced the concept of equivalence with respect to
curves, or γ-equivalence, of semiholonomic r-jets, when he studied the contact of
spaces with higher order connection according to C. Ehresmann, [4]. In the present
paper, we study the general form of this problem. In Section 5, we describe how to
discuss the γ-equivalence of two arbitrary semiholonomic r-jets. We use an original
concept of k-sesquiholonomic r-jet, that generalizes an idea by P. Libermann, [8].

Unless otherwise specified, we use the terminology and notation from the book
[6].

1. Semiholonomic r-jets

The r-th semiholonomic prolongation JrY →M of a fibered manifold p : Y →M

is defined as follows. By induction, we have constructed a projection πr−2
r−1 : Jr−1

Y →
J
r−2

Y . The elements of JrY are 1-jets j1
xs of the local sections s : M → J

r−1
Y

satisfying
(1) s(x) = j1

x(πr−2
r−1 ◦ s) .

If xi, yp are some local fiber coordinates on Y and ypi , . . . , y
p
i1...ir−1

are the induced
local coordinates on J

r−1
Y arbitrary in all subscripts, then the induced local

coordinates on J
r
Y → J

r−1
Y are

(2) ypi1...ir (j
1
xs) =

∂ypi1...ir−1
(s)

∂xir
(x) .

Hence even ypi1...ir are arbitrary in all subscripts. The r-th holonomic prolongation
JrY is a subbundle of JrY , whose all coordinates are symmetric in all subscripts.
The space Jr(M,N) of semiholonomic r-jets of M into N is defined as the r-th
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semiholonomic prolongation of the product fibered manifold Y = M ×N → M .
We write α or β for the source or target projection.

The semiholonomic r-jets are endowed with the restriction of the composition
of nonholonomic r-jets by Ehresmann, [3]. If X = j1

xf ∈ J
r(M,N) and Y = j1

yg ∈
J
r(N,Q), y = βX, then

(3) Y ◦X = j1
x

(
g
(
βf(u)

)
◦ f(u)

)
∈ Jr(M,Q) , u ∈M ,

with the composition of semiholonomic (r − 1)-jets on the right hand side. The
composition of holonomic r-jets coincides with the classical one.

2. The equivalence with respect to curves

In [5], the second author introduced a special version of this idea, when he
investigated the contact of spaces with higher order connection in the sense of
Ehresmann, [4]. In the general situation, we define

Definition 1. Two r-jetsB,C ∈ Jrx(M,N)y are equivalent by curves, or γ-equivalent,
if
(4) B ◦A = C ◦A for all A = jr0γ , γ : R→M, γ(0) = x .

We shall write B ∼γ C.
It is well known that two holonomic r-jets B,C ∈ Jrx(M,N)y are equivalent

by curves, if and only if B = C. But in the semiholonomic case, the situation is
different.

In the simpliest case B,C ∈ J
2
0(Rm,Rn)0, B = (ypi , y

p
ij), C = (zpi , z

p
ij) and

A = (ai1, ai2) ∈ J2
0 (R,Rm)0, B ◦A = C ◦A for all A means

(5) (ypi a
i
1, y

p
ija

i
1a
j
1 + ypi a

i
2) = (zpi a

i
1, z

p
ija

i
1a
j
1 + zpi a

i
2) ,

i.e. ypi = zpi and yp(ij) = zp(ij). This proves that B, C ∈ J2
x(M,N)y are γ-equivalent

if and only if the symmetrizations of B and C in J2
x(M,N)y coincide.

3. The k-sesquiholonomic r-jets

According to P. Libermann, [8], Jr(M,N) is a pullback of TN ⊗⊗rT ∗M over
J
r−1(M,N). (We remark that the fact Jr(M,N) is a pullback of TN ⊗ SrT ∗M

over Jr−1(M,N) was deduced in [6].) Further, she defined the r-th sesquiholonomic
prolongation J̌r(M,N) ⊂ Jr(M,N) by

(6) X ∈ J̌r(M,N) means πr−1
r X ∈ Jr−1(M,N) .

So, J̌r(M,N) is the pullback of TN⊗⊗rT ∗M over Jr−1(M,N). Further, the tensor
symmetrization TN ⊗⊗rT ∗M → TN ⊗ SrT ∗M induces a map ρr : J̌r(M,N)→
Jr(M,N), see also [2]. Analogously to (5), one verifies that B,C ∈ J̌rx(M,N)y are
γ-equivalent, if and only if πr−1

r B = πr−1
r C and

(7) ρr(B) = ρr(C) ∈ Jrx(M,N)y .
We generalize the concept of sesquiholonomic r-jet as follows.
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Definition 2. A jet X ∈ Jr(M,N) is called k-sesquiholonomic, k < r, if πkrX ∈
Jk(M,N).

We shall write X ∈ J̌r,k(M,N). So sesquiholonomic in the sense of Libermann
means (r − 1)-sesquiholonomic under our approach.

Proposition 1. B, C ∈ J̌rx(M,N)y are γ-equivalent, if and only if πr−1
r B =

πr−1
r C and ρr(B) = ρr(C).

Proof. The highest order coordinates of B or C are ypi1...ir or zpi1...ir , respectively.
One finds easily that B ∼γ C means

(8) zpi1...ira
i1
1 . . . air1 = ypi1...ira

i1
1 . . . air1 .

This is the coordinate form of ρr(B) = ρr(C). �

4. The case r = 3

It is useful to discuss this special case separately.

Proposition 2. B, C ∈ J3
0(M,N)0 are γ-equivalent, if and only if π2

3B = π2
3C ∈

J2
0 (M,N)0 and ρ3(B) = ρ3(C) ∈ J3

0 (M,N)0.

Proof. LetB = (ypi , y
p
ij , y

p
ijk), C = (zpi , z

p
ij , z

p
ijk) andA = (ai1, ai2, ai3) ∈ J3

0 (R,Rm)0.
From (3), we deduce for C ◦A = B ◦A

(9) zpi a
i
1 = ypi a

i
1 ,

(10) zpija
i
1a
j
1 + zpi a

i
2 = ypija

i
1a
j
1 + ypi a

i
2,

(11) zpijka
i
1a
j
1a
k
1 + zpij(a

i
2a
j
1 + ai1a

j
2) + zpija

i
2a
j
1 + zpi a

i
3 = {y} ,

where {y} in (11) means that all z′s on the left hand side are replaced by the
corresponding y′s. Since ai1 are arbitrary quantities, (9)–(11) imply

(12) zpi = ypi , zp(ij) = yp(ij) , zp(ijk) = yp(ijk) .

Further, for ai2 = 1, aj1 = 1 and other a′s equal to zero, we obtain from (11) the
additional conditions

(13) zp(ij) + zpij = yp(ij) + ypij ,

what implies zpij = ypij . This proves our assertion. �

We remark that the coordinate formula for the composition Y ◦X of two arbitrary
semiholonomic r-jets is deduced in [1]. However, in our case the coordinate form
of X = A is very special. So we find more suitable the direct use of (3) than the
specialization of the general formula from [1].
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5. The general situation

Consider two k-sesquiholonomic r-jets B, C ∈ J̌r,k(M,N). If B ∼γ C, then
πsrB ∼γ πsrC for all s ≥ k. In the case s = k, these jets are holonomic and
πkrB ∼γ πkrC is equivalent to πkrB = πkrC. Then πk+1

r B, πk+1
r C ∈ J̌k+1(M,N)

and πk+1
r B ∼γ πk+1

r C is equivalent to ρk+1(πk+1
r B) = ρk+1(πk+1

r C). On the other
hand, if the last equation is not satisfied, we do not have πk+1

r B ∼γ πk+1
r C. Hence

even B ∼γ C cannot be true.
The situation r = 3 is specific in that sense, that we can deduce π2

3B = π2
3C

directly from (11) with no additional conditions on B and C.
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