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HOMOGENEOUS RANDERS SPACES

ADMITTING JUST TWO HOMOGENEOUS GEODESICS

Zdeněk Dušek

Abstract. The existence of a homogeneous geodesic in homogeneous Finsler
manifolds was investigated and positively answered in previous papers. It is
conjectured that this result can be improved, namely that any homogeneous
Finsler manifold admits at least two homogenous geodesics. Examples of
homogeneous Randers manifolds admitting just two homogeneous geodesics
are presented.

1. Introduction

The existence of at least one homogeneous geodesics in arbitrary homogeneous
Riemannian manifold was proved by O. Kowalski and J. Szenthe in [7]. In the
papers [6] and [9], it was proved that this result is optimal, namely, examples of
homogeneous Riemannian metrics on solvable Lie groups were constructed which
admit just one homogeneous geodesic through any point. Generalization of the
above existence result to Finsler geometry was proved in the series of papers [12]
by Z. Yan and S. Deng for Randers metrics, [4] by the author for odd-dimensional
Finsler metrics, [5] by the author for Berwald or reversible Finsler metrics, [13] by
Z. Yan and L. Huang in general. However, due to the nonreversibility of general
Finsler metrics, it is conjectured that the result and its proofs in the nonreversible
situation are not optimal.

Conjecture 1. An arbitrary homogeneous Finsler manifold admits at least two
homogeneous geodesics through arbitrary point.

In comparison with Riemannian geometry, the situation is rather delicate. In
the context of Finsler geometry, the trajectory of the unique homogeneous geodesic
in a Riemannian manifold should be regarded as two geodesics with initial vectors
X and −X. For a general homogeneous Finsler manifold, the initial vectors of the
two homogeneous geodesics may be non-opposite. For the moment, it is not clear
how to adapt existing proofs in mentioned papers to prove the above conjecture in
full generality.
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In the present paper, examples of invariant Randers metrics which admit just two
homogeneous geodesics are constructed. The initial vectors of these geodesics are
X+Y and −X+Y , for certain vectors X, Y ∈ TpM . For the construction, Randers
metrics which are modifications of Riemannian metrics of examples from [6] and [9]
are used. Further, it is demonstrated with an example that general Randers metrics
whose underlying Riemannian metric admits just two homogeneous geodesics (with
initial vectors X and −X) may admit more than two homogeneous geodesics.

2. Basic settings

A Minkowski norm on the vector space V is a nonnegative function F : V→ R
which is smooth on V\{0}, positively homogeneous (F (λy) = λF (y) for any λ > 0)
and whose Hessian gij = ( 1

2F
2)yiyj is positively definite on V \ {0}. Here (yi) are

the components of a vector y ∈ V with respect to a fixed basis B of V and putting
yi to a subscript means the partial derivative. Then the pair (V, F ) is called the
Minkowski space. The tensor gy with components gij(y) is the fundamental tensor.
A Finsler metric on the smooth manifold M is a function F on TM which is smooth
on TM \ {0} and whose restriction to any tangent space TxM is a Minkowski
norm. Then the pair (M,F ) is called the Finsler manifold. On a Finsler manifold,
functions gij depend smoothly on x ∈M and on o 6= y ∈ TxM .

Special Minkowski norms are the Randers norms. They are determined by a
symmetric positively definite bilinear form α and a vector V such that α(V, V ) < 1,
or, equivalently, its α-equivalent 1-form β related with V by the formula

β(U) = α(V,U) ∀U ∈ V .
The Randers norm F is defined by the formula
(1) F (U) =

√
α(U,U) + β(U) ∀U ∈ V .

If a Finsler metric F on M restricted to any tangent space TpM is a Randers norm,
it is called a Randers metric. Obviously, the Randers metric F is determined by a
Riemannian metric α and a smooth 1-form β and formula (1) holds on each tangent
space TpM . We remark that, in the literature, the letter α is sometimes used for
the norm induced by the 2-form α and then formula (1) above is without the
square root. We choose the notation above because for β = 0, F is the Riemannian
norm and components gij of the fundamental tensor are just the components of
the Riemannian metric α.

Let M be a Finsler manifold (M,F ). If there is a connected Lie group G which
acts transitively on M as a group of isometries, then M is called a homogeneous
manifold. We remark that a homogeneous manifold (M,F ) may admit more
presentations as a homogeneous space in the form G/H, corresponding to various
transitive isometry groups. The following theorem gives the relation between the
isometry group of a Randers manifold and the isometry group of the corresponding
underlying Riemannian manifold. We shall use this theorem later.

Theorem 2 ([2]). Let (M,F ) be a Randers manifold with the Finsler function
F =

√
α+ β. Then the group of isometries of (M,F ) is a closed subgroup of the

group of isometries of the Riemannian manifold (M,α).
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Homogeneous manifold M can be naturally identified with the homogeneous
space G/H, where H is the isotropy group of the origin p ∈M . A homogeneous
Finsler space (G/H,F ) is always a reductive homogeneous space: We denote by g and
h the Lie algebras of G and H respectively and consider the adjoint representation
Ad: H × g → g of H on g. There exists a reductive decomposition of the form
g = m + h where m ⊂ g is a vector subspace such that Ad(H)(m) ⊂ m. For a fixed
reductive decomposition g = m+h there is the natural identification of m ⊂ g = TeG
with the tangent space TpM via the projection π : G → G/H = M . Using this
natural identification, from the Minkovski norm and its fundamental tensor on
TpM , we obtain the Ad(H)-invariant Minkowski norm and the Ad(H)-invariant
fundamental tensor on m and we denote these again by F and g. In particular, for
the invariant Randers metrics, we shall use the following theorem.

Theorem 3 ([2]). Let (G/H,α) be a Riemannian homogeneous space with the
reductive decomposition g = m + h. Then there is a one-to-one correspondence
between G-invariant Randers metrics on G/H whose underlying Riemannian metric
is α and the set

V = {V ∈ m | α(V ) < 1,Ad(H)(V ) = V } .

In our examples which follow, the algebra h is always trivial. In such a case, any
vector V ∈ g gives rise to a G-invariant Randers metric.

We further recall that the slit tangent bundle TM0 is defined as TM0 = TM \{0}.
Using the restriction of the natural projection π : TM →M to TM0, we naturally
construct the pullback vector bundle π∗TM over TM0. The Chern connection is
the unique linear connection on the vector bundle π∗TM which is torsion free and
almost g-compatible, see some monograph, for example [1] by D. Bao, S.-S. Chern
and Z. Shen or [2] by S. Deng for details. Using the Chern connection, the derivative
along a curve γ(t) can be defined. A regular smooth curve γ with tangent vector
field T is a geodesic if DT ( T

F (T ) ) = 0. In particular, a geodesic of constant speed
satisfies DTT = 0.

A geodesic γ(s) through the point p is homogeneous if it is an orbit of a
one-parameter group of isometries. More explicitly, if there exists a nonzero vector
X ∈ g such that γ(t) = exp(tX)(p) for all t ∈ R. The vector X is called a geodesic
vector. Geodesic vectors are characterized by the following geodesic lemma, proved
in Riemannian geometry by O. Kowalski and L. Vanhecke in [8] and generalized to
Finsler geometry by D. Latifi in [10].

Lemma 4 ([10]). Let (G/H,F ) be a homogeneous Finsler space with a reductive
decomposition g = m + h. A nonzero vector Y ∈ g is geodesic if and only if it holds

gYm(Ym, [Y,U ]m) = 0 ∀U ∈ m ,

where the subscript m indicates the projection of a vector from g to m.

In the special situation of a Randers space, the characterization of geodesic
vectors using the Riemannian metric α and the 1-form β is given in the following
statement. See the paper [3] by the author for a direct proof or [11] by Z. Yan and
S. Deng for a proof using the navigation data.
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Lemma 5 ([3]). Let F =
√
α+ β be a homogeneous Randers metric on G/H, let

g = m + h be a reductive decomposition and V ∈ m be the vector α-equivalent with
β. The vector Y = X + ξ(X) ∈ g, where X ∈ m and ξ(X) ∈ h, is geodesic if and
only if

(2) α
(
X +

√
α(X,X) · V, [X + ξ(X), U ]m

)
= 0 ∀U ∈ m .

We shall use formula (2) in the case with trivial algebra h. In such a case, we
obviously have ξ(X) = 0.

3. An n-dimensional example

We shall consider the series of examples in arbitrary dimension, constructed
with Riemannian metrics in [9]. We shall modify these metrics and obtain invariant
Randers metrics. We identify a special family of these Randers metrics, which have
desired properties. Let us start with the Lie algebra n with the orthonormal basis
B = {E1, . . . , En+1} and generated by the Lie brackets

[Ei, Ej ] = 0 , ∀i, j,≤ n ,

[En+1, Ei] = aiEi + Ei+1 , ∀i < n ,

[En+1, En] = anEn ,

for arbitrary nonzero parameters a1, . . . , an ∈ R. The corresponding Lie group N
is solvable and it is endowed with the invariant Riemannian metric induced by
the scalar product determined by the given orthonormal basis. It was proved in
[9] that, for generic choice of the parameters a1, a2, the group N acting on itself
by left translations is the maximal group of isometries. Using Theorem 3, with
respect to the isometry group N , it follows that an arbitrary vector V ∈ n such
that ‖V ‖ < 1 gives rise to the Randers norm F on n given by the formula (1) and
consequently to an invariant Randers metric F on N . Using Theorem 2, we see
that the group N acting on itself by left translations is the maximal isometry group
of the Finsler manifold (N,F ). For the simplicity, we shall consider only Randers
metrics generated by the vector V = kE1, 0 < k < 1, which are suitable for our
purposes.

Theorem 6. Let (N,F ) be the n-dimensional homogeneous Randers space construc-
ted above, with parameters ai such that min{ai}ni=1 > n, with a Randers metric F
determined by a vector V = kE1 and such that ka1 < 1. Then (N,F ) admits just
two homogeneous geodesics through the origin e ∈ N . The initial vectors of these
geodesics are Z1 = En+1 − k√

1−k2E1 and Z2 = −En+1 − k√
1−k2E1.
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Proof. We express an arbitrary vector X ∈ n with respect to the basis B as
X = x1E1 + · · ·+ xn+1En+1 and we write down the Lie brackets

[X,Ei] = xn+1(aiEi + Ei+1) , 1 ≤ i < n ,

[X,En] = xn+1anEn ,

[X,En+1] = −x1a1E1 −
n∑
i=2

(xi−1 + xiai)Ei .

We now substitute for the vector U in formula (2), step by step, all vectors from
the orthonormal basis B. According to Lemma 5, the vector X is geodesic if it
satisfies the system of equations

(3)

xn+1
(
a1(x1 + k‖X‖) + x2

)
= 0 ,

xn+1
(
aixi + xi+1

)
= 0 , 1 < i < n ,

xn+1anxn = 0 ,

a1x1(x1 + k‖X‖) +
n∑
i=2

(xi−1 + xiai)xi = 0 .

First, let xn+1 6= 0 in the system of equations (3). Because these equations are
homogeneous, we can assume, without the loss of generality, xn+1 = ±1. From the
equations number n, . . . , 1 in the system (3), we obtain immediately the conditions
xn = xn−1 = · · · = x2 = 0 and x1 + k‖X‖ = 0. It follows that x1 = −k√

1−k2 , for
both choices xn+1 = ±1, and we obtain just the solutions in the statement.

Second, let xn+1 = 0. The first n equations in the system (3) are satisfied and
the last equation is p(xi) = 0 for the homogeneous polynomial

p(xi) = a1x
2
1 + a1x1k‖X‖+

n∑
i=2

xi−1xi +
n∑
i=2

aix
2
i .

Without the loss of generality, we can assume ‖X‖ =
∑n
i=1 x

2
i = 1. We now use

the estimate |xi−1xi| < 1 for each term in the first sum and also |a1x1k| < 1, using
the assumption. Using other assumptions, we obtain the estimate for the whole
polynomial p(xi) from below

p(xi) > min{ai} ·
n∑
i=1

x2
i − n = min{ai} − n > 0 .

We see that the polynomial p(xi) is always positive on the unit sphere of vectors
X such that ‖X‖ =

∑n
i=1 x

2
i = 1 and the equation p(xi) = 0 has no nontrivial

solution x1, . . . , xn. Consequently, the system (3) has no other solution than those
in the statement. �

Obviously, the estimates in the above proof are rather rough and the statement is
valid for more general choice of parameters a1, . . . , an. To show that the statement
is not valid for arbitrary Randers metric based on a Riemannian metric with just
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one homogeneous geodesic, we analyze in more detail the example in dimension 3,
with the assumption a2 = −a1.

Proposition 7. Let (N,F ) be the 3-dimensional homogeneous Randers space
constructed above, with parameters a1, a2 such that a2 = −a1 and with a Ran-
ders metric F determined by a vector V = kE1. Then (N,F ) admits at least 6
homogeneous geodesics through the origin e ∈ N .

Proof. The system of equations (3), for the Randers metric F becomes

(4)
x3a1(x1 + k‖X‖) + x3x2 = 0 ,

x3x2a2 = 0 ,
x1a1(x1 + k‖X‖) + (x1 + x2a2)x2 = 0 .

If x3 6= 0, we obtain the two solutions from Theorem 6. If x3 = 0, we assume
‖X‖ = 1 and we put a2 = −a1 into the third equation of the system (4). We denote
this parameter simply by a and the equation becomes

(5) ax2
1 + akx1 + x1x2 − ax2

2 = 0 .

We now introduce circular coordinates x1 = cos(t), x2 = sin(t) and the equation
(5) becomes f(t) = 0 for the smooth function

f(t) = a
(
cos(2t) + k cos(t)

)
+ 1

2 sin(2t) .

We denote by t1, . . . , t4 the values of the parameter t from the interval (−π, π), for
which ti < ti+1 and

cos(2ti) + k cos(ti) = 0 , i = 1, . . . , 4 .

Because k > 0, it holds t1 ∈ (−π,− 3π
4 ), t2 ∈ (−π2 ,−

π
4 ), t3 ∈ (π4 ,

π
2 ), t4 ∈ ( 3π

4 , π)
and t1 = −t4, t2 = −t3. Obviously, it holds

f(ti) = 1
2 sin(2ti) , i = 1, . . . , 4 ,

for any a and any k. Further, it holds f(t1) > 0, f(t2) < 0, f(t3) > 0, f(t4) < 0.
From the continuity and the periodicity of the function f(t), it follows that there
are at least 4 distinct solutions of the equation f(t) = 0 on the interval 〈−π, π〉.
For the illustration, we include the picture of the function f(t) for three different
values of the parameter a, whose value is chosen as 1, 2, or 3, respectively and for
k = 1

2 . The intersections of all the graphs in the picture are at the points with
coordinates [ti, 1

2 sin(2ti)].
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Consequently, each solution t̄ of the equation f(t) = 0 corresponds to a solution
(x1, x2, x3) = (cos(t̄), sin(t̄), 0) of the system of equations (4) and it determines an
initial vector of a homogeneous geodesic. �

We have seen that the explicit description of all homogeneous geodesics of a
given Randers metric is not easy, even in a simple situation in dimension 3.
Acknowledgement. The author was supported by the grant IGS 8210-009 of
Internal Grant Agency of Institute of Technology and Business in České Budějovice.
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