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ARCHIVUM MATHEMATICUM (BRNO)
Tomus 55 (2019), 319–331

A NOTE ON THE COHOMOLOGY RING OF THE ORIENTED

GRASSMANN MANIFOLDS G̃n,4

Tomáš Rusin

Abstract. We use known results on the characteristic rank of the canonical
4–plane bundle over the oriented Grassmann manifold G̃n,4 to compute the
generators of the Z2–cohomology groupsHj(G̃n,4) for n = 8, 9, 10, 11. Drawing
from the similarities of these examples with the general description of the
cohomology rings of G̃n,3 we conjecture some predictions.

1. Introduction

Let us denote Gn,k the Grassmann manifold of k–dimensional vector subspaces
in Rn, i.e. the space O(n)/(O(k) × O(n − k)). Next, denote G̃n,k the oriented
Grassmann manifold of oriented k-dimensional vector subspaces in Rn, the space
SO(n)/(SO(k)× SO(n− k)). We may suppose that k ≤ n− k for both of them.

The manifolds Gn,k and G̃n,k come equipped with their canonical k-plane
bundles, which we denote γn,k and γ̃n,k respectively.

For the Grassmann manifold Gn,k there is a concise description of its Z2-cohomo-
logy ring as a quotient ring of a polynomial ring (see [2])
(1.1) H∗(Gn,k; Z2) ∼= Z2[w1, w2, . . . , wk]/In,k ,
where dim(wi) = i and the ideal In,k is generated by k homogeneous polynomials
w̄n−k+1, w̄n−k+2, . . . , w̄n, where each w̄i denotes the i-dimensional component of
the formal power series
1 + (w1 + w2 + · · ·+ wk) + (w1 + w2 + · · ·+ wk)2 + (w1 + w2 + · · ·+ wk)3 + · · · .
Each indeterminate wi is a representative of the ith Stiefel-Whitney class wi(γn,k)
of the canonical k-plane bundle γn,k over Gn,k.

However, the cohomology ring of the oriented Grassmann manifold G̃n,k is not
fully generated by the characteristic classes wi(γ̃n,k) and is not known in general.
There are descriptions of H∗(G̃n,k; Z2) for spheres G̃n,1 ∼= Sn−1, complex quadrics
G̃n,2, and in [1] for G̃n,3 as well.
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In this paper we begin the study of the Z2-cohomology ring of G̃n,4 by considering
the cases n = 8, 9, 10, 11. We will abbreviate Hj(X; Z2) to Hj(X), denote wi =
wi(γn,k) and w̃i = wi(γ̃n,k) as usual.

The paper is organized as follows. In the second section we review the general
strategy on how to approach the study of H∗(G̃n,k). It contains the tools which
will be used later to perform the computations. The third section contains the main
result of the paper, which is the complete description of all cohomology groups of
G̃n,4 for n = 8, 9, 10, 11, along with partial information about the ring structure of
H∗(G̃n,4). Some conjectures are also discussed based on these results.

2. Preliminaries

To obtain information about Hj(G̃n,4), we first need to recall some general facts
about Hj(G̃n,k). We proceed similarly as in [4].

There is a covering projection p : G̃n,k → Gn,k, which is universal for (n, k) 6=
(2, 1). To this 2-fold covering, there is an associated line bundle ξ over Gn,k, such
that w1(ξ) = w1(γn,k), to which we have Gysin exact sequence ([6, Corollary 12.3])

(2.1) ψ−→ Hj−1(Gn,k) w1−→ Hj(Gn,k) p∗−→ Hj(G̃n,k) ψ−→ Hj(Gn,k) w1−→

where Hj−1(Gn,k) w1−→ Hj(Gn,k) is the homomorphism given by the cup product
with the first Stiefel-Whitney class w1 = w1(γn,k).

Since the pullback p∗γn,k is isomorphic to γ̃n,k, the covering projection p : G̃n,k →
Gn,k induces the ring homomorphism p∗ : H∗(Gn,k) −→ H∗(G̃n,k), which maps
each Stiefel-Whitney class wi to w̃i.

Consequently, the image Im(p∗ : Hj(Gn,k) → Hj(G̃n,k)) is a subspace of the
Z2-vector space Hj(G̃n,k) consisting only of cohomology classes, which can be
expressed as polynomials in the Stiefel-Whitney characteristic classes of γ̃n,k. We
will call it the characteristic subspace and denote it C(j;n, k). Moreover (see [9]),
the image Im(p∗) of the ring homomorphism p∗ : H∗(Gn,k) −→ H∗(G̃n,k) is a
self-annihilating subspace of H∗(G̃n,k). That is, we have the following.

Lemma 2.1. For any x̃ ∈ C(j;n, k) and ỹ ∈ C(j′;n, k) we have x̃ỹ = 0 if
j + j′ = k(n− k) = dim(G̃n,k).

From the exactness of the sequence (2.1), we have w̃1 = p∗(w1) = 0 and it is
clear that a monomial w̃a2

2 w̃a3
3 . . . w̃akk = p∗(wa2

2 wa3
3 . . . wakk ) is zero in Hj(G̃n,k) if

and only if wa2
2 wa3

3 . . . wakk is a w1-multiple of some polynomial in H∗(Gn,k). Let us
therefore denote gi ∈ Z2[w2, . . . , wk] the reduction of the polynomial w̄i (see (1.1))
modulo w1 and by Jn,k the ideal in Z2[w2, . . . , wk] generated by gn−k+1, . . . , gn.
The following lemma is a formal restatement of the previous observation.

Lemma 2.2. Monomial w̃a2
2 w̃a3

3 . . . w̃akk ∈ C(j;n, k) is equal to zero iff wa2
2 wa3

3 . . .
wakk ∈ Jn,k.

The question whether C(j;n, k) is equal to Hj(G̃n,k) is related to the notion of
the characteristic rank of a vector bundle, which was defined in [3], [7].
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Definition 2.3. Let X be a connected, finite CW-complex and ξ a real vector
bundle over X. The characteristic rank of the vector bundle ξ, charrank(ξ), is the
greatest integer q, 0 ≤ q ≤ dim(X), such that every cohomology class in Hj(X)
for 0 ≤ j ≤ q can be expressed as a polynomial in the Stiefel-Whitney classes wi(ξ)
of ξ.

This implies that the characteristic rank of γ̃n,k is equal to the greatest integer
q, such that the homomorphism p∗ : Hj(Gn,k) → Hj(G̃n,k) is surjective (that is
C(j;n, k) = Hj(G̃n,k)) for all j, 0 ≤ j ≤ q, or equivalently, by (2.1), that the
homomorphism w1 : Hj(Gn,k) −→ Hj+1(Gn,k) is injective for all j, 0 ≤ j ≤ q.

Hence, in order to compute the characteristic rank of γ̃n,k, it is necessary to study
the kernel of w1 : Hj(Gn,k) −→ Hj+1(Gn,k). Let us denote bj(X) the jth Z2–Betti
number of a manifold X and then define αj(G̃n,k) = bj(G̃n,k) − dim(C(j;n, k)),
the codimension of the subspace C(j;n, k) ⊆ Hj(G̃n,k).

There is a useful upper bound for this number described in the next proposition.

Proposition 2.4 ([5, Proposition 2.4. (3)]). For a non-negative integer x, we
associate with Hn−k+x+1(Gn,k) (2 ≤ k ≤ n− k) the set

Nx(Gn,k) :=
k−1⋃
i=0
{wb2

2 · · ·w
bk
k gn−k+1+i; 2b2 + 3b3 + · · ·+ kbk = x− i} .

If x ≤ n− k − 1 and there are t linearly independent elements in the set Nx(Gn,k),
then

αn−k+x(G̃n,k) ≤ |Nx(Gn,k)| − t ,
where |Nx(Gn,k)| is the cardinality of the set Nx(Gn,k).

When j ≤ charrank(γ̃n,k) we have (see [4, (3)])

(2.2) bj(G̃n,k) = bj(Gn,k)− bj−1(Gn,k)

and the Betti numbers for Gn,k are readily calculable from the Poincaré polyno-
mial [2]

(2.3) Pt(Gn,k) = (1− tn−k+1) · · · (1− tn)
(1− t) · · · (1− tk) .

3. Computations

Recently, the number charrank(γ̃n,4) was completely determined [8] and adjusted
to our notation we have the following.

Theorem 3.1 ([8, Theorem 6.6]). Let n ≥ 8 be an integer. If t ≥ 3 is the unique
integer such that 2t−1 < n ≤ 2t, then

charrank(γ̃n,4) = min
{

4n− 3 · 2t−1 − 5, 2t − 5
}
.

For better clarity of the forthcoming proofs we first list generators of the ideals
Jn,4 and derive some additional relations in cohomology implied by Lemma 2.2.
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Lemma 3.2. We have

J8,4 = J9,4 = (g6, g7, g8) = (w3
2 + w2

3, w
2
2w3, w

4
2 + w2w

2
3 + w2

2w4 + w2
4),

J10,4 = (w2
2w3, w

4
2 + w2w

2
3 + w2

2w4 + w2
4, w

3
3, w

5
2 + w2

3w4 + w2w
2
4),

J11,4 = (w4
2 + w2w

2
3 + w2

2w4 + w2
4, w

3
3, w

5
2 + w2

3w4 + w2w
2
4, w

4
2w3 + w3w

2
4).

Additionally, in H∗(G̃8,4) and H∗(G̃9,4) we have

w̃2
4 = w̃2

2w̃4 , w̃3
3 = 0 , w̃5

2 = 0 ,
w̃3w̃

2
4 = 0 , w̃2

2w̃
2
4 = w̃4

2w̃4 .

In H∗(G̃10,4) we have

w̃3
2w̃4 = w̃2

3w̃4 , w̃3w̃
2
4 = 0 , w̃6

2 + w̃4
2w̃4 = w̃2

2w̃
2
4 ,

w̃3
4 = w̃2

2w̃
2
4 .

In H∗(G̃11,4) we have

w̃2
2w̃

2
3 + w̃3

2w̃4 = w̃2
3w̃4 , w̃2

2w̃3w̃4 = 0 , w̃3
2w̃

2
4 = w̃2

3w̃
2
4 ,

w̃7
2 = w̃4

2w̃
2
3, w̃7

2 = w̃5
2w̃4 , w̃2w̃

3
4 = 0 ,

w̃5
2w̃

2
3 = w̃4

2w̃
2
4 , w̃6

2w̃4 = w̃4
2w̃

2
4 ,

Proof. Direct computation of the polynomials gi ∈ Z2[w2, w3, w4] shows that
g5 = 0 and g6, . . . , g11 are as claimed. Since g5 = 0 we have (g5, g6, g7, g8) =
(g6, g7, g8). However g9 = w3

3 = w2g7 + w3g6, thus also (g6, g7, g8, g9) = (g6, g7, g8).
By definition, both J8,4 and J9,4 are equal to (g6, g7, g8).

Now, since J8,4 = J9,4, by Lemma 2.2 the relations in H∗(G̃8,4) and H∗(G̃9,4)
for the elements of the characteristic subspace will be the same. We will check them
in H∗(G̃8,4). The proof for H∗(G̃9,4) is identical. Since w2g6 + g8 ∈ J8,4, we have
w̃2

2w̃4 + w̃2
4 = 0, which is equivalent to w̃2

4 = w̃2
2w̃4. We have already shown that

w3
3 ∈ J8,4, thus w̃3

3 = 0. We have w5
2 = w2

2g6 + w3g7 ∈ J8,4, therefore we obtain
w̃5

2 = 0. Next w̃3w̃
2
4 = w̃2

2w̃3w̃4 by the first relation and the latter is zero because
w4g7 ∈ J8,4. Finally, w̃2

2w̃
2
4 = w̃4

2w̃4 by the same reason.
In H∗(G̃10,4) we have w̃3

2w̃4+w̃2
3w̃4 = 0 since w3

2w4+w2
3w4 = w3g7+w2g8+g10 ∈

J10,4. It is easy to check that w3w
2
4 = (w2

2 + w4)g7 + w3g8 + w2g9 ∈ J10,4. Next
w̃6

2 + w̃4
2w̃4 = w̃6

2 + w̃2w̃
2
3w̃4 = w̃2

2w̃
2
4 by the first relation and w2g10 ∈ J10,4. Finally

w̃3
4 = w̃4

2w̃4 + w̃2w̃
2
3w̃4 + w̃2

2w̃
2
4 since w4g8 ∈ J10,4 and the first two summands are

equal as they are w̃2-multiples of equal classes.
In H∗(G̃11,4) we have w̃2

2w̃
2
3 + w̃3

2w̃4 = w̃2
3w̃4, since w2

2w
2
3 + w3

2w4 + w2
3w4 =

w2g8+g10 ∈ J11,4. Then we have w2
2w3w4 = w3g8+w2g9+g11 ∈ J11,4. Next, we have

w3
2w

2
4+w2

3w
2
4 = (w2

3+w2w4)g8+w2w3g9+w4g10+w3g11 ∈ J11,4. Since w2
2g10 ∈ J11,4,

we have w̃7
2 = w̃2

2w̃
2
3w̃4 + w̃3

2w̃
2
4, but the first summand is zero and the last is equal

to w̃2
3w̃

2
4 by the third relation, which is equal to w̃4

2w̃
2
3, because w3g11 ∈ J11,4. Since

w3
2g8 + w3g11 ∈ J11,4, we have w̃7

2 + w̃5
2w̃4 + w̃3

2w̃
2
4 + w̃2

3w̃
2
4 = 0, but the last two

summands are equal by the third relation. Since w2w4g8 + w2
2g10 ∈ J11,4, we have

w̃7
2+w̃5

2w̃4+w̃2w̃
3
4 = 0, but the first two summands are equal by the previous relation.
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Since w2w3g11 ∈ J11,4, we have w̃5
2w̃

2
3 = w̃2w̃

2
3w̃

2
4 and the RHS is equal to w̃4

2w̃
2
4

by the third relaton. Since w2w4g10 ∈ J11,4, we have w̃6
2w̃4 + w̃2w̃

2
3w̃

2
4 + w̃2

2w̃
3
4 = 0,

but the last summand is w̃2–multiple of zero and the middle one is equal to w̃4
2w̃

2
4

and we obtain the desired result. �

Theorem 3.3. We have the following generators of Hj(G̃8,4).

j gen. j gen.
0 w̃0 9 a4w̃2w̃3, w̃2w̃3w̃4

1 − 10 a4w̃
3
2, a4w̃2w̃4, w̃

3
2w̃4

2 w̃2 11 a4w̃3w̃4

3 w̃3 12 a4w̃
4
2, a4w̃

2
2w̃4, w̃

4
2w̃4

4 a4, w̃
2
2, w̃4 13 a4w̃2w̃3w̃4

5 w̃2w̃3 14 a4w̃
3
2w̃4

6 a4w̃2, w̃
3
2, w̃2w̃4 15 −

7 a4w̃3, w̃3w̃4 16 a4w̃
4
2w̃4

8 a4w̃
2
2, a4w̃4, w̃

4
2, w̃

2
2w̃4

where a4 is an element in H4(G̃8,4) \ C(4; 8, 4).

Proof. We have charrank(γ̃8,4) = 3, so for j ≤ 3 we have C(j; 8, 4) = Hj(G̃8,4),
but C(4; 8, 4) ⊂ H4(G̃8,4) is a proper subspace and thus for the codimension
we have α4(G̃8,4) = bj(G̃n,k) − dim(C(j;n, k)) ≥ 1. On the other hand, from
Proposition 2.4 we have α4(G̃8,4) ≤ 1 since x = 0 and N0(G8,4) = {g5} is a one
element set. Let us denote a4 ∈ H4(G̃8,4) an element outside C(4; 8, 4).

Now, let us first list all generators of C(j; 8, 4) with the help of Lemma 3.2
before continuing further with Hj(G̃8,4). Note that w̃3

2 = w̃2
3 and w̃2

2w̃3 = 0, since
g6, g7 ∈ J8,4. Also note that if x̃ ∈ C(j; 8, 4) is a nonzero element, it must be a
w̃i–multiple of some nonzero element in C(j − i; 8, 4) for some i ∈ {2, 3, 4}.

In C(5; 8, 4) there is only one nonzero element, w̃2w̃3.
In C(6; 8, 4) there are two, w̃3

2 and w̃2w̃4, because w̃2
3 = w̃3

2.
In C(7; 8, 4) we have w̃2

2w̃3 = 0 and thus w̃3w̃4 is the only generator.
In C(8; 8, 4) we have w̃4

2 = w̃2w̃
2
3 and w̃2

2w̃4 = w̃2
4 as the two generators.

In C(9; 8, 4) we have w̃3
2w̃3 = w̃3

3 = 0, so w̃2w̃3w̃4 is the only nonzero element.
In C(10; 8, 4) we have w̃5

2 = w̃2
2w̃

2
3 = 0 and w̃3

2w̃4 = w̃2
3w̃4 = w̃2w̃

2
4 as the

generator.
In C(11; 8, 4) we have w̃2

2w̃3w̃4 = 0, w̃4
2w̃3 = 0, w̃3w̃

2
4 = 0.

In C(12; 8, 4) there is one generator w̃4
2w̃4 equal to both w̃2

2w̃
2
4 and w̃2w̃

2
3w̃4.

By Poincaré duality, to each nonzero element x̃ ∈ Hj(G̃8,4) there exists a
nonzero element ỹ ∈ H16−j(G̃8,4) such that x̃ỹ 6= 0. Thus Lemma 2.1 implies
C(j; 8, 4) = 0 for all j > 12. Additionally, the dual to element w̃4

2w̃4 must be a4.
Hence a4w̃

4
2w̃4 = a4w̃2w̃

2
3w̃4 6= 0.
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It remains to determine αj(G̃8,4) for j = 5, 6, 7, 8. For j ≤ 7 Proposition 2.4 with
x = j−4 ≤ 3 implies that αj(G̃8,4) ≤ |Nj−4(G8,4)|−tj−4, where tj−4 is the maximal
number of linearly independent elements of Nj−4(G8,4). For N1(G8,4) = {g6} we
have t1 = 1. For N2(G8,4) = {w2g5, g7} we have t2 = 1, since g5 = 0. For
N3(G8,4) = {w3g5, w2g6, g8} we have t3 = 2 as all w2g6, g8, w2g6 + g8 are nonzero.
Thus α5(G̃8,4) ≤ 0, α6(G̃8,4) ≤ 1 and α7(G̃8,4) ≤ 1. On the other hand, we have
shown a4w̃2 ∈ H6(G̃8,4) and a4w̃3 ∈ H7(G̃8,4) to be nonzero and dual to w̃3

2w̃4 and
w̃2w̃3w̃4 respectively. Therefore α6(G̃8,4), α7(G̃8,4) 6= 0 and both must be equal
to 1.

We determine α8(G̃8,4) with the help of the Euler characteristic. For the Grass-
mann manifold G8,4 we can compute its Euler characteristic from the Poin-
caré polynomial (2.3) to obtain χ(G8,4) = 6. As G̃8,4 is a 2–fold cover, we
have χ(G̃8,4) = 2 · χ(G8,4) = 12. By this point we know the Betti numbers
b0(G̃8,4), . . . , b7(G̃8,4). Poincaré duality and a simple calculation yields b8(G̃8,4) = 4.
Consequently, α8(G̃8,4) = 2 and since we already know a4w̃

2
2 and a4w̃4 are nonzero,

we only need to show that they are distinct. That is done by considering their
products with w̃4

2 and realizing one is zero while the other is not.
By obvious adjustment of the last argument we also prove that a4w̃

3
2 6= a4w̃2w̃4

and a4w̃
4
2 6= a4w̃

2
2w̃4. All the remaining numbers αj(G̃8,4) are now determined by

Poincaré duality combined with the knowledge of all C(j; 8, 4) and the obvious
generators suffice to produce the required values. �

Theorem 3.4. We have the following generators of Hj(G̃9,4).
j gen. j gen.
0 w̃0 11 a8w̃3

1 − 12 a8w̃
2
2, a8w̃4, w̃

4
2w̃4

2 w̃2 13 a8w̃2w̃3

3 w̃3 14 a8w̃
3
2, a8w̃2w̃4

4 w̃2
2, w̃4 15 a8w̃3w̃4

5 w̃2w̃3 16 a8w̃
4
2, a8w̃

2
2w̃4

6 w̃3
2, w̃2w̃4 17 a8w̃2w̃3w̃4

7 w̃3w̃4 18 a8w̃
3
2w̃4

8 ã8, w
4
2, w̃

2
2w̃4 19 −

9 w̃2w̃3w̃4 20 a8w̃
4
2w̃4

10 a8w̃2, w̃
3
2w̃4

where a8 is an element in H8(G̃9,4) \ C(8; 9, 4).
Proof. First, as J9,4 = J8,4, we have C(j; 9, 4) = C(j; 8, 4) for all j.

We have charrank(γ̃9,4) = 7 so Hj(G̃9,4) = C(j; 9, 4) = C(j; 8, 4) for j ≤ 7 and
α8(G̃9,4) ≥ 1. To obtain an upper bound for α8(G̃9,4) we consider N3(G9,4) =
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{w3g6, w2g7, g9}. Any two elements from this set are linearly independent, which
means α8(G̃9,4) = 1. Denote a8 an element in H8(G̃9,4) \ C(8; 9, 4).

Clearly, the Poincaré dual to w̃4
2w̃4 is a8 and similarly as before we have a8w̃

4
2w̃4 =

a8w̃2w̃
2
3w̃4 6= 0.

Next, N4(G9,4) =
{
w2

2g6, w4g6, w3g7, w2g8
}

. We will show that these four ele-
ments are linearly independent. Suppose that for some ci ∈ Z2, 1 ≤ i ≤ 4 we
have

c1w
2
2g6 + c2w4g6 + c3w3g7 + c4w2g8 = 0.

Since every element in Z2[w2, w3, w4] is of order 2, the equation implies

(c1 + c3 + c4)w2
2g6 + c2w4g6 + c3(w3g7 + w2

2g6) + c4(w2g8 + w2
2g6) = 0 ,

(c1 + c3 + c4)(w5
2 + w2

2w
2
3) + c2w4g6 + c3w

5
2 + c4(w3

2w4 + w2w
2
4) = 0 .

If c1 + c3 + c4 or c3 or both are nonzero, the LHS is not divisible by w4, which is a
contradiction. Thus c1 + c3 + c4 = c3 = 0 and the equation simplifies so much,we
immediately deduce c2 = c4 = 0. Which in turn implies c1 = 0. We have proved
independence and so α9(G̃9,4) = 0.

Now that Betti numbers b0(G̃9,4), . . . , b9(G̃9,4) are known, from calculating
χ(G9,4) = 6 and χ(G̃9,4) = 12 we obtain b10(G̃9,4) = 2.

This gives enough information to quickly determine all αj(G̃9,4) and all are once
again covered by the obvious generators derived from a8w̃

4
2w̃4 = a8w̃2w̃

2
3w̃4 6= 0. �

Theorem 3.5. We have the following generators of Hj(G̃10,4).

j gen. j gen.
0 w̃0 13 −
1 − 14 a12w̃2, b12w̃2

2 w̃2 15 a12w̃3

3 w̃3 16 a12w̃
2
2, a12w̃4, b12w̃

2
2

4 w̃2
2, w̃4 17 a12w̃2w̃3

5 w̃2w̃3 18 a12w̃
3
2, a12w̃2w̃4, b12w̃

3
2

6 w̃3
2, w̃

2
3, w̃2w̃4 19 a12w̃3w̃4

7 w̃3w̃4 20 a12w̃
4
2, b12w̃

4
2

8 w̃4
2, w̃2w̃

2
3, w̃

2
2w̃4 21 a12w̃2w̃3w̃4

9 w̃2w̃3w̃4 22 a12w̃
2
3w̃4 = b12w̃

5
2

10 w̃5
2, w̃

3
2w̃4 23 −

11 − 24 a12w̃
4
2w̃4

12 a12, b12, w̃
6
2, w̃

4
2w̃4

where a12, b12 are linearly independent elements in H12(G̃9,4)\C(12; 9, 4) such that
a12w̃

4
2w̃4 6= 0, a12w̃

5
2 = 0, b12w̃

6
2 6= 0 and b12w̃

4
2w̃4 = 0.
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Proof. As before, we begin with determining the generators of C(j; 10, 4). For
j ≤ 6 we have C(j; 10, 4) as stated since there are no relations.

In C(7; 10, 4) we have w̃2
2w̃3 = 0 and thus w̃3w̃4 is the only generator.

In C(8; 10, 4) we have w̃4
2 + w̃2w̃

2
3 + w̃2

2w̃4 = w̃2
4 as the only relation, hence there

are the three generators.
In C(9; 10, 4) we have w̃3

2w̃3 = 0 and w̃3
3 = 0, so w̃2w̃3w̃4 is the only generator.

In C(10; 10, 4) we have w̃2
2w̃

2
3 = 0, w̃3

2w̃4 = w̃2
3w̃4, and among w̃5

2, w̃3
2w̃4, w̃2w̃

2
4

either is equal to the sum of the other two since g10 ∈ J10,4. Thus there are two
generators.

In C(11; 10, 4) we have w̃2
2w̃3w̃4, w̃4

2w̃3 both multiples of w̃2
2w̃3 = 0. Then w̃2w̃

3
3

is a multiple of w̃3
3 = 0 and w̃3w̃

2
4 = 0 by Lemma 3.2.

In C(12; 10, 4) we have w̃4
2w̃4 = w̃2w̃

2
3w̃4 and w̃6

2 + w̃4
2w̃4 = w̃2

2w̃
2
4 = w̃3

4 by
Lemma 3.2. Thus there are two generators, e.g. w̃6

2 and w̃4
2w̃4.

We know that charrank(γ̃10,4) = 11, so by Poincaré duality and Lemma 2.1 we
have C(j; 10, 4) = 0 for j ≥ 13.

Also αj(G̃10,4) = 0 for j ≤ 11, so by now we have determined all Betti numbers
except for b12(G̃10,4). We calculate it from the Euler characteristic χ(G̃10,4) = 20.
The result is b12(G̃10,4) = 4.

So α12(G̃10,4) = 2 and there are two linearly independent elements in H12(G̃9,4)\
C(12; 9, 4). By Poincaré duality we can start by arbitrarily picking a pair (a′12, b

′
12)

such that a′12w̃
4
2w̃4 6= 0 and b′12w̃

6
2 6= 0. Then we adjust b′12 based on the fact that

H24(G̃10,4) ∼= Z2. If b′12w̃
4
2w̃4 6= 0, we define b12 = a′12 + b′12, so that b12w̃

4
2w̃4 = 0.

Otherwise let b12 = b′12
Similarly, since H22(G̃10,4) ∼= H2(G̃10,4) ∼= Z2, if a′12w̃

5
2 6= 0, we define a12 =

a′12+b12, else a12 = a′12, so that a12w̃
5
2 = 0. We have a12, b12, w̃

6
2, w̃

4
2w̃4 as generators

of H12(G̃10,4).
Next, we have H13(G̃10,4) = H11(G̃10,4) = 0.
Since a12w̃2 and b12w̃2 have different products with w̃3

2w̃4 they are distinct and
therefore linearly independent.

We have a12w̃3 6= 0, since a12w̃2w̃
2
3w̃4 = a12w̃

4
2w̃4 6= 0.

By considering the products of nonzero elements a12w̃
2
2, a12w̃4, b12w̃

2
2 with

w̃4
2, w̃2w̃

2
3, w̃

2
2w̃4 we see that they are independent. Indeed, suppose that for some

c1, c2, c3 ∈ Z2 we have c1a12w̃
2
2 + c2a12w̃4 + c3b12w̃

2
2 = 0. Multiplying both sides

by w̃2w̃
2
3 and recalling that w̃2

2w̃3 = 0, we obtain c2 = 0. Then multiplying by w̃4
2

yields c3 = 0 and multiplying by w2
2w̃4 gives c1 = 0.

We have a12w̃2w̃3 6= 0, since a12w̃2w̃
2
3w̃4 = a12w̃

4
2w̃4 6= 0.

Elements a12w̃
3
2, a12w̃2w̃4, b12w̃

3
2 are nonzero. They prove to be independent

upon considering their products with w̃3
2, w̃

2
3, w̃2w̃4.

We have a12w̃3w̃4 6= 0, since a12w̃2w̃
2
3w̃4 = a12w̃

4
2w̃4 6= 0.

Elements a12w̃
4
2, b12w̃

4
2 are nonzero. They prove to be independent upon consi-

dering their products with w̃2
2, w̃4.

We have a12w̃2w̃3w̃4 6= 0, since a12w̃2w̃
2
3w̃4 = a12w̃

4
2w̃4 6= 0.

We have a12w̃
2
3w̃4 6= 0 and b12w̃

5
2 6= 0, therefore they are equal.

�
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Before we examine the last case, we separately prove one important piece of
information.

Lemma 3.6. The set N6(G11,4) is linearly independent.

Proof. We partition the set N6(G11,4) into two disjoint sets N+
6 (G11,4) and

N−6 (G11,4), where N+
6 (G11,4) =

{
w3

2g8, w
2
3g8, w2w4g8, w3g11

}
and N−6 (G11,4) ={

w2w3g9, w
2
2g10, w4g10

}
. To prove linear independence of N6(G11,4) we have to

prove that no nontrivial linear combination of elements of N+
6 (G11,4) is equal to

any linear combination of elements of N−6 (G11,4) and vice versa. All elements of
N+

6 (G11,4) are polynomials with an even number of terms, thus any linear com-
bination of them will have an even number of terms, since each term is of order
2. All elements of N−6 (G11,4) are polynomials with an odd number of terms, so
the only nontrivial linear combinations worth considering are w2w3g9 + w2

2g10,
w2w3g9 + w4g10 and w2

2g10 + w4g10, that is the polynomials

R1 = w7
2 + w2w

4
3 + w2

2w
2
3w4 + w3

2w
2
4,

R2 = w2w
4
3 + w5

2w4 + w2
3w

2
4 + w2w

3
4,

R3 = w7
2 + w5

2w4 + w2
2w

2
3w4 + w3

2w
2
4 + w2

3w
2
4 + w2w

3
4.

Since none of these are zero polynomials, the set N−6 (G11,4) is linearly independent.
It remains to show that there is no nontrivial linear comination of elements of
N+

6 (G11,4) equal to R1, R2, R3 or zero.
First, let us consider combinations without w3

2g8, that is for any c1, c2, c3 ∈ Z2
the expression

L0,c1,c2,c3 = c1w
2
3g8 + c2w2w4g8 + c3w3g11,

where

w2
3g8 = w4

2w
2
3 +w2w

4
3 +w2

2w
2
3w4 +w2

3w
2
4 ,

w2w4g8 = w5
2w4 +w2

2w
2
3w4 + w3

2w
2
4 + w2w

3
4 ,

w3g11 = w4
2w

2
3+ +w2

3w
2
4 .

Since none of them contain w7
2 we have that L0,c1,c2,c3 6= R1, R3. For L0,c1,c2,c3 to be

equal to zero, first c2 must be zero and then c1 and c3 also. To have L0,c1,c2,c3 = R2,
we need c1 = 1 to obtain w2w

4
3 and c2 = 1 to obtain w5

2w4. But then no choice of c3
will make L0,1,1,c3 = R2 true. In the end, L0,c1,c2,c3 6= R1, R2, R3 and L0,c1,c2,c3 = 0
only for L0,0,0,0.

Now let us consider combinations containing w3
2g8, that is for any c1, c2, c3 ∈ Z2

the expression.

L1,c1,c2,c3 = w3
2g8 + c1w

2
3g8 + c2w2w4g8 + c3w3g11 .

Since w7
2 is always a term in L1,c1,c2,c3 , we only need to consider if it is possible

for L1,c1,c2,c3 to be equal to R1 or R3. Subtracting w3
2g8 from both sides of the

considered equations, it is the same as considering whether L0,c1,c2,c3 is equal to
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either of the following

R1 + w3
2g8 = w4

2w
2
3 + w2w

4
3 + w5

2w4 + w2
2w

2
3w4 ,

R3 + w3
2g8 = w4

2w
2
3 + w2

2w
2
3w4 + w2

3w
2
4 + w2w

3
4 .

Each of w2
3g8, w2w4g8, w3g11 contains an even number of terms from the set{

w5
2w4, w2w

3
4
}

, hence every L0,c1,c2,c3 will too. However both R1 +w3
2g8, R3 +w3

2g8
contain exactly one such term. Thus for any choice of indices c1, c2, c3 ∈ Z2, i ∈
{1, 3} the equality L0,c1,c2,c3 = Ri + w3

2g8 and equivalently L1,c1,c2,c3 = Ri is
impossible.

In conclusion, the only case when a linear combination of elements of N+
6 (G11,4)

is equal to some linear combination of elements of N−6 (G11,4) is when they are
both trivial. With that we have proved N6(G11,4) is a linearly independent set. �

Theorem 3.7. We have Hj(G̃11,4) ∼= Hj(G̃10,4) for j ≤ 6 and there are following
generators of the remaining Hj(G̃11,4).

j gen. j gen.
7 w̃2

2w̃3, w̃3w̃4 18 a12w̃
3
2, a12w̃2w̃4, a12w̃

2
3

8 w̃4
2, w̃2w̃

2
3, w̃

2
2w̃4 19 a12w̃

2
2w̃3, a12w̃3w̃4

9 w̃3
2w̃3, w̃2w̃3w̃4 20 a12w̃

4
2, a12w̃

2
2w̃4, a12w̃2w̃

2
3

10 w̃5
2, w̃

2
2w̃

2
3, w̃

3
2w̃4 21 a12w̃

3
2w̃3, a12w̃2w̃3w̃4

11 w̃4
2w̃3 22 a12w̃

5
2, a12w̃

3
2w̃4, a12w̃

2
2w̃

2
3

12 a12, w̃
6
2, w̃

3
2w̃

2
3, w̃

4
2w̃4 23 a12w̃

4
2w̃3

13 w̃5
2w̃3 24 a12w̃

6
2, a12w̃

2
2w̃

2
4

14 a12w̃2, w̃
7
2 25 a12w̃

5
2w̃3

15 a12w̃3 26 a12w̃
7
2

16 a16, a12w̃
2
2, a12w̃4, w̃

8
2 27 −

17 a12w̃2w̃3 28 a12w̃
8
2 = a16w̃

4
2w̃4

where a12 is an element in H12(G̃11,4) \ C(12; 11, 4) such that a12w̃
8
2 6= 0 and a16

is an element in H16(G̃11,4) \ C(16; 11, 4) such that a16w̃
4
2w̃4 6= 0, a16w̃

6
2 = 0 and

a16w̃
3
2w̃

2
3 = 0.

Proof. We have charrank(γ̃11,4) = 11, so Hj(G̃11,4) = C(j; 11, 4) for j ≤ 11 and
C(j; 11, 4) ∼= C(j; 10, 4) = Hj(G̃10,4) for j ≤ 6, since neither J11,4 or J10,4 produce
relations in cohomology in dimensions lower than seven.

In C(7; 11, 4) we have w̃2
2w̃3 and w̃3w̃4 as generators.

In C(8; 11, 4) we have w̃4
2 + w̃2w̃

2
3 + w̃2

2w̃4 = w̃2
4 as the only relation, hence there

are the three generators.
In C(9; 11, 4) we have w̃3

3 = 0 and w̃3
2w̃3, w̃2w̃3w̃4 are generators.
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In C(10; 11, 4) we have only w̃5
2, w̃

2
2w̃

2
3, w̃

3
2w̃4 as generators, since w̃2

3w̃4 = w̃2
2w̃

2
3 +

w̃3
2w̃4 and w̃2w̃

2
4 is the sum of all three generators, because w2g8 ∈ J11,4.

In C(11; 11, 4) we have w̃2w̃
3
3 = 0 and w̃2

2w̃3w̃4 = 0, so w̃4
2w̃3 = w̃3w̃

2
4 is the

generator.
In C(12; 11, 4) we have w̃2w̃

2
3w̃4 = w̃6

2 + w̃2
2w̃

2
4, since w2g10 ∈ J11,4, with w̃2

2w̃
2
4 =

w̃6
2 + w̃3

2w̃
2
3 + w̃4

2w̃4, since w2
2g8 ∈ J11,4, so only w̃6

2, w̃3
2w̃

2
3, w̃4

2w̃4 are generators.
In C(13; 11, 4) we have w̃2

2w̃
3
3 = 0, w̃3

2w̃3w̃4 = 0 and w̃2w̃3w̃
2
4 = w̃5

2w̃3, since
w2g11 ∈ J11,4, so w̃5

2w̃3 is the only generator.
In C(14; 11, 4) we have w̃2

2w̃
2
3w̃4 = 0. Thus also w̃7

2 = w̃3
2w̃

2
4, since w2

2g10 ∈ J11,4.
And we already know w̃7

2 = w̃4
2w̃

2
3 and w̃7

2 = w̃5
2w̃4.

In C(15; 11, 4) we have w̃6
2w̃3 = w̃2

2w̃3w̃
2
4, since w2

2g11 ∈ J11,4, but the latter is
zero. Also w̃3

2w̃
3
3 = 0 and w̃4

2w̃3w̃4 = 0.
In C(16; 11, 4) we have w̃3

2w̃
2
3w̃4 = 0, w̃5

2w̃
2
3 = w̃4

2w̃
2
4 = w̃6

2w̃4 and w̃8
2 = w̃5

2w̃
2
3 as

it is a w̃2–multiple of a known equality.
From charrank(γ̃11,4) = 11, Poincaré duality and Lemma 2.1 we have C(j; 11, 4) =

0 for j ≥ 17.
Also, we have αj(G̃11,4) = 0 for j ≤ 11 and α12(G̃11,4) ≥ 1. Let us consider

N5(G11,4) = {w2w3g8, w
2
2g9, w4g9, w3g10, w2g11}. We will show that {w2w3g8, w

2
2g9,

w4g9, w2g11} is a linearly independent subset and therefore α12(G̃11,4) = 1. Suppose
that for some ci ∈ Z2,1 ≤ i ≤ 4 we have

c1w2w3g8 + c2w
2
2g9 + c3w4g9 + c4w2g11 = 0 .

Considering that w4g9 = w3
3w4 is not divisible by w2, we immediately see that

c3 = 0 and

c1w3g8 + c2w2g9 + c4g11 = 0 .

Since both g8 and g11 have an even number of terms, the same is true for c1w3g8
and c4g11, thus the parity of number of terms in LHS is the same as parity of
number of terms in c2w2g9. But g9 = w3

3, therefore c2 = 0. Finally, we deduce
c1 = c4 = 0 as well. In conclusion, there is one generator in H12(G̃11,4)\C(12; 11, 4),
some a12. By Poincaré duality we have a12w̃

8
2 6= 0.

By Lemma 3.6 and Proposition 2.4 we have α13(G̃11,4) = 0.
We have χ(G11,4) = 10, so from a simple calculation we obtain b14(G̃11,4) = 2.

Hence α14(G̃11,4) = 1 and a12w̃2 is the obvious generator.
To finish the proof, recall that w̃8

2 = w̃5
2w̃

2
3 = w̃4

2w̃
2
4 = w̃6

2w̃4 and the second
term is equal to w̃2w̃

2
3w̃

2
4 by w2w3g11 ∈ J11,4. Also w̃3

3 = 0, w̃2
2w̃3w̃4 = 0 and

w̃2w̃
3
4 = 0. So a12w̃3 is nonzero. Next, a12w̃

2
2 and a12w̃4 are nonzero and distinct,

since their w̃3
2w̃

2
3–multiples are not equal. But there is one more generator in

H16(G̃11,4) \ C(16; 11, 4), some a16.
Next, a12w̃2w̃3 6= 0. Nonzero elements a12w̃

3
2, a12w̃2w̃4 and a12w̃

2
3 are found out

to be independent after considering their multiples with w̃5
2, w̃2

2w̃
2
3 and w̃3

2w̃4. By
obvious adjustement of this argument triples a12w̃

4
2, a12w̃

2
2w̃4, a12w̃2w̃

2
3 and a12w̃

5
2,

a12w̃
3
2w̃4, a12w̃

2
2w̃

2
3 prove to be independent as well.
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Nonzero elements a12w̃
2
2w̃3 and a12w̃3w̃4 prove to be independent after consi-

dering their w̃3
2w̃3-multiples. Similarly, elements a12w̃

3
2w̃3 and a12w̃2w̃3w̃4 are in-

dependent. Also a12w̃
6
2 and a12w̃

2
2w̃

2
4, after considering w̃4–multiples. The rest is

obvious.
Lastly, we will show that it is possible to choose a16 in such a way, that

a16w̃
4
2w̃4 6= 0, a16w̃

6
2 = 0 and a16w̃

3
2w̃

2
3 = 0 simultaneously. Start with picking a′16

as any element, such that (a′16, a12w̃
2
2, a12w̃4, w̃

8
2) is a basis for H16(G̃11,4). The

matrix of the cup product bilinear pairing H16(G̃11,4) × H12(G̃11,4) → Z2 with
respect to bases (a′16, a12w̃

2
2, a12w̃4, w̃

8
2) and (a12, w̃

6
2, w̃

3
2w̃

2
3, w̃

4
2w̃4) is

∗ ∗ ∗ ∗
∗ 1 1 1
∗ 1 0 1
1 0 0 0

 ,

where the stars represent unknown values. By Poincaré duality, the rows of this
matrix are linearly independent, so there are following options for the last three
values in the first row.

If we have (∗ 1 0 0), then we define a16 = a′16 + a12w̃4.
If we have (∗ 0 0 1), then we define a16 = a′16.
If we have (∗ 1 1 0), then we define a16 = a′16 + a12w̃

2
2.

If we have (∗ 0 1 1), then we define a16 = a′16 + a12w̃
2
2 + a12w̃4. �

Now that we are done with the examples, we are ready to discuss some patterns.
Similar to the case k = 3 studied in [1] we predict there will be indecomposable
element a2t in H2t(G̃2t+1,4) reflecting the case for H∗(G̃2t,3).

It appears that for 2t + 1 < n ≤ 2t+1 − 4 there are apart from Stiefel-Whitney
classes w̃2, w̃3, w̃4 at least two aditional indecomposable elements a4n−3·2t−4 ∈
H4n−3·2t−4(G̃n,4) and a2t+1−4 ∈ H2t+1−4(G̃n,4). Note that previously mentioned
a2t can be thought of as also being of the form a4n−3·2t−4 for n = 2t + 1.

From observing that the Poincaré dual to those a4n−3·2t−1−4 in our examples
for n = 9, 10, 11 was always of the form w̃4

2w̃4, we may reasonably anticipate these
duals will exhibit some kind of stability in general.
Acknowledgement. The author was supported by the grants APVV-16-0053 and
VEGA 1/0101/17.
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