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A NOTE ON THE COHOMOLOGY RING OF THE ORIENTED
GRASSMANN MANIFOLDS C:’n,4

ToMAS RUSIN

ABSTRACT. We use known results on the characteristic rank of the canonical
4-plane bundle over the oriented Grassmann manifold G, 4 to compute the

generators of the Za—cohomology groups H7 (5,”,4) forn = 8§,9,10, 11. Drawing
from the similarities of these examples with the general description of the
cohomology rings of G 3 we conjecture some predictions.

1. INTRODUCTION

Let us denote G, ;, the Grassmann manifold of k—-dimensional vector subspaces
in R™, i.e. the space O(n)/(O(k) x O(n — k)). Next, denote C:‘n,k the oriented
Grassmann manifold of oriented k-dimensional vector subspaces in R"™, the space
SO(n)/(SO(k) x SO(n — k)). We may suppose that k < n — k for both of them.

The manifolds G, and én,k come equipped with their canonical k-plane
bundles, which we denote 7, and 7, i respectively.

For the Grassmann manifold G, , there is a concise description of its Zg-cohomo-
logy ring as a quotient ring of a polynomial ring (see [2])

(11) H*(Gn7k;Z2) %Zg[wl,wg,...,wk]/lnyk,
where dim(w;) = ¢ and the ideal I, j is generated by k homogeneous polynomials
Wopy— 1y Wn—k+2, - - - , Wy, Where each w; denotes the i-dimensional component of

the formal power series
1+ (wi w2+ +wg) + (w1 +we + -+ w)® + (w1 + w4+ +wg)® 4+

Each indeterminate w; is a representative of the ith Stiefel-Whitney class w;(vn )
of the canonical k-plane bundle v, ;, over G, j.

However, the cohomology ring of the oriented Grassmann manifold émk is not
fully generated by the characteristic classes w; (7, k) and is not known in general.

There are descriptions of H*(Gp, i;Z2) for spheres Gy, 1 = S~ complex quadrics
Gp2, and in [1] for G, 3 as well.
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In this paper we begin the study of the Z,-cohomology ring of én,4 by considering
the cases n = 8,9,10,11. We will abbreviate H?(X;Zs) to H’(X), denote w; =
Wi (Yn,k) and W; = w;(Yn,k) as usual.

The paper is organized as follows. In the second section we review the general
strategy on how to approach the study of H *(énk) It contains the tools which
will be used later to perform the computations. The third section contains the main
result of the paper, which is the complete description of all cohomology groups of

Gy 4 for n =38,9,10, 11, along with partial information about the ring structure of
H*(G,,4). Some conjectures are also discussed based on these results.

2. PRELIMINARIES

To obtain information about H7 (G, 4), we first need to recall some general facts

about H’ (G, 1). We proceed similarly as in [4].

There is a covering projection p: énk — Gk, which is universal for (n, k) #
(2,1). To this 2-fold covering, there is an associated line bundle £ over G, j, such
that w1 (§) = w1 (Yn k), to which we have Gysin exact sequence ([6, Corollary 12.3])

(2.1) s HITNGg) 5 HI (Gog) 2 HI (Gog) —2 HI (G ) 5

where HI™Y(Gp i) —% H7(Gyp k) is the homomorphism given by the cup product
with the first Stiefel-Whitney class w1 = w1 (Vn,k)-

Since the pullback p*vy, k is isomorphic to ¥, , the covering projection p: én,k —
G induces the ring homomorphism p*: H*(G,, ;) — H* (CNY',L,;C)7 which maps
each Stiefel-Whitney class w; to w;.

Consequently, the image Im(p*: H (G, ) — H7(G, 1)) is a subspace of the
Zg-vector space H7 (énk) consisting only of cohomology classes, which can be
expressed as polynomials in the Stiefel-Whitney characteristic classes of 74, . We
will call it the characteristic subspace and denote it C(j;n, k). Moreover (see [9]),
the image Im(p*) of the ring homomorphism p*: H*(G, ) — H* (énk) is a

self-annihilating subspace of H*(G, 1). That is, we have the following.
Lemma 2.1. For any T € C(j;n,k) and y € C(j';n,k) we have Ty = 0 if

j+i =kn—k)=dim(Gp).
From the exactness of the sequence (2.1), we have w; = p*(w;) = 0 and it is

clear that a monomial W32w5e ... WP* = p*(wi2wi® ... wi*) is zero in HI (G, ) if
and only if wi?ws® ... wy* is a wi-multiple of some polynomial in H*(G,, ). Let us
therefore denote g; € Zs[ws, . .., wy] the reduction of the polynomial w; (see )
modulo wy and by J, j the ideal in Zs[ws, ..., wy] generated by gn—k+1,-- -, In-

The following lemma is a formal restatement of the previous observation.

~QaL a

Lemma 2.2. Monomial wy*ws® ... wp* € C(j;n, k) is equal to zero iff w3>ws® ...
wZ’”‘ c Jn,k'

The question whether C(j;n, k) is equal to H’ (G, i) is related to the notion of
the characteristic rank of a vector bundle, which was defined in [3], [7].
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Definition 2.3. Let X be a connected, finite CW-complex and ¢ a real vector
bundle over X. The characteristic rank of the vector bundle £, charrank(¢), is the
greatest integer ¢, 0 < ¢ < dim(X), such that every cohomology class in H’(X)
for 0 < j < g can be expressed as a polynomial in the Stiefel-Whitney classes w; (&)
of &.

This implies that the characteristic rank of 7, i is equal to the greatest integer

g, such that the homomorphism p*: H?(G, ;) — H’(Gy ) is surjective (that is
C(j;n, k) = Hj(énk)) for all j, 0 < j < g, or equivalently, by (2.1)), that the
homomorphism wy : H (G, ) — HIT1 (G, 1) is injective for all j, 0 < j <gq.
Hence, in order to compute the characteristic rank of ¥, 1, it is necessary to study
the kernel of wy: H/(Gp k) — H'TY (G, k). Let us denote b;(X) the jth Zo-Betti

number of a manifold X and then define a;;(Gy 1) = b;(Gr i) — dim(C(j;n, k)),

the codimension of the subspace C(j;n, k) C H/ (G k).
There is a useful upper bound for this number described in the next proposition.

Proposition 2.4 ([5, Proposition 2.4. (3)]). For a non-negative integer x, we
associate with H"*+*+1(G,, 1) (2 < k < n — k) the set

k—1
No(Gge) o= (J{wh? - wp* gunr1is 262 + 3bg + -~ + kb = @ — i}
=0

If £ <n—k—1 and there are t linearly independent elements in the set Ny (Gp k),
then

ankara:(Gn,k) é |Nm(Gn,k)| —t,
where [N (Gp k)| is the cardinality of the set Ny(Gy k).

)

When j < charrank(¥,, 5) we have (see [, (3)])
(2.2) bj(Gnk) = b;(Gnk) = bj1(Gni)

and the Betti numbers for G, ), are readily calculable from the Poincaré polyno-
mial [2]
(1 — k) (1 —¢7)

(23) Pt(Gn,k) = (1 _t)... (1 _tk)

3. COMPUTATIONS

Recently, the number charrank(%,, 4) was completely determined [8] and adjusted
to our notation we have the following.

Theorem 3.1 ([8, Theorem 6.6]). Let n > 8 be an integer. If t > 3 is the unique
integer such that 2871 < n < 2¢, then

charrank(¥y,4) = min {4n — 3-2'~' — 5,2 — 5} .

For better clarity of the forthcoming proofs we first list generators of the ideals
Jy,4 and derive some additional relations in cohomology implied by Lemma
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Lemma 3.2. We have
Js.a = Joa = (96,97, 98) = (w3 + w3, wiws, wy + wawi + wiwy + wj),
J10.4 = (Wiw3z, ws + wew3 + wiwy + w3, wi, w + wiwy + wew?),
Jiia = (wél + wgw?’ + w§w4 + wz, wg’, wh + w§w4 + wng, wgwg + wgwi).

Additionally, in H* (6874) and H* (59,4) we have

~9 9~ ~3 ~
Wy = WyWy , w3 =0, wy =0,
ﬁg@i =0, @%ﬁi = @3@4.
In H*(G10,4) we have
~3 ~ ~9 ~ ~ 9 ~6 |~ -~ ~2 ~9
WHW4 = W3Wy , wswy =0, Wy + WylWy = WyWy ,
@S = a2
In H*(G11,4) we have
~0~9 | ~3~ ~9 ~ 9~ ~3~9  ~9-~9
WaW3 + WyWs = W3Wy , wowswy = 0, WywWy = W3Wy ,
~7  ~4 -~ ~7 _ ~5~ ~ ~3
Wy = WyW3, Wy = WyrWy , wawy =0,
~5~9 _ ~4~3 ~6~ _ ~4-~2
WaWz = Wally , WaWy = WoWy ,

Proof. Direct computation of the polynomials g; € Za[ws, w3, ws] shows that
gs = 0 and gg,...,g11 are as claimed. Since g5 = 0 we have (gs, g6, g7,9s) =
(96, 97, g8). However go = w3 = wagr 4+ wsgs, thus also (ge, g7, 98, 90) = (g6, 97, gs)-
By definition, both Js 4 and Jg 4 are equal to (gs, g7, gs)-

Now, since Js 4 = Jg 4, by Lemma m the relations in H* (68,4) and H*((~;974)
for the elements of the characteristic subspace will be the same. We will check them
in H*(Gs,4). The proof for H*(Gyg 4) is identical. Since wags + gs € Js 4, we have
w3y + w3 = 0, which is equivalent to w7 = wsw,. We have already shown that
wg’ € Jg 4, thus {Eg = 0. We have w3 = w3gs + wsgr € Js. 4, therefore we obtain
wy = 0. Next wswj = w3wswys by the first relation and the latter is zero because
wygy € Js 4. Finally, w3w; = wiw, by the same reason.

In H* (51074) we have wiw,+w3ws = 0 since w3ws+w3wy = wagr+wags+9gio €
Jio.4. It is easy to check that wsw? = (w3 + w4)gr + wags + wage € J10.4. Next
WS + Wiw, = WS + wewiw, = wiws by the first relation and wag1g € J10.4. Finally
W3 = Wy, + WaW3Wy + W3W35 since wygs € J10,4 and the first two summands are
equal as they are wp-multiples of equal classes.

In H*(G11,4) we have wsw3 + Wiy = W3y, since wiw? + wiwy + wiwy =
wags+g10 € J11,4. Then we have w%w3w4 = wsgg+wag9+gi1 € Ji1,4. Next, we have
wiwitwiwi = (wi+wws)gs+wrwsgotwagio+wsgir € Ji1,a. Since w3gip € Ji1.4,
we have w} = wiw3w, + wiws, but the first summand is zero and the last is equal
to wiw? by the third relation, which is equal to w3w?, because wzg11 € Ji1 4. Since
wigs + wagr1 € Ji14, we have w3 + whw, + wiw; + wiw; = 0, but the last two
summands are equal by the third relation. Since wow4gs + w% g10 € Ji1,4, we have
WE+wiws+wew; = 0, but the first two summands are equal by the previous relation.
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Since wowsgi1 € Ji1,4, we have {175’117% = ’[Eg@%f[[)ﬁ and the RHS is equal to wjw?
by the third relaton. Since wowasgio € J11,4, we have wgw4 + wgwgwi + w%wi’ =0,
but the last summand is wo—multiple of zero and the middle one is equal to watw3;
and we obtain the desired result. O

Theorem 3.3. We have the following generators of Hj(és,z;),

J gen. J gen.
0 ’&50 9 CL4IEQ@3, @2’&53@4
1 - 10 CL4’L’5§, a4{172'[[)4, {17;)1’54
2 @2 11 a4@3@4
3 ’LTI3 12 CL4’LTJ%, CL41T)§’LTI4, @3@4
4 ag, ﬁ;g, @4 13 a4zﬂgzﬂ3@4
5 1?)21173 14 a4@§{[)4
6 a41ﬂ27 ’&){23, @2’[&4 15 —
7 a4@3, 1T)3’L’l74 16 a4@§{54
8 (147:537 a4zﬂ4, @‘21, @5@4

where a4 is an element in H4(§8,4) \ C(4;8,4).

Proof. We have charrank(Js 4) = 3, so for j < 3 we have C(j;8,4) = H’(Gs4),
but C(4;8,4) C H4(6874) is a proper subspace and thus for the codimension
we have as(Gs4) = bj((N}’n,k) — dim(C(j;n,k)) > 1. On the other hand, from
Proposition we have ay(Gs.4) < 1 since z = 0 and No(Gs.4) = {g5} is a one
element set. Let us denote ay € H*(Gs4) an element outside C/(4;8,4).

Now, let us first list all generators of C(j;8,4) with the help of Lemma
before continuing further with H7(Gg4). Note that @3 = @2 and @W3ws = 0, since
96,97 € Jg.a. Also note that if T € C(5;8,4) is a nonzero element, it must be a
w;—multiple of some nonzero element in C(j — ¢;8,4) for some ¢ € {2,3,4}.

In C(5;8,4) there is only one nonzero element, wyws.

In C(6;8,4) there are two, wj and wWawy, because w3 = ws.

In C(7;8,4) we have wsws = 0 and thus wsw, is the only generator.

In C(8;8,4) we have w3 = waw3 and wiw, = w5 as the two generators.

In C(9;8,4) we have wiws = w3 = 0, S0 Wawswy is the only nonzero element.

In C(10;8,4) we have w5 = w3w3 = 0 and wswy = Wiwy = Wrw; as the
generator.

In C(ll; 8,4) we have @%@3@4 = O7 15‘21153 = O, ’&531713 =0.

In C(12;8,4) there is one generator wawy equal to both w3w; and wWow3wy.

By Poincaré duality, to each nonzero element 7 € HY (ég,4) there exists a
nonzero element y € Hlﬁ’j(é&@ such that zy # 0. Thus Lemma implies
C(j;8,4) = 0 for all j > 12. Additionally, the dual to element wjw, must be ay.
Hence a w34 = aswewiwy # 0.

,_\A/.\A
— — — —

) )
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It remains to determine «; (C~¥874) for j =5,6,7,8. For j <7 Propositionﬂwith
z = j—4 < 3 implies that Oéj(égA) < |Nj—4(Gga)|—t;j—a, where t;_4 is the maximal
number of linearly independent elements of N;_4(Gs.4). For N1(Gs 1) = {g6} we
have t; = 1. For N2(Gg4) = {wags, g7} we have to = 1, since g5 = 0. For
N3(Gs 4) = {wsgs, wags, gs} we have ¢35 = 2 as all wage, gs, wags + gs are nonzero.
Thus a5(ég74) <0, a6(é874) <1 and a7(@874) < 1. On the other hand, we have
shown a4qws € HG(C:‘SA) and a,ws € H7(C~7‘&4) to be nonzero and dual to wiw, and
wewswy respectively. Therefore Oéﬁ(égA), a7(é874) # 0 and both must be equal
to 1.

We determine Ols(é&;l) with the help of the Euler characteristic. For the Grass-
mann manifold Gg4 we can compute its Euler characteristic from the Poin-
caré polynomial to obtain x(Gsa4) = 6. As 68,4 is a 2-fold cover, we
have X(égA) = 2 - x(Gs4) = 12. By this point we know the Betti numbers
bo(é8,4), ol b7(é8,4). Poincaré duality and a simple calculation yields bg(égA) =4.
Consequently, OZg(égA) = 2 and since we already know a,w3 and a4w4 are nonzero,
we only need to show that they are distinct. That is done by considering their
products with w5 and realizing one is zero while the other is not.

By obvious adjustment of the last argument we also prove that a4ws # a,Waty
and a5 # aswawy. All the remaining numbers Oéj(ésA) are now determined by
Poincaré duality combined with the knowledge of all C'(5;8,4) and the obvious
generators suffice to produce the required values. (I

Theorem 3.4. We have the following generators of Hj(égA).

J gen. J gen.
0 1170 11 agwg
1 — 12 agﬂ)'%, a8@4, w§ﬁ4
2 1172 13 ag’[bg’[[)/g
3 lAlj3 14 agﬁg, agqﬂgth
4 117%7 1174 15 a8@3{54
5 ’LEQ’&)}, 16 (lg’[ljé, agangl
6 ’lI)g, 1521174 17 08@2@3’@4
7 ﬁ3w4 18 agw§w4
8 s, w3, Wyty 19 —
9 @2 ’LE3’17)'4 20 agzﬂgﬂ@;
10 agwg, @3@4

where ag is an element in H8(C~1974) \ C(8;9,4).
Proof. First, as Jg 4 = Js 4, we have C(5;9,4) = C(j;8,4) for all j.

We have charrank (Y 4) = 7 so Hj(égA) =C(5;9,4) = C(j;8,4) for j <7 and
ag(égA) > 1. To obtain an upper bound for Oég(ég’zl) we consider N3(Gg4) =
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{wsgs, wa 97, go . Any two elements from this set are linearly independent, which
means ag(Gg 4) = 1. Denote ag an element in HS(Gg 1)\ C(8;9,4).

Clearly, the Poincaré dual to w31y is ag and similarly as before we have agw3w, =
(lg’LEg’LAUg@;l 7’5 0.

Next, Ny(Gg4) = {w%gg, wage, w3g7,wggg}. We will show that these four ele-
ments are linearly independent. Suppose that for some ¢; € Zo, 1 < i < 4 we
have

C1w§ge~ + cowage + c3wsgr + cawags = 0.

Since every element in Zs[ws, w3, wy] is of order 2, the equation implies

(e1 4 €3 + ca)wigs + cawags + c3(wagr + w3gs) + ca(wags + wigs) =0,
(c1 + ¢34 ca) (w3 + wiw3) + cawage + c3wl + ca(wiwy + wowi) = 0.
If ¢1 + ¢3 + ¢4 or c3 or both are nonzero, the LHS is not divisible by w,4, which is a
contradiction. Thus ¢y + ¢3 + ¢4 = ¢3 = 0 and the equation simplifies so much,we
immediately deduce co = ¢4 = 0. Which in turn implies ¢; = 0. We have proved
independence and so ag (69’4) =0.
Now that Betti numbers bo(ég74), .. .,bg(ég74) are known, from calculating
X(Gg,4) = 6 and X(C~1’974) = 12 we obtain blo(égA) =2.
This gives enough information to quickly determine all Oéj(égA) and all are once
again covered by the obvious generators derived from agwiw, = agwowaswy # 0. O

Theorem 3.5. We have the following generators of Hj(éloA).

J gen. J gen.
0 o 13 -
1 — 14 algﬂ)'g, blgwg
2 Wo 15 a12w3
3 wg 16 alzﬁg, a12134, blgﬁg
4 117%, 1174 17 algagwg
5 ﬁg’wg 18 am@g, am@g@;, blgﬁg
6 ’l’l\)g, ﬂ)vg, 1’[)/21’154 19 0,12’[[73’[174
7 ﬁ3@4 20 algﬁé, blgwg
8 W, W02, W2y 21 1934
9 @2@3@4 22 algagﬂh = blgwg
10 W, Waily 23 -
11 — 24 a12@§@4
12 alg,blg,wg,@él’ﬁ4

where a2, b12 are linearly independent elements in H12(6974) \ C(12;9,4) such that
0,12171421@4 7’5 O, 042@‘25 = 0, blgwg 7é 0 and b12w3@4 =0.
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Proof. As before, we begin with determining the generators of C(j;10,4). For
j <6 we have C(j;10,4) as stated since there are no relations.

In C(7;10,4) we have w3w3 = 0 and thus wsw, is the only generator.

In C(8;10,4) we have w5 + Wow3 + W3, = w5 as the only relation, hence there
are the three generators.

In C(9;10,4) we have w3ws = 0 and w5 = 0, so Wawswy is the only generator.

In C(10;10,4) we have w3w3 = 0, Waw, = W3y, and among W, Waty, Walls
either is equal to the sum of the other two since g19 € Ji0,4. Thus there are two
generators.

In C(11;10,4) we have w3wsiwy, wiws both multiples of w3w3 = 0. Then wWaws
is a multiple of @3 = 0 and w3@w3 = 0 by Lemma 3.2}

In C(12;10,4) we have w5y = Wow3wy and W9 + Wy, = Wsw3 = W; by
Lemma Thus there are two generators, e.g. w$ and wWaty.

We know that charrank(19.4) = 11, so by Poincaré duality and Lemma we
have C(4;10,4) =0 for j > 13.

Also a;(Gho, 4) =0 for j <11, so by now we have determined all Betti numbers
except for bio (Glo 4). We calculate it from the Euler characteristic X(Glo 1) = 20.
The result is blg(Glo 1) =4.

So au(Glo 4) = 2 and there are two linearly independent elements in H12(G9 2)\
C(12;9,4). By Poincaré duality we can start by arbitrarily picking a pair (afs, b]5)
such that aj,w5w, # 0 and b ow§ # 0. Then we adjust b}, based on the fact that
H24(61074) Zo. If bl ywawy # 0, we define byp = ajy + b12, so that byawswy = 0.
Otherwise let b1y = b},

Similarly, since H22(G19.4) = H?(G10.4) = Zo, if ajo@3 # 0, we define ajg =
ao+bia, else ajp = aly, so that aypw3 = 0. We have a1z, b2, W5, Wi, as generators
of .[7[12 (510)4).

Next, we have H13(610,4) = H11(610,4) =0.

Since ajowo and byowo have different products with wiw, they are distinct and
therefore linearly independent.

We have ai2w3 # 0, since a121172117§{174 = apwiwy # 0.

By considering the products of nonzero elements ajows3, a2y, b12ws with
Wy, Wa3, Wi, we see that they are independent. Indeed, suppose that for some
c1, o, c3 € Zo we have c1a19W3 + c2a12Wy4 + c3b12w3 = 0. Multiplying both sides
by wew3 and recalling that w3ws = 0, we obtain ¢ = 0. Then multiplying by w3
yields c3 = 0 and multiplying by w2, gives ¢; = 0.

We have aowsws # 0, since algzﬂzﬁg@; = ajpwiwy # 0.

Elements a12103, a1oWay, bjows are nonzero. They prove to be independent
upon considering their products with w3, w3, wawy.

‘We have (112’[[13{54 75 0, since a12@2@§ﬁ4 = (11215[21’[[14 7é 0.

Elements aj2w3, b12w; are nonzero. They prove to be independent upon consi-
dering their products with w3, w,.

We have a12w2ﬁ3@4 7é 0, since a12ﬁ2@§@4 = algwgiﬁ;; 7é 0.

We have a12w3w, # 0 and byowj # 0, therefore they are equal.
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Before we examine the last case, we separately prove one important piece of
information.

Lemma 3.6. The set Ng(G11,4) is linearly independent.

Proof. We partition the set Ng(G114) into two disjoint sets Ng (G11.4) and
Nﬁ_(G1174), where N;(GHA) = {wggg,wggg,w2w4gg,w3911} and Nﬁ_(GllA) =
{’Ujgwggg,w%glo, w4glo}. To prove linear independence of Ng(G11,4) we have to
prove that no nontrivial linear combination of elements of Ngr (G11,4) is equal to
any linear combination of elements of Ng (G11,4) and vice versa. All elements of
Ng' (G11,4) are polynomials with an even number of terms, thus any linear com-
bination of them will have an even number of terms, since each term is of order
2. All elements of Ny (G11,4) are polynomials with an odd number of terms, so
the only nontrivial linear combinations worth considering are wowsgg + w3410,
WaWsgg + wyegio and w% g10 + wagio, that is the polynomials

7 4 2,2 3,2
Ry = wy + waws + wywzwy + wywy,

Ry = w2w§ + wgw4 + wgwi + wgwi’,

Rz = w} + wiwy + w%w%w;; + wiw? + wgwi + wows.
Since none of these are zero polynomials, the set Ng (G11,4) is linearly independent.
It remains to show that there is no nontrivial linear comination of elements of
NS_(GHA) equal to Rl, RQ, R3 Oor Zero.

First, let us consider combinations without w3gs, that is for any c1, co, c3 € Zo
the expression

_ 2
Lo, co,05 = CLW3GR + CowaW4gg + C3Ww3gi1,

where
2 4, 2 4 2.2 2.2
W308 = WoW; +wows Fwiw3wy fwiwy ,
5 22 3,2 3
WaW4gg = WoWys  FWIW3W4 + WoWy + wowy ,
4,2 2.2
wW3gi1 = WrWs+ +wswy .

Since none of them contain wg we have that Lo ¢, ¢y, 7 R1, R3. For Lo ¢, cy.c5 t0 be
equal to zero, first c; must be zero and then ¢; and c3 also. To have Lo ¢, cy,c; = F2,
we need ¢; = 1 to obtain w2w§ and ¢y = 1 to obtain w§w4. But then no choice of c3
will make Lo 1,1,¢, = Ro true. In the end, Lo ¢, ¢y,c5 7 R1, R2, R3 and Lo ¢, cp,cs =0
only for L 0,00

Now let us consider combinations containing w3gs, that is for any ¢y, ca, c3 € Zo
the expression.

3 2
L1y ,co,c5 = Wgs + C1w3gs + Cowawags + C3w3g11 -

Since w3 is always a term in L ¢, ¢,,c5, We only need to consider if it is possible
for L1, ¢y co,c; t0 be equal to Ry or Rz. Subtracting wigs from both sides of the
considered equations, it is the same as considering whether Lo ¢, c,.; is equal to
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either of the following
3 4,2 4 5 2, 2
Ry + w598 = wyws + waws + wowy + wywzwy ,
3 4,2 2, 2 2, 2 3
R3 4+ w598 = wows + wywzws + wiwy + wawy .

Each of w%gg,w2w4gg7wggll contains an even number of terms from the set
{w§w4, wgwi}, hence every Lo ¢, ¢,,c; Will too. However both 14 —l—wg’gg, R3 —I—wg’gg
contain exactly one such term. Thus for any choice of indices ¢y, co,c3 € Zo,i €
{1,3} the equality Lo, cp.cs = Ri + wigs and equivalently Lq ., cp.cs = Ry is
impossible.

In conclusion, the only case when a linear combination of elements of NG+ (G11,4)
is equal to some linear combination of elements of Ng (G11,4) is when they are
both trivial. With that we have proved Ng(G11.4) is a linearly independent set. [

Theorem 3.7. We have Hj(énA) = Hj(émA) for 7 < 6 and there are following
generators of the remaining H’ (G11 4).

i gen. j gen.
7 @gﬁg, ’w311~}4 18 a121ﬂg, a121ﬂ2’w4, algwg
8 1’53,@2@57{53’&74 19 a12a§ﬁ3,01217}131’174
9 @ng;,wg’&j;;@z; 20 algzﬂg,algzﬂ%@;, a12@21ﬂ§
10 ’&73, '[175{17%7 @5’154 21 a12’l’173’&73, algagwg’&h
11 wgﬁg 22 algzﬂg, algzﬂgﬁu, CL12{IJ§@§
12 aio, ’&73, '&73@%7 ’&73’&74 23 alz’lﬂﬁé’&)\ig
13 wgﬁg 24 algfﬁg, CL12771§@2
14 algwg, {Eg 25 alzﬁgﬁg
15 a121173 26 alglfbg
16 a16,a12@g,a12@4,@§ 27 -
17 a12a21z3 28 Cl121zg = a16@§@4

where a2 is an element in H12(é1174) \ C(12;11,4) such that a12ws # 0 and aie

is an element in H(G11.4) \ C(16;11,4) such that ajewawy # 0, ajews = 0 and
~3 =9 _

aewrws = 0.

Proof. We have charrank(7;1,4) = 11, so Hj((~11174) =C(j;11,4) for j <11 and
C(j;11,4) 2 C(j;10,4) = Hj(éloA) for j < 6, since neither Ji1 4 or Jig4 produce
relations in cohomology in dimensions lower than seven.

In C(7;11,4) we have w3ws and wsw, as generators.

In C(8;11,4) we have w5 + Waw3 + W31, = w3 as the only relation, hence there
are the three generators.

In C(9;11,4) we have w3 = 0 and W33, WetswW, are generators.
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In C(10;11,4) we have only w5, w3w3, Wi, as generators, since wWiwy = Waw3 +
wiwy and Wwows is the sum of all three generators, because wags € Ji1.4.

In C(11;11,4) we have wowi = 0 and wawswy = 0, so Waws = wsws is the
generator.

In 0(12; 11, 4) we have @2@%@4 = ﬂvlg —F@%’Jli, since wa2g10 € J1174, with 771%1]72 =
WS + WIW3 + Waty, since wigs € Ji1,4, so only WS, Wiw3, Waw, are generators.

In C(13;11,4) we have w3ws = 0, wiwswy = 0 and Waw3w; = Wws, since
wag11 € J11,4, SO w53 is the only generator.

In C(14;11,4) we have wiwiw, = 0. Thus also w} = wiw3, since wigip € J11.4.
And we already know w3 = wiw? and Wy = Wyty.

In C(15;11,4) we have wSws = wiwsw?, since w3gi1 € Ji1.4, but the latter is
zero. Also wiwi = 0 and wiwswy = 0.

In C(16;11,4) we have wsw3w, = 0, wiw3 = waws = wiw, and W5 = wWiw3 as
it is a wy—multiple of a known equality.

From charrank(311,4) = 11, Poincaré¢ duality and Lemmal[2.1|we have C(j; 11,4) =
0 for j > 17.

Also, we have aj(éllA) =0 for j < 11 and a12(61174) > 1. Let us consider
N5(Gi1,4) = {wawsgs, wige, wago, w3gio, w2gi1 }. We will show that {wawsgs, w3go,
Wagy, Wagi1} is a linearly independent subset and therefore a2(G11,4) = 1. Suppose
that for some ¢; € Zo,1 < i < 4 we have

Crwawsgs + Caw3ge + c3wagy + cawagrr = 0.
Considering that wsg9 = w3w, is not divisible by wq, we immediately see that
c3 =0 and

crwsgs + cawagy + cagi1 = 0.

Since both gg and g1; have an even number of terms, the same is true for cyjwsgs
and c4911, thus the parity of number of terms in LHS is the same as parity of
number of terms in cawsgy. But g = w3, therefore c; = 0. Finally, we deduce
¢1 = ¢4 = 0 as well. In conclusion, there is one generator in H'2(Gq;,4)\C(12;11,4),
some a12. By Poincaré duality we have aj2w$ # 0.

By Lemma and Proposition we have a13(61174) =0.

We have x(G11,4) = 10, so from a simple calculation we obtain b14(C~7'11,4) =2

Hence a14(G11,4) = 1 and aq2w2 is the obvious generator.

To finish the proof, recall that @w§ = w3w3 = wsw; = wSw, and the second
term is equal to @2{53@2 by wewsgi1 € Ji1,4. Also @g’ = 0, wiwzwy = 0 and
Wawi = 0. So a12w3 is nonzero. Next, aj2w3 and ajow, are nonzero and distinct,
since their wiw3—multiples are not equal. But there is one more generator in
H'(Gy14) \ C(16;11,4), some asg.

Next, aj2wWaws # 0. Nonzero elements a12ws, aj2Wawy and ajaw3 are found out
to be independent after considering their multiples with w3, w3w3 and w3wys. By
obvious adjustement of this argument triples aiow3, a12Wsty, algfﬁgiﬁg and ajow3,
a12WsWy, aj2Wsw3 prove to be independent as well.
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Nonzero elements a12w3ws and a12wWstw, prove to be independent after consi-
dering their w3ws-multiples. Similarly, elements a12w31w3 and ajoWetsw, are in-
dependent. Also a12w$ and aj2w3w3, after considering w,—multiples. The rest is
obvious.

Lastly, we will show that it is possible to choose a1 in such a way, that
a1eWsy # 0, ajew§ = 0 and ajgwsw3 = 0 simultaneously. Start with picking a4
as any element, such that (a)g, a12w3, a1y, ws) is a basis for H16((~¥1174). The
matrix of the cup product bilinear pairing H16(C~¥11’4) X H12(é11)4) — 7o with
respect to bases (a}g, a12W3, a19Wy, W5) and (ajg, WS, W3W3, Wity is

— % % ¥
O~ = %
O O = ¥
[

where the stars represent unknown values. By Poincaré duality, the rows of this
matrix are linearly independent, so there are following options for the last three
values in the first row.

If we have (x 1 0 0), then we define aj6 = alg + a12Ws.

If we have (* 0 0 1), then we define a1 = al.

If we have (* 1 1 0), then we define ajg = ajg + a12w3.

If we have (* 0 1 1), then we define ajg = ag + a12W3 + a12;. ]

Now that we are done with the examples, we are ready to discuss some patterns.
Similar to the case k = 3 studied in [I] we predict there will be indecomposable
element aq: in H? (é2t+174) reflecting the case for H*(égt,g).

It appears that for 2! + 1 < n < 2!*1 — 4 there are apart from Stiefel-Whitney
classes wo, w3, w4 at least two aditional indecomposable elements ay,_3.0¢_4 €
HA=32' 4G, ) and ageir_y € H2t+1_4(énﬁ4). Note that previously mentioned
as: can be thought of as also being of the form a4, _3.ot_4 for n = 2t 4- 1.

From observing that the Poincaré dual to those a4, _3.0:-1_4 in our examples
for n = 9,10, 11 was always of the form wjw,, we may reasonably anticipate these
duals will exhibit some kind of stability in general.
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