Commentationes Mathematicae Universitatis Caroline

Tomáš J. Kepka; Petr C. Němec

One Erdös style inequality

Commentationes Mathematicae Universitatis Carolinae, Vol. 60 (2019), No. 4, 529-531
Persistent URL: http://dml.cz/dmlcz/147972

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 2019

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

One Erdős style inequality

Tomáš J. Kepka, Petr C. Němec
Dedicated to the memory of Vèra Trnková

Abstract

One unusual inequality is examined.

Keywords: inequality
Classification: 11D75

In 1951, P. Erdős in [1] investigated the diophantine equation

$$
\begin{equation*}
\binom{n}{k}=x^{l}, \quad k \geq 2, n \geq 2 k, x>1, l>1 \tag{1}
\end{equation*}
$$

and he showed that this equation has no solution for $k>3$ (there are infinitely many solutions if $k=l=2$, and for $k=3, l=2$, equation (1) has only one solution $n=50, x=140$). The remaining cases $k=2,3$ and $l>2$ were settled by K. Győry in [2]. The proof in [1] is making use of some quite unusual inequalities and one of them, namely the inequality $(h-g)^{3}>h$, is carefully examined and generalized in this ultrashort note. Needless to say that our approach is fully calculus-free.

First of all, let a, b, c be positive integers such that $a<c$ and $a c=b^{2}$. Then $a<b<c$ and the well-known relation of arithmetic and geometric means yields $a+c>2 b$. Put $m=c-b, n=b-a$ and $p=m-n=a+c-2 b$. Then $m, n, p \geq 1$, $m \geq n+1$ and $b m=b(c-b)=b c-b^{2}=b c-a c=(b-a) c=n c$. Hence

$$
\begin{equation*}
b p=b(m-n)=b m-b n=n c-b n=n m . \tag{2}
\end{equation*}
$$

Since $m \geq n+1$ and $p \geq 1$, (2) implies $m^{2} \geq(n+1) m=n m+m=b p+m \geq b+m$, and consequently $m^{2}-m \geq b$. From this,

$$
\begin{equation*}
m^{2}-(m+n)=m^{2}-m-n \geq b-n=a \tag{3}
\end{equation*}
$$

As $m+n=c-a$, we have $m^{2}-(m+n)=(c-b)^{2}-c+a$. By $(3),(c-b)^{2} \geq c$, and hence

$$
\begin{equation*}
(c-a)^{2}>c \tag{4}
\end{equation*}
$$

Now, let g, h be positive integers such that $g \leq a, c \leq h$ and put $\delta=h-c$. Using (4), we obtain $(h-g)^{2} \geq(h-a)^{2}=(c-a+\delta)^{2} \geq(c-a)^{2}+\delta>c+\delta=h$.

Let $a, b, c, d, e, f, g, h, t, \alpha, \beta, \gamma$ be positive integers satisfying $a \neq b \neq c \neq a$, $g \leq \min (a, b, c), \max (a, b, c) \leq h, 5 h \leq 6 g, t \geq 3, \beta^{2}=\alpha \gamma, a=\alpha d^{t}, b=\beta e^{t}$, $c=\gamma f^{t}$. We aim to show that $(h-g)^{3}>h$.

The case $b^{2}=a c$ is settled down in the above-mentioned part, where we got $(h-g)^{2}>h$. In view of this, we can restrict ourselves to the case $b^{2}>a c$ (the other case, $a c>b^{2}$, being quite analogous). We can assume $a<c$ as well. Then, of course, $g \leq a<b \leq h, g \leq a<c \leq h$ and

$$
\begin{equation*}
g^{2}<a c \tag{5}
\end{equation*}
$$

Furthermore, $b^{2}-a c=\beta^{2} e^{2 t}-\alpha \gamma(d f)^{t}=\beta^{2}\left(e^{2 t}-(d f)^{t}\right)>0$, hence $e^{2} \geq d f+1$ and $b^{2}-a c \geq \beta^{2}\left((d f+1)^{t}-(d f)^{t}\right) \geq \beta^{2} t(d f)^{t-1}$. Thus

$$
\begin{equation*}
d f\left(b^{2}-a c\right) \geq \beta^{2} t(d f)^{t}=t \alpha d^{t} \gamma f^{t}=t a c \tag{6}
\end{equation*}
$$

Now, $2(h-g) h=(h-g)^{2}+h^{2}-g^{2}>(h-g)^{2}+b^{2}-a c$ by (5). Using (6) and (5), we see that $2(h-g) h d f>(h-g)^{2} d f+\left(b^{2}-a c\right) d f \geq(h-g)^{2} d f+t a c>$ $(h-g)^{2} d f+t g^{2}>t g^{2}$. Since $t \geq 3$ and $5 h \leq 6 g$, we have $t g^{2} \geq 3(h-(h-g))^{2}=$ $3 h^{2}-6 h(h-g)+3(h-g)^{2}=2 h^{2}+h(h-6(h-g))+3(h-g) g^{2}>2 h^{2}$, and therefore

$$
\begin{equation*}
(h-g) d f>h \tag{7}
\end{equation*}
$$

Let s be an integer such that $4 \leq s \leq t+2$. We have $(h-g)^{s-2} h^{s}>$ $(h-g)^{s-2} h^{s-2} a c=\beta^{2}(h-g)^{s-2} h^{s-2} d^{t} f^{t} \geq \beta^{2}(h-g)^{s-2} h^{s-2} d^{s-2} f^{s-2}=$ $\beta^{2}((h-g) d f)^{s-2} h^{s-2}>\beta^{2} h^{2 s-4}$ by (7), and hence

$$
(h-g)^{s-2}>\beta^{2} h^{s-4} \geq h^{s-4}
$$

For $s=t+2$ we get $(h-g)^{t}>h^{t-2}$. For $s=5$, we get $(h-g)^{3}>h$. If $\bar{g}=\min (a, b, c)$ and $\bar{h}=\max (a, b, c)$ then $5 \bar{h} \leq 6 \bar{g}$ and $(\bar{h}-\bar{g})^{3}>\bar{h}$.

We have shown that the inequality $(h-g)^{3}>h$ holds if $5 h \leq 6 g$ and some unusual additional conditions are satisfied. On the other hand, $5 \cdot 18<6 \cdot 16$, but $(18-16)^{3}<18$. If $5 h>6 g$ and $h \geq 15$ then $6^{3}(h-g)^{3}>h^{3} \geq 6^{3} h$ and the inequality holds.

Now, let us have a look at the inequality $(h-g)^{3}>h$ from another point of view. Let H, g, h, Δ be positive integers such that $H \geq 3$ and $\Delta \geq 2$. Put $G_{H}=H-1-[\sqrt[3]{H}]$ (here $[\alpha]$ denotes the integer part of α). Then $H-G_{H} \geq 2$, $\left(H-G_{H}\right)^{3}>H$ and $(H-g)^{3} \leq H$ for $g>G_{H}$. If $g \leq G, h \geq H$ and $\delta=h-H$ then $(h-g)^{3} \geq\left(h-G_{H}\right)^{3}=\left(H-G_{H}+d\right)^{3} \geq\left(H-G_{H}\right)^{3}+\delta>H+\delta=h$.

Let $(\Delta-1)^{3} \leq H \leq \Delta^{3}-1$. Then $G_{H}=H-\Delta$ and, moreover, $5 H \leq 6 G_{H}$ if and only if $6 \Delta \leq H$. Since $6 \Delta<(D-1)^{3}$ for $\Delta \geq 4$, we see that $5 H \leq 6 G_{H}$ if and only if $H \geq 18$. Finally, g such that $g \leq H-2,(H-g)^{3} \leq H$ exists if and only if $H \geq 8$. If g is so then $5 H>6 g$ for $H \leq 11$ and $5 H \leq 6 g$ otherwise.

Acknowledgement. The authors would like to express their thanks to the anonymous referee for her/his fruitful comments which helped to improve the readability of this note.

References

[1] Erdős P., On a Diophantine equation, J. London Math. Soc. 26 (1951), 176-178.
[2] Győry K., On the Diophantine equation $\binom{n}{k}=x^{l}$, Acta Arith. 80 (1997), no. 3, 289-295.

T. J. Kepka:
Department of Algebra, MFF UK, Sokolovská 83, 18675 Praha 8, Czech Republic
E-mail: kepka@karlin.mff.cuni.cz
P. C. Němec:
Department of Mathematics, CULS, Kamýcká 129, 16521 Praha 6 - Suchdol, Czech Republic
E-mail: nemec@tf.czu.cz

(Received December 29, 2018, revised January 10, 2019)

