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Abstract. Let (R,m) be a commutative Noetherian local ring, a be an ideal of R and M
a finitely generated R-module such that aM 6= M and cd(a,M) − grade(a,M) 6 1, where
cd(a,M) is the cohomological dimension of M with respect to a and grade(a,M) is the
M -grade of a. Let D(−) := HomR(−, E) be the Matlis dual functor, where E := E(R/m)
is the injective hull of the residue field R/m. We show that there exists the following long
exact sequence

0 −→ Hn−2
a (D(Hn−1

a (M))) −→ Hn
a (D(H

n
a (M))) −→ D(M)

−→ Hn−1
a (D(Hn−1

a (M))) −→ Hn+1
a (D(Hn

a (M)))

−→ Hn
a (D(H

n−1
(x1,...,xn−1)

(M))) −→ Hn
a (D(H

n−1
a (M))) −→ . . . ,

where n := cd(a,M) is a non-negative integer, x1, . . . , xn−1 is a regular sequence in a on M

and, for an R-module L, Hi
a(L) is the ith local cohomology module of L with respect to a.
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1. Introduction

Throughout the paper, (R,m) will denote a commutative Noetherian ring with

nonzero identity, a an ideal of R and M a finitely generated R-module. We shall

use D(−) to denote the Matlis dual functor; thus D(−) := HomR(−, E), where

E := E(R/m) is the injective hull of the residue field R/m. Also, we use N0 (or N)

to denote the set of non-negative (or positive) integers. Our terminology follows the

textbook [1] on local cohomology.

There are some problems related to D(Hi
a
(M)) (see for example conjecture (∗)

in [2] and [3]), where Hi
a
(M) is the ith local cohomology module of M with re-

spect to a. Recently, such modules have been studied by some authors, such as
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Hellus in [2], [3], [4], Hellus and Schenzel in [5], Khashyarmanesh in [7] and Schen-

zel in [10], and has led to some interesting results. In this direction, an interesting

question is whether the module D(Hi
a
(R)) is ‘small’ in the sense that, in certain

cases, Hi
a
(D(Hi

a
(R))) is either E or zero. By using the theory of D-modules, in

certain situations, it was shown that Hi
a
(D(Hi

a
(R))) is either E or zero (cf. [4],

Theorems 3.1 and 3.2). The second author in [7] proved that for a non-negative

integer n and an ideal a of R with aM 6= M , if Hi
a
(M) = 0 for every i 6= n,

then Hn
a
(D(Hn

a
(M))) = D(M). In the above-mentioned results, the ideal a sat-

isfies the equality grade(a, R) = cd(a, R) in [4] or grade(a,M) = cd(a,M) in [7],

where grade(a,M) is the common length of maximal regular sequences in a on M

and cd(a,M) is the cohomological dimension of M with respect to a. Clearly,

cd(a,M) > grade(a,M). So the interesting question related to this context is

how to determine a relation between the R-modules Hi
a
(D(Hi

a
(M))) and D(M)

in the case that cd(a,M) 6= grade(a,M). In this paper, we assume cd(a,M) −

grade(a,M) 6 1. In fact, we show that there exists an exact sequence involving the

R-modules Hn
a
(D(Hn

a
(M))) and D(M), where n = cd(a,M). Finally, as a conse-

quence, we deduced the main result of [7].

2. Background

First of all, let us recall a generalization of the concept of regular sequences, which

we shall use in the paper. Let a be an ideal of R. We say that a sequence x1, . . . , xn

of elements of a is an a-filter regular sequence on M if

SuppR(((x1, . . . , xi−1)M :M xi)/(x1, . . . , xi−1)M) ⊆ V (a)

for all i = 1, . . . , n, where V (a) denotes the set of prime ideals of R containing a. The

concept of an a-filter regular sequence on M is a generalization of the filter regular

sequence which has been studied in [11], [12] and has led to some interesting results

(see also [6], [9]). Note that both concepts coincide if a is the maximal ideal in the

local ring. Also note that x1, . . . , xn is a weak M -sequence if and only if it is an

R-filter regular sequence onM . It is easy to see that the analogue of Appendix 2 (ii)

of [12] holds true whenever R is Noetherian,M is finitely generated and m is replaced

by a; so if x1, . . . , xn is an a-filter regular sequence on M , then there is an element

xn+1 ∈ a such that x1, . . . , xn, xn+1 is an a-filter regular sequence on M . Thus,

for a positive integer n there exists an a-filter regular sequence on M of length n.

The following theorem shows that filter regular sequences provide a nice method for

studying local cohomology modules.
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Proposition 2.1 (See [8], Proposition 1.2). Let x1, . . . , xn (n > 1) be an a-filter

regular sequence on M . Then for all integers i with 0 6 i 6 n − 1, we have the

isomorphism

Hi
a
(M) ∼= Hi

(x1,...,xn)
(M).

For an R-module N , the cohomological dimension of N with respect to a is de-

fined as

cd(a, N) = max{i ∈ Z : Hi
a
(N) 6= 0}.

Finally, for the convenience of the reader, we recall the following proposition which

we shall use in the paper.

Proposition 2.2 (See [7], Proposition 2.4). Suppose that (R,m) is a local ring,

and let j be an integer such that j > cd(a,M) > 0. Then for an a-filter regular

sequence x1, . . . , xj on M we have that Hn
a
(D(Hj

(x1,...,xj)
(M))) = 0 for all n ∈ N0.

3. Main results

We begin with the following lemma.

Lemma 3.1. Suppose that (R,m) is a local ring, and let n := cd(a,M). Let

x1, . . . , xn be an a-filter regular sequence on M . Then

Hn
a
(D(Hn

(x1,...,xn)
(M))) ∼= Hn

a
(D(Hn

a
(M))).

P r o o f. Since x1, . . . , xn is an a-filter regular sequence on M , there exists

xn+1 ∈ a such that x1, . . . , xn, xn+1 form an a-filter regular sequence on M . (Note

that the existence of such an element is explained in the beginning of the previous

section.) Thus, by [7], Lemma 2.2, there exists an exact sequence

0 −→ Hn
a
(M) −→ Hn

(x1,...,xn)
(M) −→ (Hn

(x1,...,xn)
(M))xn+1

−→ Hn+1
(x1,...,xn+1)

(M) −→ 0,

where for an R-module N , Nxn+1
denotes the module of fractions of N with respect

to the multiplicatively closed subset {xi
n+1 : i ∈ N0}. Now, by applying the Matlis

dual functor D(−) to it, we obtain an exact sequence

0 −→ D(Hn+1
(x1,...,xn+1)

(M)) −→ D((Hn
(x1,...,xn)

(M))xn+1
)

f
−→ D(Hn

(x1,...,xn)
(M))

−→ D(Hn
a
(M)) −→ 0.
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So, there are exact sequences

(3.1) 0 −→ D(Hn+1
(x1,...,xn+1)

(M)) −→ D((Hn
(x1,...,xn)

(M))xn+1
) −→ L −→ 0

and

(3.2) 0 −→ L −→ D(Hn
(x1,...,xn)

(M)) −→ D(Hn
a
(M)) −→ 0,

where L is the image of f . On the other hand, since multiplication by xn+1 provides

an automorphism on (Hn
(x1,...,xn)

(M))xn+1
, and also for arbitrary non-negative inte-

ger l, every element of H l
a
(D((Hn

(x1,...,xn)
(M))xn+1

)) is annihilated by some power

of a, we conclude that

H l
a
(D((Hn

(x1,...,xn)
(M))xn+1

)) = 0.

Then, sequence (3.1) in conjunction with Proposition 2.2 implies that H l
a
(L) = 0 for

l = n, n + 1. So the result now follows by applying the functor Γa(−) on the short

exact sequence (3.2). �

The next proposition is concerned with the concept of grade of an ideal. As we

mentioned in Introduction, for an ideal a of R with aM 6= M we refer to the common

length of all maximal regular sequence on M contained in a as the M -grade of a and

we denote this non-negative integer by grade(a,M).

Proposition 3.2. Suppose that a is a proper ideal of local ring (R,m) such that

grade(a,M) > n − 1, and let x1, . . . , xn−1 be a regular sequence in a on M . Then

we have the following statements:

(i) Hn−2
a

(D(Hn−1
(x1,...,xn−1)

(M))) = 0;

(ii) Hn−1
a

(D(Hn−1
a

(M))) ∼= D(M).

P r o o f. In view of [7], Lemma 2.2, there exists an exact sequence

(3.3) 0 −→ Hn−2
(x1,...,xn−2)

(M) −→ (Hn−2
(x1,...,xn−2)

(M))xn−1

−→ Hn−1
(x1,...,xn−1)

(M) −→ 0.

Since multiplication by xn−1 provides an automorphism on (Hn−2
(x1,...,xn−2)

(M))xn−1
,

and every element of H l
a
(D((Hn−2

(x1,...,xn−2)
(M))xn−1

)) is annihilated by some power

of a, we have that

(3.4) H l
a
(D((Hn−2

(x1,...,xn−2)
(M))xn−1

)) = 0 ∀ l ∈ N0.
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By applying the functor D(−) to (3.3) in conjunction with (3.4), we have that

(3.5) H l
a
(D(Hn−2

(x1,...,xn−2)
(M))) ∼= H l+1

a
(D(Hn−1

(x1,...,xn−1)
(M))) ∀ l ∈ N0.

(i) By applying the telescoping method on (3.5), we have the following isomor-

phisms:

(3.6) Hn−2
a

(D(Hn−1
(x1,...,xn−1)

(M))) ∼= Hn−3
a

(D(Hn−2
(x1,...,xn−2)

(M)))

∼= . . .

∼= H1
a
(D(H2

(x1,x2)
(M)))

∼= Γa(D(H1
(x1)

(M))).

On the other hand, since x1 is a nonzerodivisor on M , we have the exact sequence

0 −→ M −→ Mx1
−→ H1

(x1)
(M) −→ 0,

which implies that the sequence

0 −→ Γa(D(H1
(x1)

(M))) −→ Γa(D(Mx1
)) −→ Γa(D(M))

is exact. Again Γa(D(Mx1
)) = 0. Thus Γa(D(H1

(x1)
(M))) = 0. The result now

follows from (3.6).

(ii) Again the telescoping method on (3.5) shows that

(3.7) Hn−1
a

(D(Hn−1
(x1,...,xn−1)

(M))) ∼= Hn−2
a

(D(Hn−2
(x1,...,xn−2)

(M)))

∼= . . .

∼= H2
a
(D(H2

(x1,x2)
(M)))

∼= H1
a
(D(H1

(x1)
(M)).

Moreover, since x1 is a nonzerodivisor, we have the exact sequence

0 −→ M −→ Mx1
−→ H1

(x1)
(M) −→ 0.

Hence H1
a
(D(H1

(x1)
(M))) ∼= Γa(D(M)), and so by (3.7), we have that

Hn−1
a

(D(Hn−1
(x1,...,xn−1)

(M))) ∼= Γa(D(M)).

Also, since M is finitely generated and every element of E is annihilated by some

power of m, it is easy to see that Γa(D(M)) ∼= D(M). It follows that

Hn−1
a

(D(Hn−1
a

(M))) ∼= D(M),

as required. �
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Theorem 3.3. Assume that R is a local ring. Let a be an ideal of R such that

aM 6= M and cd(a,M)−grade(a,M) 6 1. Then there exists the following long exact

sequence:

0 −→ Hn−2
a

(D(Hn−1
a

(M))) −→ Hn
a
(D(Hn

a
(M))) −→ D(M)

−→ Hn−1
a

(D(Hn−1
a

(M))) −→ Hn+1
a

(D(Hn
a
(M))) −→ Hn

a
(D(Hn−1

(x1,...,xn−1)
(M)))

−→ Hn
a
(D(Hn−1

a
(M))) −→ . . . ,

where n := cd(a,M) is a non-negative integer and x1, . . . , xn−1 is a regular sequence

in a onM . Furthermore, if Hn−1
a

(D(Hn−1
a

(M))) = 0, then D(M) is a homomorphic

image of Hn
a
(D(Hn

a
(M))).

P r o o f. First of all, note that there exists a regular sequence x1, . . . , xn−1

in a on M , because grade(a,M) > n − 1. Also, there exists xn ∈ a such that

x1, . . . , xn−1, xn is an a-filter regular sequence on M . Hence, by [7], Lemma 2.2,

there exists an exact sequence

0 −→ Hn−1
a

(M) −→ Hn−1
(x1,...,xn−1)

(M) −→ (Hn−1
(x1,...,xn−1)

(M))xn

−→ Hn
(x1,...,xn)

(M) −→ 0

of local cohomology modules. So, we have the following exact sequence:

0 −→ D(Hn
(x1,...,xn)

(M)) −→ D((Hn−1
(x1,...,xn−1)

(M))xn
)

g
−→ D(Hn−1

(x1,...,xn−1)
(M))

−→ D(Hn−1
a

(M)) −→ 0.

Now, by breaking the above exact sequence, we have the following short exact se-

quences:

(3.8) 0 −→ D(Hn
(x1,...,xn)

(M)) −→ D((Hn−1
(x1,...,xn−1)

(M))xn
) −→ Im g −→ 0

and

(3.9) 0 −→ Im g −→ D(Hn−1
(x1,...,xn−1)

(M)) −→ D(Hn−1
a

(M)) −→ 0.

Since multiplication by xn provides an automorphism on (Hn−1
(x1,...,xn−1)

(M))xn
, and

every element of H l
a
(D((Hn−1

(x1,...,xn−1)
(M))xn

)) is annihilated by some power of a, we

have that

H l
a
(D((Hn−1

(x1,...,xn−1)
(M))xn

)) = 0 ∀ l ∈ N0.

Thus, by applying the functor Γa(−) on (3.8) in conjunction with Lemma 3.1, we

obtain the isomorphism Hn−1
a

(Im g) ∼= Hn
a
(D(Hn

a
(M))). Now, by applying the func-

tor Γa(−) on (3.9), the result follows from Proposition 3.2.

The final claim is then a consequence. �
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The following corollary is an immediate consequence of Theorem 3.3.

Corollary 3.4 (Compare [7], Theorem 2.5). Assume that R is a local ring.

Let a be an ideal of R such that aM 6= M and cd(a,M) = grade(a,M) = n.

Then there exist the following isomorphisms:

(i) Hn
a
(D(Hn

a
(M))) ∼= D(M),

(ii) Hn+i
a

(D(Hn
a
(M))) ∼= Hn

a
(D(Hn−1

(x1,...,xn−1)
(M))) for every i ∈ N,

where x1, . . . , xn−1 is a regular sequence in a on M .
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