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OPTIMIZED STATE ESTIMATION FOR NONLINEAR
DYNAMICAL NETWORKS SUBJECT TO FADING
MEASUREMENTS AND STOCHASTIC COUPLING
STRENGTH: AN EVENT-TRIGGERED COMMUNICATION
MECHANISM

Chaoqing Jia, Jun Hu, Chongyang Lv, and Yujing Shi

This paper is concerned with the design of event-based state estimation algorithm for nonlin-
ear complex networks with fading measurements and stochastic coupling strength. The event-
based communication protocol is employed to save energy and enhance the network transmission
efficiency, where the changeable event-triggered threshold is adopted to adjust the data trans-
mission frequency. The phenomenon of fading measurements is described by a series of random
variables obeying certain probability distribution. The aim of the paper is to propose a new
recursive event-based state estimation strategy such that, for the admissible linearization error,
fading measurements and stochastic coupling strength, a minimum upper bound of estimation
error covariance is given by designing the estimator gain. Furthermore, the monotonicity re-
lationship between the trace of the upper bound of estimation error covariance and the fading
probability is pointed out from the theoretical aspect. Finally, a simulation example is used to
show the effectiveness of developed state estimation algorithm.

Keywords: event-based communication protocol, fading measurements, stochastic cou-
pling strength, nonlinear dynamical networks, monotonicity analysis

Classification: 93C10, 93E03, 93E10

1. INTRODUCTION

The last few decades have witnessed the increasing concerns on the developments of net-
worked control systems (NCSs), where the main reason lies in that the NCSs have the
advantages of flexibility, reliability, maneuverability and low cost owing to their applica-
tions in electric power grids, complex networks, and so on [6, 17, 18, 24, 42]. Regarding
the complex networks, it is well recognized that the complex networks have been widely
applied in the transportation networks, social networks, biological networks, chemical
processes [1, 11, 19, 20, 26]. For example, the source estimation approaches have been
given in [26] for complex networks with applications in public transportation field and a
new secure distributed dynamic state estimation method has been given in [20] for smart
grids with geographically separated sub-regions. In [11], a fault detection approach has
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been proposed via the horizontal visibility graph analysis-integrated complex networks,
in which the presented method has been applied to the Tennessee Eastman process.
Recently, many progresses have been reported on the dynamics analysis of complex net-
works within the networked circumstances [8, 22, 36, 37, 39, 43]. Among them, the
designs of proper estimators have been appealing to estimate the immeasurable system
state, which maintain the indispensable importance to understand the information of
addressed networks. To mention a few, based on the linear matrix inequalities (LMIs),
[36] and [37] have proposed the time-varying state estimation strategies to attenuate
the undesirable influence from the incomplete measurements. Different from LMIs, the
state estimation methods based on the minimum mean-square error criterion have been
presented in [22] and [39] for nonlinear time-varying dynamical networks, where the cou-
pling characteristics of the network nodes have been described in different ways in order
to model the topological structure. As it is known to all, the inner/outer unreliable
factors may lead to coupling diversities of complex network nodes, which deserve more
research attentions.

With the rapid developments of network communication technology, a network chan-
nel is usually inserted to ensure the effectiveness of data transmissions [15, 16, 40].
Unfortunately, the channel bandwidth with limited communication capacity does not
support large amounts of the data transmissions, hence the network congestion occurs
frequently. In this case, the estimator/filter can receive the incomplete data only rather
than all information from the sensor, which will inevitably reduce the accuracy of the
proposed estimation algorithm [12, 28]. Therefore, it is imperative to study the state
estimation problems with data loss or fading measurements and attenuate the caused
influences by developing new estimation methods, see e. g. [23, 29, 30, 31, 33, 35, 38].
Specifically, a new time-varying recursive filtering strategy has been given in [33] for a
class of 2-D time-varying systems under fading measurements, where a minimized upper
bound of estimation error covariance has been obtained by designing the estimator gain
in a proper way. Besides, a theoretical proof of the monotonicity between measurement
degradation and estimation performance has been provided. In [29], a new state esti-
mation scheme has been proposed for neural networks with multi-delays and random
system parameters, where the incomplete measurements include the sensor saturations
and signal quantization in a random switching way have been discussed. In addition,
[31] and [35] have investigated the distributed recursive filtering problems with non-ideal
measurements and the desired filtering gains have been given to achieve the minimized
upper bound of filtering error covariance, where the boundedness analysis of filtering
error and the monotonicity analysis on the trace of the minimum upper bound with
respect to the occurrence probability have been conducted respectively. It should be
mentioned that the occurrence of the incomplete measurements indeed degrades the
desired performance requirements, which encourages us to do further discussions.

For the traditional time-driven strategy, the measured signals are usually transmitted
at a fixed time, which indeed increases the channel transmission burden and overuses the
limited network resources especially for NCSs. Apart from the estimation performance
requirement, the energy consumption index should be considered. Compared with the
conventional time-driven mechanism, the communication protocols show their advan-
tages on saving the network resources and enhancing transmission flexibility including
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but not limited to Round–Robin (RR) protocol [7, 21] and event-based communication
protocol [3, 9, 25, 32, 41]. Generally speaking, the information can be transmitted if the
event generator function is satisfied with pre-defined triggered threshold. For example,
the recursive state estimation issue has been addressed in [32] for linear time-varying
systems involving event-driven strategy as well as packet dropouts, where the criteria of
convergence and stability of the desired estimation error covariance have been presented.
Unlike the event-triggered criterion with a constant triggered threshold, [10, 27, 34] have
considered the effect from the time-varying event-driven condition onto the performance
of the proposed state estimation algorithm. Regarding the state estimation problem
for complex networks, [13, 14, 22] have presented some state estimation methods suit-
able for the time-varying circumstances, but those estimation approaches cannot save
the communication resources efficiently and never evaluate the estimation performance.
Very recently, the event-triggered estimation algorithms have been reported in [39, 40]
for time-varying dynamical networks, where the adopted event-triggered condition de-
pends on the absolute error of measurements and a fixed constant threshold. In order to
further regulate the network communication and depict the node coupled characteris-
tics, an event-triggered criterion with exponential-dependent threshold is introduced and
the stochastic coupling strength is characterized by the inaccuracy coupling strength as
well as the white noise, respectively. In particular, the influences of the stochastic cou-
pling characteristics of network nodes, fading data and event-triggered protocol onto the
corresponding state estimation method are examined, which constitutes the main moti-
vation of the conducted topic. Overall, the purpose of this paper is to enrich the existing
theoretical results on handling the state estimation problem for nonlinear time-varying
complex networks.

Inspired by the discussions mentioned above, we aim to propose a new optimized
state estimation algorithm against the event-based communication protocol, fading mea-
surements and stochastic coupling strength. Compared with existing results, the main
research challenges lie in that: (i) How to develop a new state estimation approach for
addressed nonlinear complex networks in the simultaneous presence of the measurements
degradation, stochastic coupling strength and event-triggered mechanism; (ii) How to
better handle the negative effects from measurements degradations as well as stochastic
coupling strength and utilize the effective information from other coupled nodes to im-
prove the algorithm accuracy; (iii) How to evaluate the performance of new estimation
scheme by presenting a proper analysis method? As a consequence, a locally optimal
state estimation algorithm with performance evaluation is introduced to solve the above
three questions, where a suboptimal upper bound of the estimation error covariance is
derived and the desired estimator gain is designed via minimizing such obtained upper
bound. The main contributions can be highlighted as follows: (1) a fairly compre-
hensive model is introduced to better reflect the nonlinear dynamical networks, which
involves the fading measurements and stochastic coupling strength; (2) a recursive state
estimation problem within the minimum mean-squared error sense is investigated for
nonlinear dynamical systems, where the event-based communication protocol is con-
sidered for purpose of saving the limited communication resources; (3) the expression
form of the time-varying estimator gain is provided in a recursive manner, where the
corresponding state estimation method is applicable for online computations; and (4)
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the monotonicity analysis between the trace of minimized upper bound and the fading
probability is demonstrated with rigorous mathematical proof.

Notations: The notations used in the paper are fairly standard. Rn and Rm×n rep-
resent the n dimensional Euclidean space and the set of m × n real matrices, respec-
tively. E{•} stands for the mathematical expectation of a random variable •. AT , A−1

and tr(A) are the transpose, the inverse, the trace for real matrix A. X > Y (X ≥
Y ) signifies that X − Y is a positive definite (semi-definite) symmetric matrix. The
diag{X1, X2, · · · , Xn} denotes a diagonal matrix with X1, X2, · · · , Xn on the diagonal.
◦ refers to the Hadamard product defined as [X ◦ Y ]ij = XijYij . I and 0, respectively,
stand for the identity matrix and the zero matrix with suitable dimensions.

2. PROBLEM FORMULATION AND PRELIMINARIES

In this paper, we consider the following array of nonlinear time-varying stochastic com-
plex networks consisting of N coupled nodes:

xi,k+1 = f(xi,k) +

N∑
j=1

(ωij + ζi,k∆ωij)Γxj,k +Bi,k$i,k (1)

yi,k = Φi,kCi,kxi,k + υi,k (2)

where xi,k ∈ Rn1 denotes the state information and yi,k ∈ Rn2 is the output measurement
of the ith network node. f(xi,k) is a continuously differentiable nonlinear function with
a known form. W = [ωij ]N×N is the coupling strength matrix and Γ denotes the inner
coupling matrix. |∆ωij | ≤ δij represents the uncertain coupling strength with δij > 0 be-
ing a scalar. $i,k represents process noise with E{$i,k} = 0 and Var{$i,k} = Qi,k. υi,k
is measurement noise with E{υi,k} = 0 and Var{υi,k} = Ri,k. ζi,k ∈ R is a zero-mean
noise sequence satisfying E{ζ2i,k} = 1. Bi,k and Ci,k are known matrices with appropri-

ate dimensions. Φi,k = diag{φ1i,k, φ2i,k, · · · , φ
n2

i,k} describes the sensor degradation with

φli,k ∈ [ai, bi] (l = 1, 2, · · · , n2) following the statistical characteristics E{φli,k} = φ̄li,k
and Var{φli,k} = ~φli,k, where 0 ≤ ai ≤ bi ≤ 1.

The event-based communication protocol is employed in this paper to save the lim-
ited network resources and decrease dispensable energy consumptions. Particularly, the
following transmission mechanism is adopted:

σ(yi,k, πi,k) = (yi,k − yi,st)T (yi,k − yi,st)− πi,k > 0 (3)

where yi,st is the information received by estimator at the latest instant, πi,k = τi,1e
−τi,2k+

τi,3 with τi,1, τi,2 and τi,3 being known constants. In terms of (3), if σ(yi,k, πi,k) > 0,
then the current measurement can be transmitted to the estimator side via the network.
For all event-triggered instants st, the output signal received by the estimator can be
denoted as:

ỹi,k = yi,st , k ∈ {st, st + 1, · · · , st+1 − 1}.
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Remark 2.1. Note that the information should be transmitted at each time step when
using the traditionally time-triggered communication approach, thus there needs high
communication resources. In (3), an event-triggered condition is introduced to regu-
late the network communication, where three parameters τi,1, τi,2 and τi,3 are involved.
According to (3), the information transmission frequency can be adjusted, which is par-
ticularly helpful for the situation of limited communication capacity. Besides, it should
be mentioned that the traditionally time-triggered communication protocol is recovered
when τi,1 = τi,3 = 0. Generally, there are some other event generator functions, see
e. g. the function dependent on the absolute error of the innovation measurements and
the generator function with respect to the dynamic event-triggered one, where different
event-trigged conditions are provided and different transmission frequencies can be ob-
tained accordingly. Thus, the efficiency of the network channel and the requirements of
the communication capability would be different. Compared with the existing methods,
the event generator function in (3) has a simple way and includes adjustment thresh-
old parameters, thereby possibly providing additional flexibility for dealing with the
addressed state estimation problem. On the other hand, it should be mentioned that
the RR protocol is a periodic protocol and provides a communication scheduling that
the node is given access to utilize the communication channel in a circle manner with
fixed period. Compared with the RR protocol, the measurement yi,k can be transmitted
via the adopted event-based communication protocol provided that the event generator
function in (3) is satisfied, which represents a new transmission way.

Next, the following recursive state estimator is constructed:

x̂i,k+1|k = f(x̂i,k|k) +

N∑
j=1

ωijΓx̂j,k|k (4)

x̂i,k+1|k+1 = x̂i,k+1|k +Ki,k+1

(
ỹi,k+1 − Φ̄i,k+1Ci,k+1x̂i,k+1|k

)
(5)

where x̂i,k+1|k is the prediction state of xi,k and x̂i,k|k denotes the state estimation.
Φ̄i,k+1 = E {Φi,k+1}, and Ki,k+1 is an estimator gain matrix to be designed.

Define the prediction error ei,k+1|k = xi,k+1−x̂i,k+1|k and estimation error ei,k+1|k+1 =
xi,k+1 − x̂i,k+1|k+1. Accordingly, Pi,k+1|k = E{ei,k+1|ke

T
i,k+1|k} represents the predic-

tion error covariance and Pi,k+1|k+1 = E{ei,k+1|k+1e
T
i,k+1|k+1} is the estimation error

covariance, respectively. This paper is devoted to construct the estimator as in (4)
and (5) such that 1) there exists a positive definite matrix Xi,k+1|k+1 guaranteeing
Pi,k+1|k+1 ≤ Xi,k+1|k+1; 2) the Ki,k+1 with a specific form is given to ensure the
existence of minimal value of tr(Xi,k+1|k+1); 3) the monotonic relationship between

tr(Xi,k+1|k+1) and fading probability φ̄li,k is discussed.

Remark 2.2. As is known to all, all nodes of the complex dynamical networks are
coupled and there exist the interactions, where the connection relationship is described
by the coupling strength matrix and the inner coupling matrix. Note that most of the
existing results regarding the complex dynamical networks have considered the deter-
ministic coupling strength matrix, hence we consider the uncertain coupling strength in
a random occurrence manner and characterize the potential modelling errors in order
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to better reflect the connection between different nodes. In particular, both ζi,k and
∆ωij with known upper bound are utilized to depict the uncertain coupling strength,
thereby further reflecting the engineering reality. On the other hand, there is a necessity
to better quantify the effects of stochastic coupling strength, fading measurements as
well as event-driven communication protocol and present an efficient estimation method
accordingly. To fulfill this objective, a two-step state estimator is given in (4) – (5),
which is constructed based on the transmitted measurements ỹi,k+1 scheduled by the
event-triggered protocol and the occurrence probability matrix Φ̄i,k+1. In particular, the
newly adopted state estimator includes the prediction and updating steps in order to im-
prove the anti-interference capacity regarding those factors mentioned above. Moreover,
the state estimator (4) – (5) is in a distributed way and then the proposed estimation
method has an advantage on reducing the computation burdens.

3. DESIGN OF OPTIMIZED ESTIMATION SCHEME

In this section, the above mentioned goals will be achieved. Firstly, the prediction error
is presented as follows:

ei,k+1|k = f(xi,k)− f(x̂i,k|k) +

N∑
j=1

ωijΓej,k|k +

N∑
j=1

ζi,k∆ωijΓxj,k +Bi,k$i,k.

Based on the Taylor formula, we have

f(xi,k) = f(x̂i,k|k) +Gi,kei,k|k + o(|ei,k|k|)

where Gi,k =
∂f(xi,k)
xi,k

|xi,k=x̂i,k|k and o(|ei,k|k|) is the high-order term which is equiva-

lent to Li,kMi,kFi,kei,k|k showed in [2] with Li,k and Fi,k being known matrices, Mi,k

describes the linearization error satisfying Mi,kM
T
i,k ≤ I. Then, we have

ei,k+1|k = (Gi,k + Li,kMi,kFi,k)ei,k|k +

N∑
j=1

ωijΓej,k|k +

N∑
j=1

ζi,k∆ωijΓxj,k +Bi,k$i,k. (6)

Besides, one has

ei,k+1|k+1 =
(
I −Ki,k+1Φ̄i,k+1Ci,k+1

)
ei,k+1|k −Ki,k+1Yi,k+1 −Ki,k+1υi,k+1

−Ki,k+1Φ̃i,k+1Ci,k+1xi,k+1 (7)

where Yi,k+1 = ỹi,k+1 − yi,k+1 and Φ̃i,k+1 = Φi,k+1 − Φ̄i,k+1.
The following lemmas will play a significant role when presenting the main results.

Lemma 3.1. (Wen et al. [35]) For matrices A, B, C and D with appropriate dimen-
sions, U > 0 is a symmetric matrix and ι > 0 is an arbitrary scalar. In terms of the
conditions DDT ≤ I and ι−1I − CUCT > 0 holding, the matrix inequality

(A+BDC)U(A+BDC)T ≤ A(U−1 − ιCTC)−1AT + ι−1BBT

can be obtained.
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Lemma 3.2. (Wen et al. [35]) Suppose that Q = diag{q1, q2, · · · , qn} is a random
matrix and Rn×n is a real value matrix. Then there exists the following relationship

E{QRQT } =


E{q21} E{q1q2} · · · E{q1qn}
E{q2q1} E{q22} · · · E{q2qn}

...
...

. . .
...

E{qnq1} E{qnq2} · · · E{q2n}

 ◦R
where ◦ represents the Hadamard product.

The following theorem further proposes the iteration equations of prediction error
covariance and estimation error covariance.

Theorem 3.3. The prediction error covariance and estimation error covariance can be
described as follows:

Pi,k+1|k = (Gi,k + Li,kMi,kFi,k)Pi,k|k(Gi,k + Li,kMi,kFi,k)T +

N∑
j=1

N∑
d=1

ωijωid

×ΓE
{
ej,k|ke

T
d,k|k

}
ΓT +

N∑
j=1

N∑
d=1

∆ωij∆ωidΓE
{
xj,kx

T
d,k

}
ΓT

+Bi,kQi,kB
T
i,k + Gi,k + GTi,k (8)

and

Pi,k+1|k+1 = (I −Ki,k+1Φ̄i,k+1Ci,k+1)Pi,k+1|k(I −Ki,k+1Φ̄i,k+1Ci,k+1)T

+Ki,k+1E
{
Yi,k+1YTi,k+1

}
KT
i,k+1 − Ei,k − ETi,k + Di,k + DT

i,k

+Ki,k+1E
{

Φ̃i,k+1Ci,k+1xi,k+1x
T
i,k+1C

T
i,k+1Φ̃Ti,k+1

}
KT
i,k+1

+Fi,k + FTi,k +Ki,k+1Ri,k+1K
T
i,k+1 (9)

where

Gi,k = (Gi,k + Li,kMi,kFi,k)

N∑
j=1

ωijE
{
ei,k|ke

T
j,k|k

}
ΓT

Ei,k = (I −Ki,k+1Φ̄i,k+1Ci,k+1)E
{
ei,k+1|kYTi,k+1

}
KT
i,k+1

Di,k = Ki,k+1E
{
Yi,k+1x

T
i,k+1C

T
i,k+1Φ̃Ti,k+1

}
KT
i,k+1

Fi,k = Ki,k+1E
{
Yi,k+1υ

T
i,k+1

}
KT
i,k+1.

P r o o f . According to equations (6) and (7), we can derive the prediction error covari-
ance and estimation error covariance respectively. That is,

Pi,k+1|k = (Gi,k + Li,kMi,kFi,k)Pi,k|k(Gi,k + Li,kMi,kFi,k)T +

N∑
j=1

N∑
d=1

ωijωid
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×ΓE
{
ej,k|ke

T
d,k|k

}
ΓT +

N∑
j=1

N∑
d=1

∆ωij∆ωidΓE
{
xj,kx

T
d,k

}
ΓT

+Bi,kQi,kB
T
i,k + Gi,k + GTi,k + G1

i,k + G1T

i,k + G2
i,k + G2T

i,k

+G3
i,k + G3T

i,k + G4
i,k + G4T

i,k + G5
i,k + G5T

i,k

and

Pi,k+1|k+1 = (I −Ki,k+1Φ̄i,k+1Ci,k+1)Pi,k+1|k(I −Ki,k+1Φ̄i,k+1Ci,k+1)T

+Ki,k+1E
{
Yi,k+1YTi,k+1

}
KT
i,k+1 − Ei,k − ETi,k + Di,k + DT

i,k

+Ki,k+1E
{

Φ̃i,k+1Ci,k+1xi,k+1x
T
i,k+1C

T
i,k+1Φ̃Ti,k+1

}
KT
i,k+1 + Fi,k

+FTi,k +Ki,k+1Ri,k+1K
T
i,k+1 − F1

i,k − F1T

i,k − F2
i,k − F2T

i,k + F3
i,k + F3T

i,k

where

G1
i,k =

N∑
j=1

(Gi,k + Li,kMi,kFi,k)∆ωijE
{
ζi,kei,k|kx

T
j,k

}
ΓT

G2
i,k = (Gi,k + Li,kMi,kFi,k)E

{
ei,k|k$

T
i,k

}
BTi,k

G3
i,k =

N∑
j=1

N∑
d=1

ωij∆ωidΓE
{
ζi,kej,k|kx

T
d,k

}
ΓT

G4
i,k =

N∑
j=1

ωijΓE
{
ej,k|k$

T
i,k

}
BTi,k

G5
i,k =

N∑
j=1

∆ωijΓE
{
ζi,kxj,k$

T
i,k

}
BTi,k

F1
i,k =

(
I −Ki,k+1Φ̄i,k+1Ci,k+1

)
E
{
ei,k+1|kυ

T
i,k+1

}
KT
i,k+1

F2
i,k =

(
I −Ki,k+1Φ̄i,k+1Ci,k+1

)
E
{
ei,k+1|kx

T
i,k+1C

T
i,k+1Φ̃Ti,k+1

}
KT
i,k+1

F3
i,k = Ki,k+1E

{
υi,k+1x

T
i,k+1C

T
i,k+1Φ̃Ti,k+1

}
KT
i,k+1.

It’s really simple to verify the facts that Ghi,k = 0 and Fti,k = 0 (h = 1, 2, 3, 4, 5; t =
1, 2, 3). Thus, the assertions in the Theorem 3.3 are obtained and the proof is complete.

�

Remark 3.4. Up to now, we have computed the prediction error covariance and estima-
tion error covariance based on the corresponding definitions. However, the existence of
some factors (e. g. linearization error, event-triggered mechanism, measurements degra-
dation and uncertain coupling parameters) leads to the obstacles that the exact values of
the prediction error covariance and the estimation error covariance can not be obtained.
Therefore, we aim to find a sub-optimal upper bound of (9) by the stochastic analysis
method. The next step is to obtain the minimal upper bound and design the estimator
gain accordingly.
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Theorem 3.5. Consider the prediction error covariance and estimation error covariance
as in (8) and (9) respectively. Let µt (t = 1, 2, · · · , 6) and εi,k be positive scalars. If the
following iterative equations with initial condition X0|0 = P0|0 > 0

Xi,k+1|k = (1 + µ1)

[
Gi,k

(
X−1i,k|k − εi,kF

T
i,kFi,k

)−1
GTi,k + ε−1i,kLi,kL

T
i,k

]
+Bi,kQi,kB

T
i,k

+(1 + µ−11 )~ωid

N∑
j=1

ωijΓXj,k|kΓT + ~δid

N∑
i=1

δijΓΘ̈j,kΓT (10)

and

Xi,k+1|k+1 = (1 + µ3)(I −Ki,k+1Φ̄i,k+1Ci,k+1)Xi,k+1|k(I −Ki,k+1Φ̄i,k+1Ci,k+1)T

+(1 + µ−13 + µ4 + µ5)πi,k+1Ki,k+1K
T
i,k+1 + (1 + µ−15 )Ki,k+1

×Ri,k+1K
T
i,k+1 + (1 + µ−14 )Ki,k+1

[
Ωi,k+1 ◦ (Ci,k+1Σ̈i,k+1

×CTi,k+1)
]
KT
i,k+1 (11)

under the constraint condition ε−1i,kI−Fi,kXi,k|kFTi,k > 0 have positive definite symmetric
solutions Xi,k+1|k and Xi,k+1|k+1, then Xi,k+1|k+1 is an upper bound of Pi,k+1|k+1. In
addition, the following estimator gain

Ki,k+1 = (1 + µ3)Xi,k+1|kC
T
i,k+1Φ̄Ti,k+1

{
(1 + µ3)Φ̄i,k+1Ci,k+1Xi,k+1|kC

T
i,k+1Φ̄Ti,k+1

+(1 + µ−13 + µ4 + µ5)πi,k+1I + (1 + µ−14 )Ωi,k+1 ◦ (Ci,k+1Σ̈i,k+1C
T
i,k+1)

+(1 + µ−15 )Ri,k+1

}−1
(12)

can minimize tr(Xi,k+1|k+1), where

~δid =

N∑
d=1

δid, ~ωid =

N∑
d=1

ωid

Θ̈j,k = (1 + µ2)Xj,k|k + (1 + µ−12 )x̂j,k|kx̂
T
j,k|k

Σ̈i,k+1 = (1 + µ6)Xi,k+1|k + (1 + µ−16 )x̂i,k+1|kx̂
T
i,k+1|k

Ωi,k+1 = diag
{
~φ1i,k+1,

~φ2i,k+1, · · · , ~φ
n2

i,k+1

}
. (13)

P r o o f . Using the fundamental inequality, we can get

N∑
j=1

N∑
d=1

ωijωidΓE
{
ej,k|ke

T
d,k|k

}
ΓT

≤ 1

2

N∑
j=1

N∑
d=1

ωijωidΓE
{
ej,k|ke

T
j,k|k + ed,k|ke

T
d,k|k

}
ΓT
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= ~ωid

N∑
j=1

ωijΓPj,k|kΓT (14)

and

N∑
j=1

N∑
d=1

∆ωij∆ωidΓE
{
xj,kx

T
d,k

}
ΓT

≤ 1

2

N∑
j=1

N∑
d=1

∆ωij∆ωidΓE
{
xj,kx

T
j,k + xd,kx

T
d,k

}
ΓT

≤ ~δid

N∑
j=1

δijΓE
{
xj,kx

T
j,k

}
ΓT (15)

where ~ωid and ~δid are defined in (13).
Based on the inequality uvT + vuT ≤ µuuT + µ−1vvT with v and u being column

vectors and µ > 0 being a scalar, we can obtain

Gi,k + GTi,k ≤ µ1(Gi,k + Li,kMi,kFi,k)Pi,k|k(Gi,k + Li,kMi,kFi,k)T

+µ−11

N∑
j=1

N∑
d=1

ωijωidΓE
{
ej,k|ke

T
d,k|k

}
ΓT (16)

and

E
{
xj,kx

T
j,k

}
≤ (1 + µ2)Pj,k|k + (1 + µ−12 )x̂j,k|kx̂

T
j,k|k := Θj,k (17)

where µ1 and µ2 are positive scalars. Then, we have

N∑
j=1

N∑
d=1

∆ωij∆ωidΓE
{
xj,kx

T
d,k

}
ΓT ≤ ~δid

N∑
j=1

δijΓΘj,kΓT . (18)

Taking (14), (16) and (18) into account simultaneously, we can arrive at

Pi,k+1|k ≤ (1 + µ1)(Gi,k + Li,kMi,kFi,k)Pi,k|k(Gi,k + Li,kMi,kFi,k)T +Bi,kQi,kB
T
i,k

+(1 + µ−11 )~ωid

N∑
j=1

ωijΓPj,k|kΓT + ~δid

N∑
j=1

δijΓΘj,kΓT . (19)

Recalling the inequality uvT + vuT ≤ µuuT + µ−1vvT , the following inequalities

−Ei,k − ETi,k ≤ µ3(I −Ki,k+1Φ̄i,k+1Ci,k+1)Pi,k+1|k(I −Ki,k+1Φ̄i,k+1Ci,k+1)T

+µ−13 Ki,k+1E
{
Yi,k+1YTi,k+1

}
KT
i,k+1 (20)

Di,k + DT
i,k ≤ µ−14 Ki,k+1E

{
Φ̃i,k+1Ci,k+1xi,k+1x

T
i,k+1C

T
i,k+1Φ̃Ti,k+1

}
KT
i,k+1

+µ4Ki,k+1E
{
Yi,k+1YTi,k+1

}
KT
i,k+1 (21)
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and

Fi,k + FTi,k ≤ µ5Ki,k+1E
{
Yi,k+1YTi,k+1

}
KT
i,k+1 + µ−15 Ki,k+1Ri,k+1K

T
i,k+1 (22)

hold, where µ3, µ4 and µ5 are all positive scalars. Substituting the (20) – (22) into (9),
one has

Pi,k+1|k+1 ≤ (1 + µ3)(I −Ki,k+1Φ̄i,k+1Ci,k+1)Pi,k+1|k(I −Ki,k+1Φ̄i,k+1Ci,k+1)T

+(1 + µ−13 + µ4 + µ5)Ki,k+1E
{
Yi,k+1YTi,k+1

}
KT
i,k+1

+(1 + µ−14 )Ki,k+1E
{

Φ̃i,k+1Ci,k+1xi,k+1x
T
i,k+1C

T
i,k+1Φ̃Ti,k+1

}
KT
i,k+1

+(1 + µ−15 )Ki,k+1Ri,k+1K
T
i,k+1. (23)

Noticing the event-based communication protocol employed in (3), we have

E
{
Yi,k+1YTi,k+1

}
≤ πi,k+1I. (24)

Similar to (17), we obtain

E
{
xi,k+1x

T
i,k+1

}
≤ (1 + µ6)Pi,k+1|k + (1 + µ−16 )x̂i,k+1|kx̂

T
i,k+1|k

:= Σi,k+1 (25)

where µ6 > 0 is a scalar. In terms of (25) and Lemma 3.2, we obtain

E
{

Φ̃i,k+1Ci,k+1xi,k+1x
T
i,k+1C

T
i,k+1Φ̃Ti,k+1

}
≤ Ωi,k+1 ◦ (Ci,k+1Σi,k+1C

T
i,k+1) (26)

where Ωi,k+1 is presented in (13). Consider the inequalities (24) and (26), we have

Pi,k+1|k+1 ≤ (1 + µ3)(I −Ki,k+1Φ̄i,k+1Ci,k+1)Pi,k+1|k(I −Ki,k+1Φ̄i,k+1Ci,k+1)T

+(1 + µ−13 + µ4 + µ5)πi,k+1Ki,k+1K
T
i,k+1 + (1 + µ−15 )Ki,k+1

×Ri,k+1K
T
i,k+1 + (1 + µ−14 )Ki,k+1

[
Ωi,k+1 ◦ (Ci,k+1Σi,k+1

×CTi,k+1)
]
KT
i,k+1. (27)

Combining (10), (11), (19) with (27) and utilizing the mathematical induction method,
we can conclude that

Pi,k+1|k+1 ≤ Xi,k+1|k+1.

Finally, the specific expression of the estimator gain Ki,k+1 is given below. Setting

Ξi,k+1 = (1 + µ3)Φ̄i,k+1Ci,k+1Xi,k+1|kC
T
i,k+1Φ̄Ti,k+1 + (1 + µ−15 )Ri,k+1 + (1 + µ−13

+µ4 + µ5)πi,k+1I + (1 + µ−14 )
[
Ωi,k+1 ◦ (Ci,k+1Σ̈i,k+1C

T
i,k+1)

]
and completing the square regarding (11), then we can arrive at



46 C. Q. JIA, J. HU, C. Y. LV, AND Y. J. SHI

Xi,k+1|k+1 =
[
Ki,k+1 − (1 + µ3)Xi,k+1|kC

T
i,k+1Φ̄Ti,k+1Ξ−1i,k+1

]
Ξi,k+1

[
Ki,k+1 − (1 + µ3)

×Xi,k+1|kC
T
i,k+1Φ̄Ti,k+1Ξ−1i,k+1

]T
+ (1 + µ3)Xi,k+1|k − (1 + µ3)2Xi,k+1|k

×CTi,k+1Φ̄Ti,k+1Ξ−1i,k+1Φ̄i,k+1Ci,k+1Xi,k+1|k.

There is no doubt that the form of Ki,k+1 in (12) can minimize tr(Xi,k+1|k+1) and the
proof is complete. �

Remark 3.6. It is worthwhile to point out that the constraint ε−1i,kI−Fi,kXi,k|kFTi,k > 0
in Theorem 3.5 contains the positive parameter εi,k. During the algorithm imple-
mentation, the parameter εi,k can be chose to ensure that the inequality constraint
ε−1i,kI − Fi,kXi,k|kFTi,k > 0 holds at each time step, which is displayed in the simulation
section.

Summing up the above analysis, the following event-based estimation algorithm is
presented.

Algorithm :
Step 1 : Set k = 0 and select other initial parameters.
Step 2 : Compute the prediction x̂i,k+1|k via (4).
Step 3 : Calculate Xi,k+1|k by (10).
Step 4 : Solve the estimator gain Ki,k+1 based on (12).
Step 5 : Compute the state estimation x̂i,k+1|k+1 by (5).
Step 6 : Calculate Xi,k+1|k+1 via (11).
Step 7 : Let k = k + 1. Go to Step 2.

4. MONOTONICITY ANALYSIS

In this section, the estimation algorithm will be discussed, that is, the impact of fading
probability onto the estimation algorithm performance is examined from the theoretical
viewpoint. For the fading probability Φ̄i,k+1 = diag{φ̄1i,k+1, φ̄

2
i,k+1, · · · , φ̄

n2

i,k+1}, let’s

assume that φ̄li,k+1 = φ̄i,k+1 (l = 1, 2, · · · , n2). In other words, Φ̄i,k+1 = φ̄i,k+1I.

Theorem 4.1. If the fading probability φ̄i,k+1 increases, it is not difficult to conclude
that tr(Xi,k+1|k+1) is non-increasing.

P r o o f . Taking the partial derivative of tr(Xi,k+1|k+1) with respect to φ̄i,k+1, we get

dtr(Xi,k+1|k+1)

dφ̄i,k+1

=
dtr

dφ̄i,k+1

[
(1 + µ3)Xi,k+1|k − (1 + µ3)2φ̄2i,k+1Xi,k+1|kC

T
i,k+1Ξ−1i,k+1Ci,k+1Xi,k+1|k

]
= tr

{
− 2(1 + µ3)2φ̄i,k+1Xi,k+1|kC

T
i,k+1Ξ−1i,k+1Ci,k+1Xi,k+1|k + (1 + µ3)2φ̄2i,k+1
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×Xi,k+1|kC
T
i,k+1Ξ−1i,k+1

[
2(1 + µ3)φ̄i,k+1Ci,k+1Xi,k+1|kC

T
i,k+1

]
Ξ−1i,k+1Ci,k+1Xi,k+1|k

}
≤ tr

{
− 2(1 + µ3)2φ̄i,k+1Xi,k+1|kC

T
i,k+1Ξ−1i,k+1Ci,k+1Xi,k+1|k + (1 + µ3)2φ̄i,k+1

×Xi,k+1|kC
T
i,k+1Ξ−1i,k+1

[
2(1 + µ3)φ̄2i,k+1Ci,k+1Xi,k+1|kC

T
i,k+1 + 2(1 + µ−15 )Ri,k+1

+2(1 + µ−13 + µ4 + µ5)πi,k+1I + 2(1 + µ−14 )Ωi,k+1 ◦ (Ci,k+1Σ̈i,k+1C
T
i,k+1)

]
×Ξ−1i,k+1Ci,k+1Xi,k+1|k

}
= tr

{
− 2(1 + µ3)2φ̄i,k+1Xi,k+1|kC

T
i,k+1Ξ−1i,k+1Ci,k+1Xi,k+1|k + 2(1 + µ3)2φ̄i,k+1

×Xi,k+1|kC
T
i,k+1Ξ−1i,k+1Ci,k+1Xi,k+1|k

}
= 0

which indicates that this theorem holds and the proof is complete. �

Remark 4.2. So far, the Theorem 4.1 shows the relationship between tr(Xi,k+1|k+1)
and φ̄i,k+1, which evaluates the performance of the developed estimation strategy. Ob-
viously, the smaller value of φ̄i,k+1 is, the greater possibility of data distortion occurs.

During the proof of this theorem, note that ~φi,k+1 is irrelevant to φ̄i,k+1. Gener-

ally, similar conclusion can be obtained regarding the correlation between ~φi,k+1 and
φ̄i,k+1 providing that the random variable Φi,k+1 obeys the Bernoulli distribution with
~φli,k+1 = φ̄li,k+1(1− φ̄li,k+1). Then the corresponding proof in Theorem 4.1 can be rewrit-
ten as follows:

dtr(Xi,k+1|k+1)

dφ̄i,k+1

= tr
{
− 2(1 + µ3)2φ̄i,k+1Xi,k+1|kC

T
i,k+1Ξ−1i,k+1Ci,k+1Xi,k+1|k + (1 + µ3)2φ̄2i,k+1

×Xi,k+1|kC
T
i,k+1Ξ−1i,k+1

[
2(1 + µ3)φ̄i,k+1Ci,k+1Xi,k+1|kC

T
i,k+1 + (1 + µ−14 )

×(1− 2φ̄i,k+1)I ◦ (Ci,k+1Σ̈i,k+1C
T
i,k+1)

]
Ξ−1i,k+1Ci,k+1Xi,k+1|k

}
≤ tr

{
− 2(1 + µ3)2φ̄i,k+1Xi,k+1|kC

T
i,k+1Ξ−1i,k+1Ci,k+1Xi,k+1|k + (1 + µ3)2φ̄i,k+1

×Xi,k+1|kC
T
i,k+1Ξ−1i,k+1

[
2Ξi,k+1 − (1 + µ−14 )φ̄i,k+1I ◦ (Ci,k+1Σ̈i,k+1C

T
i,k+1)

]
×Ξ−1i,k+1Ci,k+1Xi,k+1|k

}
≤ 0.

5. AN ILLUSTRATIVE EXAMPLE

In this section, a numerical simulation is employed to demonstrate the effectiveness of
the proposed state estimation scheme based on the event-triggered protocol.

Consider the nonlinear time-varying dynamical networks (1) – (2) with the following
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parameters:

B1,k =
[
−1 1

]T
, B2,k =

[
−1− 0.1sin(0.1k) 2

]T
, B3,k =

[
2 −2

]T
,

C1,k =
[
−2− 0.1cos(0.6k) 3

]
, C2,k =

[
−1 2

]
, C3,k =

[
−2 1

]
,

L1,k = L2,k = L3,k = diag{0.2, 0.2}, F1,k = F2,k = F3,k = diag{0.1, 0.1}

and xi,k = [x1i,k x2i,k]T is the state vector of the ith node and the estimation is x̂i,k|k =

[x̂1i,k|k x̂2i,k|k]T (i = 1, 2, 3). The initial values of this paper are x1,0 = [−0.3 0.2]T ,

x2,0 = [0.1 0.4]T , x3,0 = [0.1 0.4]T , X1,0|0 = X2,0|0 = X3,0|0 = 2I2. Other parameters
are set as µ1 = 0.05, µ2 = 0.1, µ3 = 2, µ4 = 1, µ5 = 1, µ6 = 0.15, Qi,k = 0.5,

R1,k = 0.02, R2,k = R3,k = 0.01, Φ̄i,k = 0.5, ~Φi,k = 0.1, x̂i,0|0 = xi,0 − [1 1]T ,
εi,k = [1.1λmax(Fi,kXi,k|kF

T
i,k) + 0.1]−1. Select the coupling configuration matrix Γ =

diag{0.2, 0.2} and W = [ωij ]3×3 with ωij = −0.2 (i = j) and ωij = 0.1 (i 6= j). ∆ωij
is a random number in the interval [−0.1, 0.1] and δij = 0.1. The nonlinear function has
the following form

f(xi,k) =

[
−0.1x1i,k + 0.3x2i,k − 0.05sin(x1i,kx

2
i,k)

−0.2x1i,k − 0.1x2i,k + 0.06cos(x1i,kx
2
i,k)

]
.
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Fig. 1. The real state x1,k and the estimation x̂1,k|k in Case I.
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Fig. 2. The real state x1,k and the estimation x̂1,k|k in Case II.

Based on Theorem 3.5, the addressed optimized state estimation problem can be
solved and the desirable estimation scheme can be obtained, where the corresponding
results are showed in Figures 1 – 8. From Figures 1 – 6, we can see that the developed
estimation algorithm performs a good performance to track the real states of network
nodes under Case I (Φ̄i,k = 0.5) and Case II (Φ̄i,k = 0.85). According to Figure 7, we
can conclude that the log(MSE) (mean square error) of state xi,k is always below the
trace of obtained upper bound. Figure 8 plots the tr(Xi,k|k) with respect to different
fading probabilities, which further shows the relationship mentioned in the Theorem
4.1, i. e., the measurements undergo less fading or missing impacts, and the trace of the
upper bound of the estimation error covariance is more smaller. This observation is
clearly shown from theoretical and experimental aspects.
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Fig. 3. The real state x2,k and the estimation x̂2,k|k in Case I.

0 10 20 30 40 50 60 70 80 90 100

-2

-1

0

1

2

3

0 10 20 30 40 50 60 70 80 90 100

-4

-2

0

2

4

Fig. 4. The real state x2,k and the estimation x̂2,k|k in Case II.
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Fig. 5. The real state x3,k and the estimation x̂3,k|k in Case I.
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Fig. 6. The real state x3,k and the estimation x̂3,k|k in Case II.
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Fig. 7. log(MSE) and log(tr(Xi,k|k)).
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Fig. 8. log(tr(Xi,k|k)) regarding different fading probabilities.

6. CONCLUSIONS

In this paper, we have concerned with the optimized state estimation problem for a class
of nonlinear time-varying complex networks with event-based communication protocol,
fading measurements and stochastic coupling strength. A minimized upper bound of
estimation error covariance has been obtained via designing the estimator in an accept-
able way. Moreover, the fact that the trace of the minimum upper bound is always non-
increasing when the fading probability increases has been revealed. Finally, a numerical



Optimized state estimation for nonlinear dynamical networks 53

simulation has been given to illustrate the validity of the presented state estimation
strategy. Further topics include the extensions on the state estimation problems for
time-varying dynamical networks with different communication protocols (e. g. Round–
Robin protocol, stochastic communication protocol) with hope to further regulate the
communication transmissions, where new technique should be introduced to deal with
the effects caused by those protocols. Besides, the saturation phenomenon is commonly
occurred as mentioned in [4, 5], there is also interesting to address the problems of state
estimation and algorithm performance analysis for saturated complex networks based
on the proposed method.
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under Grant 80761-USW-059, the Fok Ying Tung Education Foundation of China under Grant
151004, and the Alexander von Humboldt Foundation of Germany.

(Received September 14, 2019)

R E F E R E N C E S

[1] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang: Com-
plex networks: Structure and dynamics. Physics Reports 424 (2006), 4–5.
DOI:10.1016/j.physrep.2005.10.009

[2] G. Calafiore: Reliable localization using set-valued nonlinear filters. IEEE
Trans. Systems Man Cybernet. Part A-Systems and Humans 35 (2005), 189–197.
DOI:10.1109/tsmca.2005.843383

[3] W. Chen, D. R. Ding, X. H. Ge, Q.-L. Han, and G. L. Wei: H∞ containment control of
multi-agent systems under event-triggered communication scheduling: The finite-horizon
case. IEEE Trans. Cybernet. (2018), 1–11. DOI:10.1109/tcyb.2018.2885567

[4] Y. G. Chen, S. M. Fei, and Y. M. Li: Robust stabilization for uncertain saturated time-
delay systems: a distributed-delay-dependent polytopic approach. IEEE Trans. Automat.
Control 62 (2017), 3455–3460. DOI:10.1109/tac.2016.2611559

[5] Y. G. Chen, Z. D. Wang, S. M. Fei, and Q.-L. Han: Regional stabilization for discrete
time-delay systems with actuator saturations via a delay-dependent polytopic approach.
IEEE Trans. Automat. Control 64 (2019), 1257–1264. DOI:10.1109/tac.2018.2847903

[6] D. R. Ding, Q.-L. Han, Z. D. Wang, and X. H. Ge: A survey on model-based distributed
control and filtering for industrial cyber-physical systems. IEEE Trans. Industr. Inform.
15 (2019), 2483–2499. DOI:10.1109/tii.2019.2905295

[7] D. R. Ding, Z. D. Wang, Q.-L. Han, and G. L. Wei: Neural-network-based output-feedback
control under Round–Robin scheduling protocols. IEEE Trans. Cybernet. 49 (2019),
2372–2384. DOI:10.1109/tcyb.2018.2827037

[8] X. H. Ge and Q.-L. Han: Consensus of multiagent systems subject to partially accessible
and overlapping Markovian network topologies. IEEE Trans. Cybernet. 47 (2017), 1807–
1819. DOI:10.1109/tcyb.2016.2570860

http://dx.doi.org/10.1016/j.physrep.2005.10.009
http://dx.doi.org/10.1109/tsmca.2005.843383
http://dx.doi.org/10.1109/tcyb.2018.2885567
http://dx.doi.org/10.1109/tac.2016.2611559
http://dx.doi.org/10.1109/tac.2018.2847903
http://dx.doi.org/10.1109/tii.2019.2905295
http://dx.doi.org/10.1109/tcyb.2018.2827037
http://dx.doi.org/10.1109/tcyb.2016.2570860


54 C. Q. JIA, J. HU, C. Y. LV, AND Y. J. SHI

[9] X. H. Ge, Q.-L. Han, and Z. D. Wang: A threshold-parameter-dependent approach to
designing distributed event-triggered H∞ consensus filters over sensor networks. IEEE
Trans. Cybernet. 49 (2019), 1148–1159. DOI:10.1109/tcyb.2017.2789296

[10] X. H. Ge, Q.-L. Han, and Z. D. Wang: A dynamic event-triggered transmission scheme
for distributed set-membership estimation over wireless sensor networks. IEEE Trans.
Cybernet. 49 (2019), 171–183. DOI:10.1109/tcyb.2017.2789296

[11] Z. Q. Geng, Z. Wang, H. X. Hu, Y. M. Han, X. Y. Lin, and Y. H. Zhang: A fault detec-
tion method based on horizontal visibility graph-integrated complex networks: Applica-
tion to complex chemical processes. Canad. J. Chemical Engrg. 97 (2019), 1129–1138.
DOI:10.1002/cjce.23319

[12] J. Hu, Z. D. Wang, and H. J. Gao: Joint state and fault estimation for uncertain time-
varying nonlinear systems with randomly occurring faults and sensor saturations. Auto-
matica 97 (2018), 150–160. DOI:10.1016/j.automatica.2018.07.027

[13] J. Hu, Z. D. Wang, G.-P. Liu, and H. X. Zhang: Variance-constrained recursive state
estimation for time-varying complex networks with quantized measurements and un-
certain inner coupling. IEEE Trans. Neural Networks Learn. Systems (2019), 1–13.
DOI:10.1109/tnnls.2019.2927554

[14] J. Hu, Z. D. Wang, S. Liu, and H. J. Gao: A variance-constrained approach to recursive
state estimation for time-varying complex networks with missing measurements. Auto-
matica 64 (2016), 155–162. DOI:10.1016/j.automatica.2015.11.008

[15] J. Hu, H. X. Zhang, X. Y. Yu, H. J. Liu, and D. Y. Chen: Design of sliding-mode-
based control for nonlinear systems with mixed-delays and packet losses under uncer-
tain missing probability. IEEE Trans. Systems Man Cybernet.: Systems (2019), 1–12.
DOI:10.1109/tsmc.2019.2919513

[16] J. Hu, P. P. Zhang, Y. G. Kao, H. J. Liu, and D. Y. Chen: Sliding mode control for
Markovian jump repeated scalar nonlinear systems with packet dropouts: The un-
certain occurrence probabilities case. Applied Math. Comput. 362 (2019), 124574.
DOI:10.1016/j.amc.2019.124574

[17] Y. F. Huang, S. Werner, J. Huang, N. Kashyap, and V. Gupta: State estimation in
electric power grids: Meeting new challenges presented by the requirements of the future
grid. IEEE Signal Process. Magazine 29 (2012), 33–44. DOI:10.1109/msp.2012.2187037

[18] J. Hu, Z. D. Wang, F. E. Alsaadi, and T. Hayat: Event-based filtering for time-varying
nonlinear systems subject to multiple missing measurements with uncertain missing prob-
abilities. Inform. Fusion 38 (2017), 74–83. DOI:10.1016/j.inffus.2017.03.003

[19] J. Hu, G.-P. Liu, H. X. Zhang, and H. J. Liu: On state estimation for nonlinear dynamical
networks with random sensor delays and coupling strength under event-based communi-
cation mechanism. Inform. Sci. 511 (2020), 265–283. DOI:10.1016/j.ins.2019.09.050

[20] M. N. Kurt, Y. Yilmaz, and X. D. Wang: Secure distributed dynamic state estimation
in wide-area smart grids. IEEE Trans. Inform. Forensics Security 15 (2020) 800–815.
DOI:10.1109/tifs.2019.2928207

[21] J. J. Li, G. L. Wei, D. R. Ding, and Y. R. Liu: Set-membership filtering for discrete time-
varying nonlinear systems with censored measurements under Round–Robin protocol.
Neurocomputing 281 (2018), 20–26. DOI:10.1016/j.neucom.2017.11.033

[22] W. L. Li, Y. M. Jia, and J. P. Du: Recursive state estimation for com-
plex networks with random coupling strength. Neurocomputing 219 (2017), 1–8.
DOI:10.1016/j.neucom.2016.08.095

http://dx.doi.org/10.1109/tcyb.2017.2789296
http://dx.doi.org/10.1109/tcyb.2017.2789296
http://dx.doi.org/10.1002/cjce.23319
http://dx.doi.org/10.1016/j.automatica.2018.07.027
http://dx.doi.org/10.1109/tnnls.2019.2927554
http://dx.doi.org/10.1016/j.automatica.2015.11.008
http://dx.doi.org/10.1109/tsmc.2019.2919513
http://dx.doi.org/10.1016/j.amc.2019.124574
http://dx.doi.org/10.1109/msp.2012.2187037
http://dx.doi.org/10.1016/j.inffus.2017.03.003
http://dx.doi.org/10.1016/j.ins.2019.09.050
http://dx.doi.org/10.1109/tifs.2019.2928207
http://dx.doi.org/10.1016/j.neucom.2017.11.033
http://dx.doi.org/10.1016/j.neucom.2016.08.095


Optimized state estimation for nonlinear dynamical networks 55

[23] W. L. Li, Y. M. Jia, and J. P. Du: Distributed filtering for discrete-time linear systems
with fading measurements and time-correlated noise. Digital Signal Process. 60 (2017),
211–219. DOI:10.1016/j.dsp.2016.10.003

[24] X.-J. Li and G.-H. Yang: FLS-based adaptive synchronization control of complex dynam-
ical networks with nonlinear couplings and state-dependent uncertainties. IEEE Trans.
Cybernet. 46 (2018), 171–180. DOI:10.1109/tcyb.2015.2399334

[25] X. X. Liu, X. J. Su, P. Shi, S. K. Nguang, and C. Shen: Fault detection filtering for
nonlinear switched systems via event-triggered communication approach. Automatica
101 (2019), 365–376. DOI:10.1016/j.automatica.2018.12.006

[26] J. Manitz, J. Harbering, M. Schmidt, T. Kneib, and A. Schobel: Source estimation
for propagation processes on complex networks with an application to delays in public
transportation systems. J. Royal Statist. Soc. Series C – Applied Statistics 66 (2017),
521–536. DOI:10.1111/rssc.12176

[27] J. Y. Mao, D. R. Ding, Y. Song, Y. R. Liu, and F. E. Alsaadi: Event-based recursive
filtering for time-delayed stochastic nonlinear systems with missing measurements. Signal
Process. 134 (2017), 158–165. DOI:10.1016/j.sigpro.2016.12.004

[28] J. Y. Mao, D. R. Ding, G. L. Wei, and H. J. Liu: Networked recursive filtering for time-
delayed nonlinear stochastic systems with uniform quantisation under Round–Robin pro-
tocol. Int. J. Systems Sci. 50 (2019), 871–884. DOI:10.1080/00207721.2019.1586002

[29] B. Shen, Z. D. Wang, and H. Qiao: Event-triggered state estimation for discrete-
time multidelayed neural networks with stochastic parameters and incomplete mea-
surements. IEEE Trans. Neural Networks Learn. Systems 28 (2017), 1152–1163.
DOI:10.1109/tnnls.2016.2516030

[30] H. S. Shu, S. J. Zhang, B. Shen, and Y. R. Liu: Unknown input and state estimation
for linear discrete-time systems with missing measurements and correlated noises. Int. J.
General Systems 45 (2016), 648–661. DOI:10.1080/03081079.2015.1106732

[31] W. H. Song, J. A. Wang, C. Y. Wang, and J. Y. Shan: A variance-constrained approach to
event-triggered distributed extended Kalman filtering with multiple fading measurements.
Int. J. Robust Nonlinear Control 29 (2019), 1558–1576. DOI:10.1002/rnc.4456

[32] Y. C. Sun and G. H. Yang: Event-triggered state estimation for networked con-
trol systems with lossy network communication. Inform. Sci. 492 (2019), 1–12.
DOI:10.1016/j.ins.2019.03.058

[33] F. Wang, J. L. Liang, Z. D. Wang, and X. H. Liu: A variance-constrained approach to
recursive filtering for nonlinear 2-D systems with measurement degradations. IEEE Trans.
Cybernetics 46 (2017), 1877–1887. DOI:10.1109/tcyb.2017.2716400

[34] S. Y. Wang, X. G. Tian, and H. J. Fang: Event-based state and fault estimation for
nonlinear systems with logarithmic quantization and missing measurements. J. Franklin
Inst. 356 (2019), 4076–4096. DOI:10.1016/j.jfranklin.2018.11.044

[35] C. B. Wen, Z. D. Wang, Q. Y. Liu, and F. E. Alsaadi: Recursive distributed fil-
tering for a class of state-saturated systems with fading measurements and quanti-
zation effects. IEEE Trans. Systems Man Cybernet.: Systems 48 (2016), 930–941.
DOI:10.1109/tsmc.2016.2629464

[36] X. Wu, G. P. Jiang, and X. W. Wang: State estimation for general complex dynamical
networks with packet loss. IEEE Trans. Circuits Systems II: Express Briefs 65 (2017),
1753–1757. DOI:10.1109/tcsii.2017.2767859

http://dx.doi.org/10.1016/j.dsp.2016.10.003
http://dx.doi.org/10.1109/tcyb.2015.2399334
http://dx.doi.org/10.1016/j.automatica.2018.12.006
http://dx.doi.org/10.1111/rssc.12176
http://dx.doi.org/10.1016/j.sigpro.2016.12.004
http://dx.doi.org/10.1080/00207721.2019.1586002
http://dx.doi.org/10.1109/tnnls.2016.2516030
http://dx.doi.org/10.1080/03081079.2015.1106732
http://dx.doi.org/10.1002/rnc.4456
http://dx.doi.org/10.1016/j.ins.2019.03.058
http://dx.doi.org/10.1109/tcyb.2017.2716400
http://dx.doi.org/10.1016/j.jfranklin.2018.11.044
http://dx.doi.org/10.1109/tsmc.2016.2629464
http://dx.doi.org/10.1109/tcsii.2017.2767859


56 C. Q. JIA, J. HU, C. Y. LV, AND Y. J. SHI

[37] Z.-G. Wu, Z. W. Xu, P. Shi, M. Z. Q. Chen, and H. Y. Su: Nonfragile state estimation
of quantized complex networks with switching topologies. IEEE Trans. Neural Networks
Learn. Systems 29 (2018), 5111–5121. DOI:10.1109/tnnls.2018.2790982

[38] L. Yan, S. J. Zhang, D. R. Ding, Y. R. Liu, and F. E. Alsaadi: H∞ state estimation for
memristive neural networks with multiple fading measurements. Neurocomputing 230
(2017), 23–29. DOI:10.1016/j.neucom.2016.11.033

[39] H. X. Zhang, J. Hu, H. J. Liu, X. Y. Yu, and F. Q. Liu: Recursive state estima-
tion for time-varying complex networks subject to missing measurements and stochas-
tic inner coupling under random access protocol. Neurocomputing 346 (2019), 48–57.
DOI:10.1016/j.neucom.2018.07.086

[40] H. X. Zhang, J. Hu, L. Zou, X. Y. Yu, and Z. H. Wu: Event-based state estima-
tion for time-varying stochastic coupling networks with missing measurements un-
der uncertain occurrence probabilities. Int. J. General Systems 47 (2018), 506–521.
DOI:10.1080/03081079.2018.1445740

[41] X.-M. Zhang and Q.-L. Han: A decentralized event-triggered dissipative control scheme
for systems with multiple sensors to sample the system outputs. IEEE Trans. Cybernet.
46 (2015), 2745–2757. DOI:10.1109/tcyb.2015.2487420

[42] X.-M. Zhang, Q.-L. Han, X. H. Ge, D. R. Ding, L. Ding, D. Yue, and C. Peng: Networked
control systems: a survey of trends and techniques. IEEE/CAA J. Autom. Sinica (2019),
1–17. DOI:10.1109/jas.2019.1911651

[43] Z. Y. Zuo, Q.-L. Han, B. D. Ning, X. H. Ge, and X.-M. Zhang: An overview of recent
advances in fixed-time cooperative control of multi-agent systems. IEEE Trans. Industr.
Inform. 14 (2018), 2322–2334. DOI:10.1109/tii.2018.2817248

Chaoqing Jia, School of Science, Harbin University of Science and Technology, Harbin
150080, P.R. China; Heilongjiang Provincial Key Laboratory of Optimization Control
and Intelligent Analysis for Complex Systems, Harbin University of Science and Tech-
nology, Harbin 150080. P.R. China.

e-mail: chaoqingjia@hrbust.edu.cn

Jun Hu, Corresponding author, School of Science, Harbin University of Science and
Technology, Harbin 150080, P.R. China; School of Engineering, University of South
Wales, Pontypridd CF37 1DL. United Kingdom.

e-mail: hujun2013@gmail.com

Chongyang Lv, School of Science, Harbin University of Science and Technology, Harbin
150080, P.R. China; Heilongjiang Provincial Key Laboratory of Optimization Control
and Intelligent Analysis for Complex Systems, Harbin University of Science and Tech-
nology, Harbin 150080. P.R. China.

e-mail: lvchongyang@hrbust.edu.cn

Yujing Shi, School of Science, Harbin University of Science and Technology, Harbin
150080, P.R. China; Heilongjiang Provincial Key Laboratory of Optimization Control
and Intelligent Analysis for Complex Systems, Harbin University of Science and Tech-
nology, Harbin 150080. P.R. China.

e-mail: yjshi168@126.com

http://dx.doi.org/10.1109/tnnls.2018.2790982
http://dx.doi.org/10.1016/j.neucom.2016.11.033
http://dx.doi.org/10.1016/j.neucom.2018.07.086
http://dx.doi.org/10.1080/03081079.2018.1445740
http://dx.doi.org/10.1109/tcyb.2015.2487420
http://dx.doi.org/10.1109/jas.2019.1911651
http://dx.doi.org/10.1109/tii.2018.2817248

		webmaster@dml.cz
	2021-03-29T16:00:30+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




