
Applications of Mathematics

Erin Claire Carson
An adaptive s-step conjugate gradient algorithm with dynamic basis updating

Applications of Mathematics, Vol. 65 (2020), No. 2, 123–151

Persistent URL: http://dml.cz/dmlcz/148106

Terms of use:
© Institute of Mathematics AS CR, 2020

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/148106
http://dml.cz

65 (2020) APPLICATIONS OF MATHEMATICS No. 2, 123–151

AN ADAPTIVE s-STEP CONJUGATE GRADIENT ALGORITHM

WITH DYNAMIC BASIS UPDATING

Erin Claire Carson, Praha

Received June 2, 2019. Published online February 29, 2020.

Abstract. The adaptive s-step CG algorithm is a solver for sparse symmetric positive
definite linear systems designed to reduce the synchronization cost per iteration while still
achieving a user-specified accuracy requirement. In this work, we improve the adaptive s-
step conjugate gradient algorithm by the use of iteratively updated estimates of the largest
and smallest Ritz values, which give approximations of the largest and smallest eigenvalues
of A, using a technique due to G.Meurant and P.Tichý (2018). The Ritz value estimates
are used to dynamically update parameters for constructing Newton or Chebyshev polyno-
mials so that the conditioning of the s-step bases can be continuously improved throughout
the iterations. These estimates are also used to automatically set a variable related to
the ratio of the sizes of the error and residual, which was previously treated as an input
parameter. We show through numerical experiments that in many cases the new algorithm
improves upon the previous adaptive s-step approach both in terms of numerical behavior
and reduction in number of synchronizations.

Keywords: conjugate gradient; iterative method; high-performance computing

MSC 2020 : 65F10, 65F50, 65Y05, 65Y20

1. Introduction

In this work we focus on the problem of solving linear systems Ax = b, where

A ∈ R
N×N is symmetric positive definite (SPD). When A is large and sparse, the

iterative conjugate gradient method (CG), which is a Krylov subspace method, is

commonly-used as a solver. Given an initial approximate solution x0 with initial

residual r0 = b − Ax0, Krylov subspace methods construct a sequence of nested

This work has been supported by Charles University Primus program no. PRIMUS/19/
SCI/11.

DOI: 10.21136/AM.2020.0136-19 123

http://dx.doi.org/10.21136/AM.2020.0136-19

Krylov subspaces K1(A, r0) ⊂ K2(A, r0) ⊂ . . . ⊂ Ki(A, r0), where

Ki(A, r0) = span{r0, Ar0, . . . , Ai−1r0}.

In CG, the approximate solution xi ∈ x0 +Ki(A, r0) is constructed according to the

orthogonality constraint ri = b − Axi ⊥ Ki(A, r0), which is equivalent to selecting

the vector xi ∈ x0+Ki(A, r0) that minimizes the A-norm (energy norm) of the error,

i.e., ‖x− xi‖A =
√
(x− xi)⊤A(x − xi).

Perhaps the most well-known algorithm for CG is due to Hestenes and Stiefel [25],

which uses three coupled 2-term recurrences for recursively updating the approximate

solution xi, residual ri, and A-conjugate search direction vector pi. We refer to this

particular algorithm, displayed in Algorithm 1, as “HSCG” in this work.

The CG method is closely related to the Lanczos tridiagonalization method, which

iteratively constructs a symmetric tridiagonal matrix Ti ∈ R
i×i such that Ti =

V ⊤
i AVi where Vi is an orthonormal basis for the Krylov subspace Ki(A, r0). The i

eigenvalues of Ti, called Ritz values, provide estimates of the eigenvalues of A. The

matrix Ti can be written in terms of the coefficients αi and βi computed in lines 3

and 7 of Algorithm 1 via

(1.1) Ti =

1
α0

√
β0

α0√
β0

α0

1
α1

+ β0

α0

√
β1

α1

√
β1

α1

1
α2

+ β1

α1

. . .

. . .
. . .

√
βi−2

αi−2√
βi−2

αi−2

1
αi−1

+ βi−2

αi−2

;

see, e.g., [36], Sec. 6.7.3.

Algorithm 1 Hestenes and Stiefel CG (HSCG)

Input: N × N symmetric positive definite matrix A, length-N vector b, initial

approximation x0 to Ax = b, desired convergence criterion

Output: Approximate solution xi+1 to Ax = b with updated residual ri+1

1: r0 = b−Ax0, p0 = r0
2: for i = 0, 1, . . . , until convergence do

3: αi = r⊤i ri/p
⊤
i Api

4: qi = αipi

5: xi+1 = xi + qi
6: ri+1 = ri −Aqi

7: βi = r⊤i+1ri+1/r
⊤
i ri

8: pi+1 = ri+1 + βipi

9: endfor

124

In the setting of large-scale problems on parallel machines, the performance of

HSCG is limited by communication, i.e., data movement, due to the sparse matrix

vector product (SpMV) and inner products in each iteration, both of which have low

computational intensity; see, e.g., [16]. This has led to the development of a number

of algorithmic variants of CG which aim to reduce the communication and/or syn-

chronization cost over a fixed number of steps. One such variant is called s-step CG

(also called communication-avoiding CG; see, e.g., [27], [6] and the historical refer-

ences therein). The s-step CG algorithm works by computing O(s) new basis vectors

for the Krylov subspace at a time and then computing a block inner product between

these computed basis vectors. The former can be accomplished with O(1) messages

between parallel processors (usually assumed to involve communication only between

neighboring processors) under some constraints on the sparsity structure and parallel

partition of the matrix A; see [14] for details. The latter can be accomplished with

a single global synchronization point. Over s iterations, this approach can reduce the

number of synchronizations from O(s) to O(1). We elaborate on the mathematics

behind this approach in Section 2.

In practice, however, we are concerned not only with the number of synchro-

nizations over a fixed number of steps, but rather the total number of synchroniza-

tions required to achieve the prescribed convergence criterion. It is well-known that

s-step CG (and s-step variants of other Krylov subspace methods) can exacerbate

the delay of convergence and decrease in attainable accuracy that are characteristic

of finite precision HSCG. This behavior generally grows worse with increasing s. In

the extreme case, this can lead to a situation where the prescribed accuracy is no

longer attainable, making the s-step approach inapplicable.

In s-step CG, it has been shown that the loss of attainable accuracy can be

bounded in terms of the condition numbers of the computed O(s)-dimensional bases

for the Krylov subspaces generated at the beginning of each block of s iterations [8].

This rounding error analysis led to the insight that if we wish to achieve a certain

accuracy, then the condition numbers of the bases must be controlled to be less than

a certain quantity inversely proportional to the largest residual norm within the cur-

rent block of s iterations. This naturally suggests a variable s-step approach; when

the size of the residual is still large (at the beginning of the iterations), s should be

small so as to keep the bases well-conditioned, but as the method converges and the

size of the residual decreases, s can be gradually increased without detriment to the

maximum attainable accuracy.

This inspired the adaptive s-step CG algorithm [7], in which the value of s is au-

tomatically adjusted according to the basis condition number and the user-specified

accuracy requirement. It was shown in [7] that this adaptive approach can provide

improved reliability in terms of numerical behavior while still reducing the overall

125

number of synchronizations. Given the importance of the condition of the bases,

one particular gap (which applies to most s-step CG algorithms in the literature) is

the reliance on user-supplied parameters for generating the polynomial bases for the

O(s)-dimensional Krylov subspaces. If this information is not known a priori, either

the basis parameters must be computed before execution of the s-step algorithm (by

precomputing information about the spectrum of A or running a number of iterations

of HSCG), or a simple monomial basis can be used as a default. It is known, however,

that the condition number of the monomial basis grows exponentially with s [18].

The previous method also required the user to heuristically set a certain parameter

used in determining how large s can be in each outer loop iteration.

In this work, we develop an improved version of the adaptive s-step CG algorithm

which makes use of estimates of the largest and smallest eigenvalues of A (the largest

and smallest Ritz values) obtained automatically and inexpensively as a byproduct

of the iterations using the technique of Meurant and Tichý [33]. The eigenvalue

estimates are used for two purposes: (1) to dynamically update coefficients for New-

ton or Chebyshev polynomials so that the conditioning of the s-step bases can be

continuously improved throughout the iterations and (2) to automatically set the

previously heuristically-chosen parameter based on information obtained during the

iterations.

In Section 2, we briefly review s-step CG. We then outline the idea of the adaptive

s-step CG algorithm in Section 3. In Section 4, we review the work of Meurant

and Tichý [33] and use this to develop an improved adaptive s-step CG algorithm.

Section 5 presents numerical experiments for a variety of small test problems, which

demonstrate the benefits of the improved approach. We conclude and discuss further

challenges in Section 6.

2. The s-step CG algorithm

The idea of s-step Krylov subspace algorithms is not new. The first known ap-

pearance of s-step CG in the literature was due to van Rosendale [40], although the

name “s-step CG” was first coined later by Chronopoulos and Gear [10]. There have

since been many efforts towards developing s-step formulations of CG and other

Krylov subspace methods; for a thorough overview of related works, see [27], Ta-

ble 1.1. Much of the early work in this area was motivated by reducing the amount

of I/O and/or by increasing the potential for parallelism in CG. These algorithms

(and other variants of Krylov subspace methods designed to reduce communication

overhead, such as pipelined algorithms [19], [20]) have recently come back into vogue

for their potential to reduce data movement, both between levels of the memory

hierarchy on a single processor and between processors in the parallel setting, which

126

becomes increasingly important in efforts to scale to larger problem sizes and larger

machines [15].

The s-step approach can be thought of as blocking the iterations into sets of

size s. For one block of s iterations, one first expands the underlying Krylov sub-

space by O(s) dimensions and subsequently performs a block orthogonalization using

only a single global synchronization point. The vector updates for the block of s it-

erations can then be performed by updating the O(s) coordinates of the vectors in

the generated O(s)-dimensional Krylov subspace. The particular details of the algo-

rithm depend on the particular underlying Krylov subspace method, but the general

concept is the same. In order to establish notation, we give a brief overview of the

s-step CG algorithm.

The s-step CG algorithm consists of an outer loop, indexed by k > 0, which iterates

over the blocks of s iterations, and an inner loop, which iterates over j ∈ {0, . . . , s−1}
within each block. For clarity, we globally index iterations by i ≡ sk + j. It follows

from the properties of CG that at the beginning of a block k, for l ∈ {0, . . . , s} we
have

(2.1) psk+l, rsk+l ∈ Kl+1(A, psk) +Kl(A, rsk),

xsk+l − xsk ∈ Kl(A, psk) +Kl−1(A, rsk).

Then the CG vectors for the next s iterations to be computed within this block lie

in the union of the column spaces of the matrices

(2.2) Pk,s = [̺
(k)
0 (A)psk, . . . , ̺

(k)
s (A)psk], span(Pk,s) = Ks+1(A, psk),

Rk,s = [̺
(k)
0 (A)rsk , . . . , ̺

(k)
s−1(A)rsk], span(Rk,s) = Ks(A, rsk),

where ̺
(k)
l (z) is a polynomial of degree l satisfying the three-term recurrence

(2.3) ̺
(k)
0 (z) = 1, ̺

(k)
1 (z) = (z − θ

(k)
0)̺

(k)
0 (z)/γ

(k)
0 ,

̺
(k)
l (z) =

(
(z − θ

(k)
l−1)̺

(k)
l−1(z)− µ

(k)
l−2̺

(k)
l−2(z)

)
/γ

(k)
l−1, l > 2.

The need for the superscripts (k) above will become clear later when we introduce

the improved adaptive s-step CG algorithm, in which the coefficients in the recur-

rence (2.3) are dynamically updated between outer loop iterations. Under certain

constraints on the sparsity structure and the partition of the data, the matrices (2.2)

can be computed with O(1) messages per processor in a parallel implementation;

see [14] for details.

We define the s-step basis matrix Yk,s = [Pk,s,Rk,s] and we define Yk,s to be the

same as Yk,s except with columns s + 1 and 2s+ 1 set to zero. We can then write

127

the recurrence relation

(2.4) AYk,s = Yk,sBk,s,

where

(2.5) Bk,s =

[
B

(k)
s+1 0

0 B
(k)
s

]
, with B

(k)
i ≡

θ
(k)
0 µ

(k)
0

γ
(k)
0 θ

(k)
1

. . .

γ
(k)
1

. . . µ
(k)
i−3

. . . θ
(k)
i−2 0

γ
(k)
i−2 0

.

For l ∈ {0, . . . , s} we can then represent the vectors xsk+l − xsk, rsk+l, and psk+l

by their 2s+ 1 coordinates in the basis spanned by the columns of Yk,s, i.e.,

(2.6) [xsk+l − xsk, rsk+l, psk+l] = Yk,s[x
′
k,l, r

′
k,l, p

′
k,l],

and the updates to these coordinate vectors in the inner loop over j ∈ {0, . . . , s− 1}
become

x′k,j+1 = x′k,j + αsk+jp
′
k,j ,

r′k,j+1 = r′k,j − αsk+jBk,sp
′
k,j ,

p′k,j+1 = r′k,j+1 + βsk+jp
′
k,j .

In practical applications we expect s ≪ N , so the updates to the length-(2s + 1)

coordinate vectors can be accomplished locally on each processor without any further

communication. The coefficients αsk+j and βsk+j can also be computed locally on

each processor without communication; using (2.4) and (2.6), we have

αsk+j =
r⊤sk+jrsk+j

p⊤sk+jApsk+j
=

(Yk,sr
′
k,j)

⊤(Yk,sr
′
k,j)

(Yk,sp′k,j)
⊤(Yk,sBk,sp′k,j)

=
r′⊤k,j(Y⊤

k,sYk,s)r
′
k,j

p′⊤k,j(Y⊤
k,sYk,s)Bk,sp′k,j

=
r′⊤k,jGk,sr

′
k,j

p′⊤k,jGk,sBk,sp′k,j
,

βsk+j =
r⊤sk+j+1rsk+j+1

r⊤sk+jrsk+j
=

(Yk,sr
′
k,j+1)

⊤(Yk,sr
′
k,j+1)

(Yk,sr′k,j)
⊤(Yk,sr′k,j)

=
r′⊤k,j+1(Y⊤

k,sYk,s)r
′
k,j+1

r′⊤k,j(Y⊤
k,sYk,s)r′k,j

=
r′⊤k,j+1Gk,sr

′
k,j+1

r′⊤k,jGk,sr′k,j
,

where

Gk,s = Y⊤
k,sYk,s

128

is the (2s + 1) × (2s + 1) Gram matrix which is computed only once per outer

loop iteration (requiring a single global synchronization) and stored locally on each

processor.

In (2.5), the choice θ
(k)
l = 0, γ

(k)
l = 1, and µ

(k)
l = 0 for all l corresponds to the

monomial basis. Without further information about the spectrum, this is the sim-

plest choice we have, although it is known that the monomial basis quickly becomes

ill-conditioned with s [18], and this thus limits the s we can choose. Already in early

works on s-step CG it was observed that the conditioning of the s-step basis matrices

plays a large role in the resulting finite precision behavior, which led many to exper-

iment with more well-conditioned polynomial bases such as Newton or Chebyshev

bases; see, e.g, [26], [12], [29], [1], [17], [13].

Estimates of the maximum and minimum eigenvalues of A, λ̃max and λ̃min, can

be used to construct either Newton or Chebyshev polynomials, which will in general

result in a better-conditioned basis and thus allow the use of larger s values without

loss of accuracy. We note that the idea of adaptively improving basis conditioning

using Ritz values is not new. A method for generating parameters for Newton and

Chebyshev polynomial bases for Krylov subspaces based on Ritz values is described

in [34]; see also the works [31] and [4]. The modern software package Trilinos [24]

currently includes the ability to automatically generate Newton or Chebyshev poly-

nomials in their implementations of (fixed) s-step Krylov subspace algorithms. The

approach they use is to first perform a fixed number of iterations of the classical

algorithm (with s = 1) and then use the Ritz value estimates (eigenvalues of Ti) to

generate basis parameters.

We note that, in contrast with the use of estimates of λ̃max and λ̃min within the

Chebyshev semi-iterative method, for the purposes of generating a Krylov subspace

basis, λ̃max and λ̃min do not need to be particularly accurate in order to provide

an improvement over the monomial basis; see, e.g., [34], page 12, where it is stated

(referring to the Chebyshev basis) that “it is not important that the ellipse be de-

termined to high accuracy.”

Given λ̃max and λ̃min, the Newton basis parameters can be taken as (for now

dropping the superscripts) µl = 0, γl = 1, and

(2.7) θ0 = λ̃max, θ1 = λ̃min,

θl = argmaxθ∈[λ̃min,λ̃max]

l−1∏

m=0

|θ − θm| for l ∈ {2, . . . , s− 1},

which corresponds to a Leja ordering of the points on the real line between λ̃min

and λ̃max. The Leja ordering is known to improve the accuracy of operations on

polynomials; see, e.g., [1], [5], and [35]. Parameters for a simplified version of the

129

Chebyshev basis can be chosen as (see [29], Section 4.4)

(2.8) θl =
λ̃min + λ̃max

2
for l ∈ {0, . . . , s− 1},

µl = 2(λ̃max − λ̃min) for l ∈ {0, . . . , s− 2}, and

γ0 = λ̃max − λ̃min, γl =
λ̃max − λ̃min

2
for l ∈ {1, . . . , s− 1}.

2.1. The s-step CG algorithm in finite precision. It is well-known that

finite precision roundoff errors can cause a delay of convergence and a decrease of

attainable accuracy in CG algorithms; see, e.g., [32], [30] and references therein. In

this work, we focus on the maximum attainable accuracy, as achieving a certain

prescribed accuracy is the goal of the adaptive s-step approach.

The size of the true residual is often used as a computable measure of accuracy.

The mechanism by which accuracy is lost is the deviation of the recursively updated

residual r̂i and the true residual b − Ax̂i, where r̂i and x̂i denote the quantities

computed in finite precision (in general, we will now use hats to denote quantities

computed in finite precision). Writing b −Ax̂i = (b− Ax̂i − r̂i) + r̂i, it is clear that

as the size of the recursively updated residual becomes very small, the upper bound

on the size of b−Ax̂i depends on the size of the residual gap δi ≡ b−Ax̂i − r̂i.

There is a large literature on analyses of maximum attainable accuracy in HSCG

and related CG algorithms, including the works of Greenbaum [22], van der Vorst and

Ye [39], Sleijpen and van der Vorst [38], and Gutknecht and Strakoš [23]. Modifying

slightly the bound on the residual gap in HSCG derived by Sleijpen and van der

Vorst [38], Eqn. (6), we can bound the growth of the residual gap starting from some

iteration m ≡ sk to iteration m+ j + 1, j ∈ {0, . . . , s− 1}, in HSCG by

(2.9) ‖δm+j+1 − δm‖ 6 cε max
06l6j+1

‖r̂m+l‖,

where c = 2sNAνκ(A), κ(A) = ‖A−1‖‖A‖ denotes the condition number, NA is the

maximum number of nonzeros per row in A, ν = ‖|A|‖/‖A‖, ‖·‖ denotes the 2-norm,
and ε is the machine unit roundoff.

In [7], Eqn. (16) it is shown that the growth of the residual gap within one outer

loop iteration k (which begins at global iteration m) of s-step CG can be bounded

by

(2.10) ‖δm+j+1 − δm‖ 6 ckεκ(Ŷk,s) max
06l6j+1

‖r̂m+l‖+ ε‖A‖‖x‖

for j ∈ {0, . . . , s − 1}. The constant ck comes from the rounding error analysis and
can be written as

(2.11) ck = 2s(2(3 +NA)νt+ (6 + 8t)τk + 2t3 + 3)κ(A),

130

where t =
√
2s+ 1 and τk = ‖|Bk,s|‖/‖A‖. The most notable difference between (2.9)

and (2.10) is the appearance of the term κ(Ŷk,s) = ‖Ŷ+
k,s‖‖Ŷk,s‖, where Ŷ+

k,s denotes

the Moore-Penrose pseudoinverse. In other words, the local roundoff errors made in

s-step CG are amplified by the condition numbers of the computed s-step basis ma-

trices. This theoretically confirms observations regarding the effect of the condition

numbers of the s-step bases on the numerical behavior of s-step CG compared to

HSCG; an ill-conditioned s-step basis can cause an increase in the residual gap and

thus can decrease the attainable accuracy.

3. The adaptive s-step CG algorithm

Rearranging (2.10), it can be shown that if the application requires a relative

residual norm of ε∗, the condition number of the basis matrix Ŷk,s must satisfy

(3.1) κ(Ŷk,s) 6
ε∗

ckε‖r̂m+l‖
for 0 6 l 6 s.

This naturally suggests that s should be allowed to vary in each outer loop k; when

the residuals are large, κ(Ŷk,s) and thus s must be small, but as the residual is

reduced, the condition number of the basis and thus s can be larger without detriment

to the attainable accuracy.1 We therefore introduce the subscripted quantity sk to

denote the number of inner iterations in outer loop k. Quantities which depend on sk
will now also have a subscript k, e.g., Ŷk,sk , Bk,sk , tk =

√
2sk + 1, and the expression

for ck now containing the relevant quantities dependent on the value of sk in outer

loop k.

This idea led to the adaptive s-step CG algorithm published in [7], displayed in

Algorithm 2. It is shown in [7] that, assuming that the algorithm converges, as long

as (3.1) is satisfied, then adaptive s-step CG can attain a solution to the same level

of accuracy as HSCG. We now give a brief description of the algorithm.

In CG there is no guarantee that the residual norms are monotonically decreasing

(in exact arithmetic, the method rather minimizes the A-norm of the error). There-

fore, for an outer loop beginning at iteration m =
k−1∑
l=0

sl, we use s̄k to denote our

initial guess for sk and construct the basis Ŷ based only on the current residual r̂m.
We then compute the Gram matrix Ĝk,s̄k = Ŷ⊤

k,s̄k
Ŷk,s̄k . From this, we find the

largest value s̃k 6 s̄k such that condition (3.1) holds, i.e., s̃k is the maximum value

1We note that this insight is similar to that behind the development of the so-called
“inexact Krylov subspace methods”; see, e.g., [37] as well as the technical report [2]
which was later published as [3].

131

in {1, . . . , s̄k} such that

(3.2) κ(Ŷk,s̃k) 6
ε∗

ckε‖r̂m‖

holds. The values κ(Ŷk,i) can be estimated using the square roots of the leading prin-

ciple submatrices of the constructed Ĝk,s̄k , since κ(Ŷk,l) ≈
√
κ(Ĝk,l). The quantities√

κ(Ĝk,l) are inexpensive to compute; this involves O(s
3) floating point operations

to compute the eigenvalues of Ĝk,s̄k and no additional data movement as Ĝk,s̄k is

stored locally on each processor. We then check if the condition (3.2) is violated

within each inner loop, which can occur if we encounter a large intermediate resid-

ual norm. We use sk 6 s̃k to denote the actual number of inner loop iterations

which occurred. We note that the residual norms can be estimated cheaply (without

communication) within the inner loop since (in exact arithmetic)

‖rm+j+1‖ =
√
r′⊤k,j+1Gk,s̃kr

′
k,j+1.

The algorithm also requires the user to input some s̄0 as an initial value, a value σ

which is the maximum value for s̄k (which could be determined by offline auto-

tuning and should be based on the matrix nonzero structure, machine parameters,

and matrix partition), and a value f , which is the maximum s̄k can be allowed to

grow in each iteration (e.g., f could be made small to reduce the amount of wasted

flops if sk is much smaller than s̄k in each outer loop, or f could be made larger to

maximize the potential sk in each outer loop).

In the experiments in [7], it was found that the value of ck in (2.11) is often

a large overestimate, resulting in smaller sk values than necessary to achieve the

desired accuracy which results in more outer loop iterations than necessary. It was

found that in most cases, taking ck = 1 in (3.1) worked well, although there was no

theoretical justification to support this. In the following section, we describe a way to

adaptively and automatically set this parameter based on existing quantities obtained

during the iterations.

We briefly comment on related work in the area of using a variable s value in s-

step Krylov subspace algorithms. Also motivated by improving numerical behavior,

Imberti and Erhel used a variable s value in their s-step GMRES algorithm [28],

although their approach requires the user to prescribe a priori the sequence of sk

values. A variable s value was also used within an s-step BICGSTAB algorithm used

as the coarse grid solve routine within a geometric multigrid method [41]. In [41] this

approach was termed a “telescoping s”, in which the value of s starts small and is

allowed to grow as the outer loops proceed. This was done for performance reasons

132

rather than numerical ones; when the coarse grid problem is easy (converges in a few

iterations), we do not waste effort computing a larger s-step basis than need be.

Algorithm 2 Adaptive s-step conjugate gradient

Input: N × N symmetric positive definite matrix A, length-N vector b, initial

approximation x0 to Ax = b, maximum sk value σ, initial value s̄0, maximum

basis growth factor f , desired convergence tolerance ε∗, function ck

Output: Approximate solution xm to Ax = b with updated residual rm

1: r0 = b−Ax0, p0 = r0, m = 0

2: for k = 0, 1, . . . , until convergence do

3: if k 6= 0 then s̄k = min(sk−1 + f, σ)

4: Compute s̄k-step basis matrix Yk,s̄k = [Pk,s̄k ,Rk,s̄k] according to (2.2).

5: Compute Gk,s̄k = Y⊤
k,s̄k

Yk,s̄k .

6: Determine s̃k by (3.2); assemble Yk,s̃k and Gk,s̃k .

7: Store estimate γ ≈ κ(Yk,s̃k).

8: Assemble Bk,s̃k such that (2.4) holds.

9: p′k,0 = [1, 01,2s̃k]
⊤, r′k,0 = [01,s̃k+1, 1, 01,s̃k−1]

⊤, x′k,0 = [01,2s̃k+1]
⊤

10: for j = 0 to s̃k − 1 do

11: sk = j + 1

12: αm+j = (r′⊤k,jGk,s̃kr
′
k,j)/(p

′⊤
k,jGk,s̃kBk,s̃kp

′
k,j)

13: q′k,j = αm+jp
′
k,j

14: x′k,j+1 = x′k,j + q′k,j
15: r′k,j+1 = r′k,j − Bk,s̃kq

′
k,j

16: βm+j = (r′⊤k,j+1Gk,s̃kr
′
k,j+1)/(r

′⊤
k,jGk,s̃kr

′
k,j)

17: p′k,j+1 = r′k,j+1 + βm+jp
′
k,j

18: if γ >
ε∗

ckε(r
′⊤
k,j+1Gk,s̃kr

′
k,j+1)

1/2
then break from inner loop.

19: end for

20: Recover iterates {pm+sk , rm+sk , xm+sk} according to (2.6).
21: m = m+ sk

22: end for

4. An improved adaptive s-step CG algorithm

As stated, the adaptive s-step CG algorithm described in [7] requires the user

to supply parameters for the polynomial recurrence (2.3) used in constructing the

s-step basis matrices as well as the function ck used in determining when and if to

break from the inner loop. In this section we present an improved adaptive s-step

133

CG algorithm which uses Ritz value estimates computed via the results of Meurant

and Tichý [33], which we now briefly summarize. The α and β coefficients computed

during the CG iterations can be composed to form the Cholesky factor L⊤
i of the

Lanczos tridiagonal matrix (see (1.1)) Ti = LiL
⊤
i , where

(4.1) L⊤
i ≡

ζ0 η0
. . .

. . .

. . . ηi−2

ζi−1

 =

1√
α0

√
β0

α0

. . .
. . .
. . .

√
βi−2

αi−2

1√
αi−1

,

with i now denoting the global iteration index (the total number of inner loop iter-

ations). It is expected that the eigenvalues of Ti, i.e., the Ritz values, give decent

approximations for the extremal eigenvalues of A. The extremal eigenvalues of A

can be estimated via the relations

(4.2) λ̃max = λmax(Ti) = ‖Li‖2, λ̃min = λmin(Ti) = ‖L−1
i ‖−2.

As described in [33], the norms ‖Li‖2 and ‖L−1
i ‖−2 can be computed using incre-

mental norm estimation of the matrices L⊤
i and L

−⊤
i without the need to explicitly

construct these matrices; this requires insignificant extra work and no communica-

tion. The algorithms for estimating ‖Li‖2 and ‖L−1
i ‖−2 are displayed as Algorithms 3

and 4, respectively, which appear as Algorithms 4 and 5 in [33], Sec. 5 with slightly

modified notation and indexing.

Thus in each inner loop iteration, we can update estimates of the extremal eigen-

values of A, λ̃min and λ̃max, using Algorithms 3 and 4. We note that in each inner

loop iteration, updating λ̃min and λ̃max requires executing only a single additional

for-loop in Algorithms 3 and 4 and storing only a small number of scalar quantities

from the previous iteration.

The estimates λ̃min and λ̃max are then used in two ways to improve the adaptive

s-step CG algorithm. The first improvement comes from improving the quality of the

computed Krylov subspace bases. The computation begins by using a monomial basis

to construct the s̄k-step polynomial bases. Once at least two iterations have finished

(i.e., λ̃min 6= λ̃max), the estimates λ̃min and λ̃max can be used in the subsequent outer

loop k to estimate the basis parameters θ
(k)
i , γ

(k)
i , and µ

(k)
i for either the Newton

basis (2.7) or the Chebyshev basis (2.8). The process continues, with the latest

updated estimates λ̃min and λ̃max being used to generate the basis parameters after

every outer loop, improving the quality of the bases as the iterations proceed.

134

Algorithm 3 Incremental estimation of ‖Li‖2 ([33], Alg. 4)
Input: Entries {ζ0, . . . , ζi−1} and {η0, . . . , ηi−2} of upper bidiagonal matrix L⊤

i

in (4.1)

Output: Quantity ωmax
i−1 which gives an estimate of ‖Li‖2

1: ω0 = ζ20 , ω
max
0 = ω0, h0 = 1

2: for l = 0, . . . , i− 2 do

3: dl = ζ2l η
2
l hl, al = η2l + ξ2l+1

4: χl =
√
(ωl − al)2 + 4dl

5: hl+1 = 1
2

(
1− ωl − al

χl

)

6: ωl+1 = ωl + χlhl+1

7: ωmax
l+1 = ωl+1

8: end for

Algorithm 4 Incremental estimation of ‖L−1
i ‖−2 ([33], Alg. 5)

Input: Entries {ζ0, . . . , ζi−1} and {η0, . . . , ηi−2} of upper bidiagonal matrix L⊤
i

in (4.1)

Output: Quantity ωmin
i−1 which gives an estimate of ‖L−1

i ‖−2

1: ω0 = ζ−2
0 , ω

min
0 = ζ20 , a0 = ω0, d0 = 0, g0 = 0, h0 = 1

2: for l = 0, . . . , i− 2 do

3: dl+1 = − ηl
ζl+1

(gldl + hlal)

4: al+1 =
1

ζ2l+1

(η2l al + 1)

5: χl =
√
(ωl − al+1)2 + 4d2l+1

6: hl+1 =

√
1

2

(
1− ωl − al+1

χl

)

7: ωl+1 = ωl + χlh
2
l+1

8: gl+1 =
√
1− h2l+1, hl+1 = |hl+1| sign(dl+1)

9: ωmin
l+1 = ω−1

l+1

10: end for

The second improvement comes from using the estimates λ̃min and λ̃max to elim-

inate the heuristic choice of the parameter ck. As mentioned, the adaptive s-step

CG algorithm in [7] required that the quantity ck in the condition (3.1) be set by

the user, as using the full value from (2.11) was in most cases too restrictive. This

is because the κ(A) term arises in the quantity ck as defined in (2.11) as a result of

135

the effort to bound the residual gap solely in terms of the size of the residuals, for

example,

(4.3) ‖A‖‖x̂m+j+1 − x‖ = ‖A‖‖A−1A(x̂m+j+1 − x)‖
6 κ(A)‖A(x̂m+j+1 − x)‖ = κ(A)‖r̂m+j+1‖+ O(ε),

which can give a rather pessimistic bound in practice. We note that a similar ob-

servation was made by Sleijpen and van der Vorst [38], who argued that the κ(A)

term will only appear in ‘unusual’ cases. The numerical experiments in [7] found

that using ck = 1 (i.e., ignoring the κ(A) term) worked well in most (but not all)

cases.

We make further use of the results of Meurant and Tichý [33] and develop a way

to adaptively set ck that removes the burden of setting this parameter heuristically.

Instead of the potentially loose upper bound (4.3), we will define ξm+j+1 to be the

exact quantity defined by ‖A‖‖x̂m+j+1 − x‖ = ξm+j+1‖r̂m+j+1‖, i.e.,

(4.4) ξm+j+1 ≡ ‖A‖‖x̂m+j+1 − x‖
‖r̂m+j+1‖

,

where we will have 1 6 ξm+j+1 6 κ(A). It is shown in [33], Section 3 that the

A-norm of the error can be upper bounded as

‖x̂m+j+1 − x‖ 6
‖r̂m+j+1‖
µ1/2

ψ
1/2
m+j+1,

where 0 < µ 6 λmin and the quantity ψm+j+1 ≡ ‖r̂m+j+1‖2/‖p̂m+j+1‖2 can be
incrementally updated in each iteration by

(4.5) ψm+j+1 =
ψm+j

ψm+j + βm+j
, ψ0 = 1.

Thus in each iteration we take µ = λ̃min as computed in (4.2) and approximately

bound ξm+j+1 in (4.4) via

(4.6) ξ̃m+j+1 . λ̃max

√
ψm+j+1

λ̃min

.

Thus in each iteration we set cm+j+1 = ξ̃m+j+1 (note the subscript notation change

which indicates that this quantity can now change in each inner iteration). Updating

ξ̃m+j+1 in (4.6) requires only the additional scalar operation in (4.5) to update

ψm+j+1. Our experiments in Section 5 confirm that ξ̃m+j+1 can be far below κ(A).

136

We make a further small improvement to the adaptive s-step CG algorithm

from [7]. If we are at the end of some inner iteration j < s̃k − 1, notice that by (2.1),

the iterates that will be updated in the next iteration j +1 depend on only a subset

of the basis vectors. The previous adaptive s-step CG algorithm (Algorithm 2)

breaks from the inner loop if in some inner iteration j,

κ(Yk,s̃k) >
ε∗

ckε(r
′⊤
k,j+1Gk,s̃kr

′
k,j+1)

1/2
,

in other words, if the residual norm ‖rm+j+1‖ is so large that (3.1) will not hold in
some future inner iteration (not only just the next one). This is overly pessimistic

and can cause the algorithm to quit the inner loop iterations unnecessarily early. We

can easily and inexpensively modify this approach as follows.

In each inner loop iteration, we keep track of the maximum residual norm that we

have encountered so far in the current outer loop k, and store this as a variable ϕ.

At the end of inner loop iteration j < s̃k − 1, we check whether

(4.7) κ(Yk,j+1) >
ε∗

cm+j+1εϕ
,

and if so, we break from the current inner loop. If not, we continue with the

next inner loop iteration j + 1. As previously described, it is easy and inexpen-

sive (involving no communication) to estimate all the condition numbers κ(Ŷk,l+1)

for l ∈ {1, . . . , s̃k − 1} by computing the square roots of the condition numbers of the
appropriate leading principal submatrices of Ĝk,s̃k . The resulting improved adaptive

s-step CG algorithm is displayed as Algorithm 5.

Algorithm 5 Improved adaptive s-step conjugate gradient

Input: N × N symmetric positive definite matrix A, length-N vector b, initial

approximation x1 to Ax = b, maximum s value σ, initial s value s̄0, maximum

basis growth factor f , desired convergence tolerance ε∗

Output: Approximate solution xm to Ax = b with updated residual rm

1: r0 = b−Ax0, p0 = r0, ψ0 = 1, c1 = ε−1/2, m = 0

2: for k = 0, 1, . . . , until convergence do

3: if k 6= 0 then s̄k = min(sk−1 + f, σ)

4: Compute s̄k-step basis matrix Yk,s̄k = [Pk,s̄k ,Rk,s̄k] according to (2.2).

5: Compute Gk,s̄k = Y⊤
k,s̄k

Yk,s̄k .

6: Determine s̃k by (3.2); assemble Yk,s̃k and Gk,s̃k .

7: Store estimates γl = κ(Ŷk,l+1) for l ∈ {1, . . . , s̃k − 1}.
8: Assemble Bk,s̃k such that (2.4) holds.

9: p′k,0 = [1, 01,2s̃k]
⊤, r′k,0 = [01,s̃k+1, 1, 01,s̃k−1]

⊤, x′k,0 = [01,2s̃k+1]
⊤

137

10: ϕ = (r̂
′⊤
k,0Gk,s̃k r̂

′
k,0)

1/2

11: for j = 0 to s̃k − 1

12: sk = j + 1

13: αm+j =
(
r′⊤k,jGk,s̃kr

′
k,j)/(p

′⊤
k,jGk,s̃kBk,s̃kp

′
k,j)

14: q′k,j = αm+jp
′
k,j

15: x′k,j+1 = x′k,j + q′k,j
16: r′k,j+1 = r′k,j − Bk,s̃kq

′
k,j

17: βm+j = (r′⊤k,j+1Gk,s̃kr
′
k,j+1)/(r

′⊤
k,jGk,s̃kr

′
k,j)

18: p′k,j+1 = r′k,j+1 + βm+jp
′
k,j

19: ϕ = max{ϕ, (r′⊤k,j+1Gk,s̃kr
′
k,j+1)

1/2}
20: ψm+j+1 = ψm+j/(ψm+j + βm+j)

21: if m+ j + 1 > 1 then

22: Update estimates λ̃min and λ̃max.

23: cm+j+1 = max{1, λ̃max(ψm+j+1/λ̃min)
1/2}

24: end if

25: if j < s̃k − 1 and γj+1 >
ε∗

cm+j+1εϕ
then break from inner loop.

26: end for

27: Recover iterates {pm+sk , rm+sk , xm+sk} according to (2.6).
28: m = m+ sk

29: if m > 1 then update basis parameters using λ̃min, λ̃max by (2.7) or (2.8).

30: end for

5. Numerical experiments

In this section we present experiments run in MATLAB (version R2017a) to com-

pare the numerical behavior of HSCG, fixed s-step CG, adaptive s-step CG with

a monomial basis, and improved adaptive s-step CG with dynamically updated New-

ton and Chebyshev bases for small SPD matrices from the SuiteSparse collection [11].

For each matrix, we test the s values 5, 10, and 15 (which are the maximum allow-

able sk values σ in the adaptive algorithms). We test two different values of ε
∗;

the first being the relative true residual 2-norm attainable by HSCG as determined

experimentally, and the second being ε∗ = 10−6. The adaptive algorithms all use

f = σ to allow for the largest possible sk values. For all experiments in this section,

we use two-sided diagonal preconditioning, where the resulting preconditioned ma-

trix is D−1/2AD−1/2 where D is a diagonal matrix of the largest entries in each row

of A. The (unpreconditioned) right-hand side b is set with entries 1/
√
N and the

initial guess is x0 = 0. We use double precision in all tests (ε ≈ 2−53). We discuss

138

the relative performance of the (fixed and adaptive) s-step algorithms in terms of

the number of outer loop iterations, which can be seen as a proxy for the number of

global synchronizations. We stress, however, that the experiments here are on very

small matrices, and thus the aim is solely to demonstrate the numerical behavior

rather than evaluate potential parallel performance improvements.

5.1. The benefit of adaptively setting cm+j+1. We first demonstrate the

benefits of our approach for dynamically setting the constant cm+j+1. In Figure 1, we

plot the convergence (in terms of relative residual 2-norm) of HSCG, fixed s-step CG,

and the improved adaptive s-step CG algorithm (Algorithm 5) for the matrix nos1

from SuiteSparse [11] using various values of cm+j+1, with the specified tolerance

ε∗ = 10−6 and s = 10 (σ = 10 in the adaptive algorithm). Properties of the nos1

matrix can be found in Table 1. For this problem, HSCG takes 510 iterations to

converge. Fixed s-step CG suffers from significantly delayed convergence, requiring

a total of 7134 iterations (corresponding to 714 outer loop iterations) to converge.

We note that the old adaptive s-step CG (Algorithm 2) in this case chooses sk = σ

in each outer loop iteration and thus also requires 714 outer iterations to converge.

Thus for these algorithms we would expect performance to be worse than for HSCG.

Matrix N nnz ‖A‖ κ(A)
494bus 494 1666 2.00 7.90 · 104
bcsstk09 1083 18437 1.98 1.04 · 104
gr 30 30 900 7744 1.49 1.95 · 102
nos6 675 3255 2.00 3.49 · 106

mhdb416 416 2312 1.52 3.02 · 103
nos1 237 1017 2.00 3.94 · 106

Table 1. Test matrix properties.

For the improved adaptive s-step CG algorithm, we show convergence for 3 dif-

ferent choices of cm+j+1. The plots on the left show convergence of the relative true

residual and the plots on the right show the sk values used throughout the iterations.

The top row of plots uses cm+j+1 = λ̃max/λ̃min, where λ̃max and λ̃min are updated in

every iteration, the middle row uses a constant cm+j+1 = 1, and the bottom row uses

the new adaptive approach which automatically sets cm+j+1 = ξ̃m+j+1; see (4.6).

In the top row of plots using cm+j+1 = λ̃max/λ̃min, the convergence of the improved

adaptive s-step CG algorithm is relatively close to that of the HSCG algorithm for

both Newton and Chebyshev bases. However, this comes at the cost of the use

of small sk values, with sk = 1 in many outer loop iterations (see the top right

plot). Here the improved adaptive s-step CG algorithm requires 291 and 255 outer

iterations with the Newton and Chebyshev bases, respectively.

139

σ = 10, ε∗ = 1e−6

0 2000 4000 6000

Iteration i

10
−5

10
0

‖
b
−

A
x
i
‖/

‖
r 0
‖

adptv. s-step CG-N
adptv. s-step CG-C
s-step CG
HSCG

sk values, σ = 10, ε∗ = 1e−6

0 100 200 300 400 500 600

Iteration i

0

2

4

6

8

10

sk

σ = 10, ε∗ = 1e−6

0 2000 4000 6000

Iteration i

10
−5

10
0

‖
b
−

A
x
i
‖
/
‖
r 0
‖

sk values, σ = 10, ε∗ = 1e−6

0 100 200 300 400 500 600

Iteration i

0

2

4

6

8

10

sk

σ = 10, ε∗ = 1e−6

0 2000 4000 6000

Iteration i

10
−5

10
0

‖
b
−

A
x
i
‖
/
‖
r 0
‖

sk values, σ = 10, ε∗ = 1e−6

0 100 200 300 400 500 600

Iteration i

0

2

4

6

8

10

sk

Figure 1. Test results for matrix nos1 with s, σ = 10 and ε∗ = 10−6. Plots on the left show
the convergence trajectories for HSCG, fixed s-step CG, and improved adaptive s-
step CG with Newton and Chebyshev bases. Plots on the right show the values of
sk in the improved adaptive algorithm using the Newton basis (magenta) and the

Chebyshev basis (green). The top row uses cm+j+1 = λ̃max/λ̃min, the middle
row uses cm+j+1 = 1, and the bottom row uses the new adaptive approach,

setting cm+j+1 = ξ̃m+j+1; see (4.6).

140

It is clear from the middle plots that blindly using cm+j+1 = 1 as previously

suggested in [7] is not always sufficient in practice (note the stretched x-axis in the

left-hand plot for this experiment). Using cm+j+1 = 1 results in larger sk values (with

the maximum sk = 10 occurring in most outer loop iterations), but this results in

a significant convergence delay due to the use of ill-conditioned bases. This results

in a greater total number of outer loop iterations required for convergence, with the

implementations with Newton and Chebyshev bases requiring 646 and 357 outer loop

iterations, respectively. Note that for the Newton basis case, this is more “global

synchronizations” than in HSCG!

Finally, in the bottom row, we see the advantage of our approach for automatically

setting cm+j+1 based on information gained from the iterations. Here the total

number of iterations required for convergence is greater than when we use cm+j+1 =

λ̃max/λ̃min, but still much smaller than the naive choice cm+j+1 = 1. But notice that

the sk values used are much closer to the cm+j+1 = 1 case, with the maximum value

sk = 10 occurring in the majority of iterations. This results in fewer overall outer loop

iterations; here the implementations with the Newton and Chebyshev bases required

only 134 and 187 outer loop iterations, respectively. For reference, in Figure 2,

we show the value of cm+j+1 = ξ̃m+j+1 computed in each iteration. The dashed

horizontal lines mark 1 (the minimum value of ξm+j+1) and κ(A) (the maximum

value of ξm+j+1). We see that the computed ξ̃m+j+1 is actually somewhere between 1

and κ(A); by using this tighter, computable bound, we effectively balance the goals of

minimizing the number of iterations required for convergence and maximizing the sk

values used.

0 500 1000 1500

Iteration i

10
0

10
5

ci values, σ = 10, ε∗ = 1e−6

Figure 2. The value of cm+j+1 = ξ̃m+j+1 for improved adaptive s-step CG using the
Newton basis (magenta) and the Chebyshev basis (green). The dashed horizonal
lines show the bounds for ξm+j+1, 1 and κ(A).

5.2. Test problems from SuiteSparse. We now present a few select test prob-

lems which demonstrate the behavior of the improved adaptive s-step CG algorithm.

141

For all problems, the experimental setup is as described at the beginning of Section 5.

The matrices used in the experiments are shown in Table 1, where the norm and con-

dition number are those of the diagonally preconditioned system matrices. For space

purposes, we only include plots for two of the test matrices, 494bus and bcsstk09.

However, for each test matrix, we include a table which shows the number of itera-

tions for HSCG and the number of outer loop iterations (global synchronizations) for

fixed s-step CG, adaptive s-step CG, and improved adaptive s-step CG with both

Newton and Chebyshev bases, for the s (or σ) values 5, 10, and 15, and for two

different choices of ε∗. For the s-step variants, the first number gives the number of

outer loop iterations and the number inside the parentheses gives the total number

of (inner loop) iterations. A dash alone in the table indicates that the algorithm

diverged. A dash along with a number in square brackets indicates that the algo-

rithm did eventually converge (i.e., the residual norm stagnated), but to a relative

residual norm less than ε∗; the number in square brackets gives the final attained

relative residual 2-norm. In the plots, markers are used to denote the outer iterations

in the (fixed and adaptive) s-step algorithms, which are the points at which global

synchronization would occur.

We show results for the matrix 494bus in Figure 3 and the corresponding Table 2.

This problem represents the ideal case for the improved adaptive s-step algorithm

and nicely highlights the benefits of the improved approach. When ε∗ = 2.2 · 10−10,

the improved algorithm outperforms the fixed s-step algorithm and the old adaptive

s-step algorithm in all cases, even for small σ. When ε∗ = 10−6, the improved

approach takes about the same number of inner and outer loop iterations as s-step

CG and old adaptive s-step CG for s, σ = 5, but clearly outperforms both algorithms

for higher s, σ values.

fixed s-step old adptv s-step impr. adptv s-step impr. adptv s-step HSCG

CG CG CG w/Newton basis CG w/Chebyshev basis
ε∗ = 2.2e−10 s, σ = 5 131 (652) 131 (652) 86 (415) 86 (414) 413

s, σ = 10 −[2e−08] 109 (879) 58 (416) 53 (414)

s, σ = 15 – – 57 (416) 51 (414)
ε∗ = 1e−6 s, σ = 5 82 (410) 82 (410) 84 (408) 84 (408) 407

s, σ = 10 115 (1147) 115 (1147) 45 (408) 45 (408)

s, σ = 15 – 442 (6146) 32 (410) 32 (410)

Table 2. Results for experiments with the matrix 494bus.

Using the improved bases generated using λ̃min and λ̃max has a clear benefit; in all

cases, the total number of iterations required by the improved adaptive approach is

about the same as for HSCG. In contrast, for ε∗ = 2.2·10−10, the fixed s-step and old

adaptive approaches require more than 200 more iterations to converge compared to

HSCG even for s, σ = 5. For larger s, σ values, fixed s-step CG no longer converges

142

s, σ = 5, ε∗ = 2.2e−10

adptv. s-step CG-N
adptv. s-step CG-C
adptv. s-step CG
s-step CG

HSCG

10
−10

10
−5

10
0

0 200 400 600 800

Iteration i

‖
b
−

A
x
i
‖/

‖
r 0
‖

s, σ = 5, ε∗ = 1e−6

0 200 400 600 800

Iteration i

‖
b
−

A
x
i
‖/

‖
r 0
‖

10
−5

10
0

s, σ = 10, ε∗ = 2.2e−10

10
−10

10
−5

10
0

0 200 400 600 800

Iteration i

‖
b
−

A
x
i
‖
/
‖r

0
‖

s, σ = 10, ε∗ = 1e−6

0 200 400 600 800

Iteration i

‖
b
−

A
x
i
‖
/
‖r

0
‖

10
−5

10
0

s, σ = 15, ε∗ = 2.2e−10

10
−10

10
−5

10
0

0 200 400 600 800

Iteration i

‖
b
−

A
x
i
‖
/
‖
r 0
‖

s, σ = 15, ε∗ = 1e−6

0 200 400 600 800

Iteration i

‖
b
−

A
x
i
‖
/
‖
r 0
‖

10
−5

10
0

Figure 3. Convergence of the relative true residual 2-norm for the matrix 494bus.

to the specified tolerance. Old adaptive s-step CG eventually converges for σ = 10,

but requires more than twice the total number of iterations as HSCG, limiting the

potential benefit of any s-step approach. For s, σ = 15, both fixed s-step CG and

old adaptive s-step CG diverge. In the case ε∗ = 10−6, the number of iterations

143

required for convergence in old adaptive s-step CG grows drastically with σ, more

than doubling from σ = 5 to σ = 10 and more than quadrupling from σ = 10 to

σ = 15 ! For σ = 15, this results in a greater number of outer loops iterations (i.e.,

more global synchronizations) than HSCG! In contrast, the total number of iterations

required for the improved approach stays constant with σ also in the ε∗ = 10−6 case,

and the number of outer loop iterations required also continues to decrease with

increasing σ. For σ = 15, the improved approach with both Newton and Chebyshev

bases exhibits a decrease in outer loop iterations of more than 12× versus HSCG.

fixed s-step old adptv s-step impr. adptv s-step impr. adptv s-step HSCG

CG CG CG w/Newton basis CG w/Chebyshev basis
ε∗ = 1.9e−12 s, σ = 5 51 (253) 48 (235) 59 (219) 54 (205) 206

s, σ = 10 −[7e−09] 48 (375) 44 (219) 40 (205)

s, σ = 15 – −[2e−10] 42 (219) 38 (205)
ε∗ = 1e−6 s, σ = 5 35 (173) 35 (173) 37 (173) 37 (173) 173

s, σ = 10 65 (642) 65 (642) 21 (173) 21 (173)

s, σ = 15 – 116 (1570) 16 (173) 16 (173)

Table 3. Results for experiments with the matrix bcsstk09.

We next show results for the test problem with matrix bcsstk09 (Figure 4 and

Table 3). For both tested ε∗ values, when s, σ = 5 the improved adaptive approach

requires slightly more outer iterations to converge than both fixed s-step CG and old

adaptive s-step CG. However, again the benefit of the more well-condition bases is

clear for larger s, σ values; as s, σ increases, the total number of outer iterations actu-

ally increases rather than decreases for both fixed s-step CG and old adaptive s-step

CG. Neither of those approaches converges to the prescribed level ε∗ = 1.9 · 10−12

when s, σ = 15. The old adaptive approach eventually converges to the prescribed

level when ε∗ = 10−6 and σ = 15, although it requires almost 10× the number of
total iterations as HSCG; in fact, looking at how the total number of outer loop

iteration required grows as σ is increased, we see around a 2× increase in the po-
tential data movement cost for each increase in σ. In contrast, the number of total

iterations required for the improved approach is constant with σ using both Newton

and Chebyshev bases, and thus the number of outer loop iterations decreases with

increasing σ as desired.

For gr 30 30, nos6, and mhdb416 (Tables 4, 5, and 6, respectively), the story is

similar; fixed s-step CG and old adaptive s-step CG fail to converge to the requested

accuracy in many cases, especially for larger s, σ values. In cases where these algo-

rithms do converge for higher s, σ values, the number of total iterations required (and

also the number of outer loop iterations required) generally grow with increasing s, σ,

sometimes drastically. For example, for the tests with mhdb416 for ε∗ = 10−6 and

σ = 15, the number of total iterations required for convergence grows by almost 40×

144

s, σ = 5, ε∗ = 1.9e−12

0 100 200 300 400

Iteration i

10
−10

10
−5

10
0

‖
b
−

A
x
i
‖/

‖
r 0
‖

adptv. s-step CG-N
adptv. s-step CG-C
adptv. s-step CG
s-step CG

HSCG

s, σ = 5, ε∗ = 1e−6

0 50 100 150 200

Iteration i

10
−5

10
0

‖
b
−

A
x
i
‖/

‖
r 0
‖

s, σ = 10, ε∗ = 1.9e−12

0 100 200 300 400

Iteration i

10
−10

10
−5

10
0

‖
b
−

A
x
i
‖
/
‖
r 0
‖

s, σ = 10, ε∗ = 1e−6

0 50 100 150 200

Iteration i

10
−5

10
0

‖
b
−

A
x
i
‖
/
‖
r 0
‖

s, σ = 15, ε∗ = 1.9e−12

0 100 200 300 400

Iteration i

10
−10

10
−5

10
0

‖
b
−

A
x
i
‖
/
‖
r 0
‖

s, σ = 15, ε∗ = 1e−6

0 50 100 150 200

Iteration i

10
−5

10
0

‖
b
−

A
x
i
‖
/
‖
r 0
‖

Figure 4. Convergence of the relative true residual 2-norm for the matrix bcsstk09.

versus HSCG, and thus requires more than 3× the number of global synchroniza-
tions. In all cases the improved adaptive approach converges to the prescribed level

and in most cases the number of iterations required for convergence remains rela-

145

tively constant, resulting in a decrease in the number of outer loop iterations with

increasing σ. We note that in some cases, the total number of outer loop iterations

stagnates with increasing σ, or at least the rate of decrease is decreasing; see, for

example, the experiments with gr 30 30 with σ = 10, 15 for both ε∗ values. Here,

there is no decrease in the total number of outer loop iterations going from σ = 10

to σ = 15 for either ε∗. This behavior could be due to some fundamental limit on

how large s can be before the bases become too ill-conditioned. Regardless, this

demonstrates another benefit of the adaptive approach; even if the user inputs (or

an autotuner chooses) a σ value that is too large, the adaptive approach can still be

successful.

fixed s-step old adptv s-step impr. adptv s-step impr. adptv s-step HSCG

CG CG CG w/Newton basis CG w/Chebyshev basis
ε∗ = 3.6e−14 s, σ = 5 −[9e−14] 15 (51) 23 (51) 20 (51) 52

s, σ = 10 −[1e−10] −[2e−13] 21 (51) 17 (51)

s, σ = 15 – −[2e−13] 21 (51) 17 (51)
ε∗ = 1e−6 s, σ = 5 7 (34) 7 (34) 10 (34) 10 (34) 34

s, σ = 10 5 (50) 5 (50) 7 (34) 7 (34)

s, σ = 15 – 19 (263) 7 (34) 7 (34)

Table 4. Results for experiments with the matrix gr 30 30.

fixed s-step old adptv s-step impr. adptv s-step impr. adptv s-step HSCG

CG CG CG w/Newton basis CG w/Chebyshev basis
ε∗ = 6.2e−10 s, σ = 5 32 (158) 33 (158) 42 (156) 33 (119) 125

s, σ = 10 −[6e−08] 54 (455) 28 (125) 26 (128)

s, σ = 15 – 58 (679) 29 (156) 23 (109)
ε∗ = 1e−6 s, σ = 5 19 (95) 19 (95) 22 (95) 22 (95) 95

s, σ = 10 52 (511) 32 (312) 14 (95) 13 (95)

s, σ = 15 – – 12 (96) 11 (96)

Table 5. Results for experiments with the matrix nos6.

fixed s-step old adptv s-step impr. adptv s-step impr. adptv s-step HSCG

CG CG CG w/Newton basis CG w/Chebyshev basis
ε∗ = 2.8e−13 s, σ = 5 −[2e−11] 67 (217) 91 (217) 89 (217) 206

s, σ = 10 −[1e−07] 62 (275) 80 (217) 76 (217)

s, σ = 15 – – 78 (217) 73 (218)
ε∗ = 1e−6 s, σ = 5 29 (143) 29 (143) 30 (138) 31 (142) 138

s, σ = 10 31 (309) 31 (301) 18 (143) 18 (139)

s, σ = 15 – 443 (5440) 14 (139) 14 (140)

Table 6. Results for experiments with the matrix mhdb416.

The experiments with the matrix nos1 (Table 7, see also Section 5.1) are a notable

exception. This is a particularly difficult problem even for HSCG, which requires

more than 2N iterations to converge. Even for σ = 5, the improved adaptive al-

gorithm requires more than 2× the number of iterations to converge than HSCG.

146

We are not sure why this behavior occurs. Regardless, the benefits of the improved

approach are still clearly observed. Neither fixed s-step CG nor old adaptive s-step

CG converges to the prescribed accuracy when s, σ = 15 is used, and even when

convergence does occur, the number of outer loop iterations required grows quickly

with s, σ. In all cases, the improved adaptive approach still converges to the pre-

scribed level and still reduces the number of outer iterations required by at least

a factor of 2 versus HSCG. We also see that the number of outer loop iterations

required in the improved approach still reliably decreases with increasing σ.

fixed s-step old adptv s-step impr. adptv s-step impr. adptv s-step HSCG

CG CG CG w/Newton basis CG w/Chebyshev basis
ε∗ = 1.1e−09 s, σ = 5 232 (1159) 232 (1159) 221 (1032) 219 (1035) 672

s, σ = 10 −[4e−08] 547 (5128) 151 (1047) 137 (1006)

s, σ = 15 – −[2e−07] 139 (1053) 123 (1084)
ε∗ = 1e−6 s, σ = 5 148 (738) 148 (738) 246 (1217) 219 (1079) 509

s, σ = 10 714 (7134) 714 (7134) 134 (1290) 187 (1820)

s, σ = 15 – – 80 (1086) 87 (1211)

Table 7. Results for experiments with the matrix nos1.

5.3. Discussion. The experimental results clearly show the benefit of the im-

proved adaptive approach over both fixed s-step CG and the old adaptive s-step

CG. First, the improved algorithm is more reliable. Whereas a poor choice of s or σ

can cause failure to converge to the prescribed accuracy in the other algorithms,

the improved algorithm converges to the desired tolerance in all tested cases. The

number of outer loop iterations (global synchronizations) decreases with increased σ

in the improved approach, and in all cases, this cost is reduced relative to HSCG.

Further, the improved algorithm does not require a heuristic choice of cm+j+1, but

instead automatically sets this parameter based on an inexpensive computation using

quantities already available. Another benefit of the improved approach is that unlike

the old adaptive approach, the total number of iterations required for convergence

is relatively independent of σ.

In the improved approach, we use information generated during the iterations to

construct more well-conditioned polynomial bases, which allows for larger sk values

to be used while still achieving the desired accuracy. We note that the adaptive

approaches (both old and new) are developed only with the goal of attaining a pre-

scribed accuracy rather than improving the convergence behavior. However, a side

effect of using more well-conditioned bases is that the convergence behavior improves

and becomes closer to that of HSCG. This is to be expected based on the theoretical

analysis of the s-step Lanczos algorithm in [9], which is currently being investigated

in order to extend Greenbaum’s classic results on the convergence of HSCG in finite

precision [21] to s-step variants.

147

We also note that the choice between the Newton basis and the Chebyshev basis

is not clear in terms of numerical behavior. In many cases, we observe that the

Chebyshev basis provides the fastest convergence (even faster than HSCG in some

cases), however, this is not universal; see, for example, the experiments for nos1 with

σ = 10 and ε∗ = 10−6 (the final row of plots in Figure 1).

We note that in most experiments, the number of outer loop iterations required

by fixed s-step CG, old adaptive s-step CG, and improved adaptive s-step CG is

about the same for s, σ = 5, with the fixed s-step and old adaptive approaches

outperforming the improved approach in a few cases. This suggests that for small

values like s, σ = 5, it is unlikely to be beneficial to use the improved adaptive

approach. In this case, a simple monomial basis is likely good enough to ensure that

the desired accuracy is attained. Depending on the structure and size of the problem

and the particular hardware on which the problem is solved, it may be that a small s

value is the best option for minimizing the time per iteration anyway. Providing

a concrete answer regarding which approach to use when is nearly impossible due to

the highly problem-dependent nature of the performance of iterative methods. Here

we have only presented a few experiments on small matrices in order to demonstrate

the numerical behavior of the algorithms. In order to provide a clearer picture,

we stress that these algorithms should be implemented and compared on a high-

performance parallel machine for problems from a wide variety of domains.

6. Conclusion and future work

In this work, we presented an improved adaptive s-step CG algorithm for solving

SPD linear systems. The primary improvement over the previous adaptive s-step CG

algorithm is due to the use of the method of Meurant and Tichý [33] for incremental

estimation of the largest and smallest Ritz values, which are used to dynamically

improve the conditioning of the s-step basis matrices (which has a large influence

on the numerical behavior of the s-step methods) as the iterations proceed and also

to automatically set a parameter that represents the ratio between the size of the

error and the size of the residual. The improved algorithm can provide convergence

behavior closer to that of HSCG while also allowing for the use of larger sk values

without unacceptable loss of accuracy. We made an additional small improvement

to the criterion for determining sk based on the observation that only a subset of

the basis vectors are needed to compute the iterate updates in each subsequent step.

Our numerical experiments verify that the improved algorithm provides increased

reliability and, in many cases, a reduction in the total number of global synchroniza-

tions required to converge to the prescribed tolerance versus the old adaptive s-step

CG algorithm.

148

The adaptive approach in s-step CG algorithms is an example of how finite pre-

cision analysis can provide insight leading to more numerically stable algorithms. It

remains to show, however, that the adaptive s-step approaches provide a benefit to

performance over classical Krylov subspace methods like HSCG. In practical imple-

mentations, there remain a few parameters in the algorithm which must be tuned

to maximize performance, including the maximum sk value σ and the maximum

basis growth factor f . A high-performance parallel implementation and a thorough

exploration of the design space remains critical future work.

References

[1] Z.Bai, D.Hu, L. Reichel: A Newton basis GMRES implementation. IMA J. Numer.
Anal. 14 (1994), 563–581. zbl MR doi

[2] A.Bouras, V. Frayssé: A Relaxation Strategy for Inexact Matrix-Vector Products for
Krylov Methods. CERFACS Technical Report TR/PA/00/15, CERFACS, Toulouse,
2000.

[3] A.Bouras, V. Frayssé: Inexact matrix-vector products in Krylov methods for solving
linear systems: A relaxation strategy. SIAM J. Matrix Anal. Appl. 26 (2005), 660–678. zbl MR doi

[4] D.Calvetti, G. H.Golub, L. Reichel: An adaptive Chebyshev iterative method for non-
symmetric linear systems based on modified moments. Numer. Math. 67 (1994), 21–40. zbl MR doi

[5] D.Calvetti, L.Reichel: On the evaluation of polynomial coefficients. Numer. Algorithms
33 (2003), 153–161. zbl MR doi

[6] E.C.Carson: Communication-Avoiding Krylov Subspace Methods in Theory and Prac-
tice. Ph.D. Thesis, University of California, Berkeley, 2015. MR

[7] E.C.Carson: The adaptive s-step conjugate gradient method. SIAM J. Matrix Anal.
Appl. 39 (2018), 1318–1338. zbl MR doi

[8] E.Carson, J. Demmel: A residual replacement strategy for improving the maximum
attainable accuracy of s-step Krylov subspace methods. SIAM J. Matrix Anal. Appl.
35 (2014), 22–43. zbl MR doi

[9] E.Carson, J.W.Demmel: Accuracy of the s-step Lanczos method for the symmetric
eigenproblem in finite precision. SIAM J. Matrix Anal. Appl. 36 (2015), 793–819. zbl MR doi

[10] A.T.Chronopoulos, C.W.Gear: s-step iterative methods for symmetric linear systems.
J. Comput. Appl. Math. 25 (1989), 153–168. zbl MR doi

[11] T.A.Davis, Y.Hu: The University of Florida sparse matrix collection. ACM Trans.
Math. Softw. 38 (2011), Article No. 1, 25 pages. zbl MR doi

[12] E. de Sturler: A parallel variant of GMRES(m). IMACS’91: Proceedings of the 13th
IMACS World Congress on Computation and Applied Mathematics. Criterion Press,
Dublin, 1991, pp. 602–683.

[13] E. de Sturler, H.A. van derVorst: Reducing the effect of global communication in
GMRES(m) and CG on parallel distributed memory computers. Appl. Numer. Math.
18 (1995), 441–459. zbl doi

[14] J.Demmel, M.Hoemmen, M.Mohiyuddin, K.Yelick: Avoiding communication in sparse
matrix computations. IEEE International Symposium on Parallel and Distributed Pro-
cessing. IEEE, Miami, 2008, pp. 1–12. doi

[15] J.Dongarra, P. Beckman, T.Moore: The international exascale software project
roadmap. Int. J. High Perf. Comput. Appl. 25 (2011), 3–60. doi

149

https://zbmath.org/?q=an:0818.65022
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1298533
http://dx.doi.org/10.1093/imanum/14.4.563
https://zbmath.org/?q=an:1075.65041
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2137478
http://dx.doi.org/10.1137/S0895479801384743
https://zbmath.org/?q=an:0796.65033
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1258973
http://dx.doi.org/10.1007/s002110050016
https://zbmath.org/?q=an:1035.65156
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2005559
http://dx.doi.org/10.1023/A:1025555803588
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3450264
https://zbmath.org/?q=an:1398.65044
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3846291
http://dx.doi.org/10.1137/16M1107942
https://zbmath.org/?q=an:1302.65075
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3152736
http://dx.doi.org/10.1137/120893057
https://zbmath.org/?q=an:1319.65024
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3357631
http://dx.doi.org/10.1137/140990735
https://zbmath.org/?q=an:0669.65021
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0988055
http://dx.doi.org/10.1016/0377-0427(89)90045-9
https://zbmath.org/?q=an:1365.65123
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2865011
http://dx.doi.org/10.1145/2049662.2049663
https://zbmath.org/?q=an:0842.65019
http://dx.doi.org/10.1016/0168-9274(95)00079-A
http://dx.doi.org/10.1109/IPDPS.2008.4536305
http://dx.doi.org/10.1177/1094342010391989

[16] J.Dongarra, M.A.Heroux, P. Luszczek: High-performance conjugate-gradient bench-
mark: A new metric for ranking high-performance computing systems. Int. J. High
Perf. Comput. Appl. 30 (2016), 3–10. doi

[17] J.Erhel: A parallel GMRES version for general sparse matrices. ETNA, Electron. Trans.
Numer. Anal. 3 (1995), 160–176. zbl MR

[18] W.Gautschi: The condition of polynomials in power form. Math. Comput. 33 (1979),
343–352. zbl MR doi

[19] P.Ghysels, T. J.Ashby, K.Meerbergen, W.Vanroose: Hiding global communication la-
tency in the GMRES algorithm on massively parallel machines. SIAM J. Sci. Comput.
35 (2013), C48–C71. zbl MR doi

[20] P.Ghysels, W.Vanroose: Hiding global synchronization latency in the preconditioned
conjugate gradient algorithm. Parallel Comput. 40 (2014), 224–238. MR doi

[21] A.Greenbaum: Behavior of slightly perturbed Lanczos and conjugate-gradient recur-
rences. Linear Algebra Appl. 113 (1989), 7–63. zbl MR doi

[22] A.Greenbaum: Estimating the attainable accuracy of recursively computed residual
methods. SIAM J. Matrix Anal. Appl. 18 (1997), 535–551. zbl MR doi

[23] M.H.Gutknecht, Z. Strakoš: Accuracy of two three-term and three two-term recurrences
for Krylov space solvers. SIAM J. Matrix Anal. Appl. 22 (2000), 213–229. zbl MR doi

[24] M.Heroux, R. Bartlett, V.H.R.Hoekstra, J.Hu, T.Kolda, R. Lehoucq, K. Long,
R.Pawlowski, E. Phipps, A. Salinger, H. Thornquist, R. Tuminaro, J.Willenbring,

A.Williams: An Overview of Trilinos. Technical Report SAND2003-2927, Sandia Na-
tional Laboratories, Albuquerque, 2003, pp. 1–42. Available at
http://www.sandia.gov/~tgkolda/pubs/pubfiles/SAND2003-2927.pdf.

[25] M.R.Hestenes, E. Stiefel: Methods of conjugate gradients for solving linear systems. J.
Res. Natl. Bur. Stand. 49 (1952), 409–436. zbl MR doi

[26] A.C.Hindmarsh, H.Walker: Note on a Householder Implementation of the GMRES
Method. Technical Report UCID-20899, Lawrence Livermore National Laboratory, Lo-
gan, 1986. Available at https://www.osti.gov/biblio/
7008035-note-householder-implementation-gmres-method.

[27] M.Hoemmen: Communication-avoiding Krylov subspace methods. Ph.D. Thesis, Uni-
versity of California, Berkeley, 2010. MR

[28] D. Imberti, J. Erhel: Varying the s in your s-step GMRES. ETNA, Electron. Trans.
Numer. Anal. 47 (2017), 206–230. zbl MR doi

[29] W.D. Joubert, G. F. Carey: Parallelizable restarted iterative methods for nonsymmetric
linear systems. I: Theory. Int. J. Comput. Math. 44 (1992), 243–267. zbl doi

[30] J. Liesen, Z. Strakoš: Krylov Subspace Methods. Principles and Analysis. Numerical
Mathematics and Scientific Computation, Oxford University Press, Oxford, 2013. zbl MR

[31] T.A.Manteuffel: Adaptive procedure for estimating parameters for the nonsymmetric
Tchebychev iteration. Numer. Math. 31 (1978), 183–208. zbl MR doi

[32] G.Meurant, Z. Strakoš: The Lanczos and conjugate gradient algorithms in finite preci-
sion arithmetic. Acta Numerica 15 (2006), 471–542. zbl MR doi

[33] G.Meurant, P. Tichý: Approximating the extreme Ritz values and upper bounds for the
A-norm of the error in CG. Numer. Algorithms 82 (2019), 937–968. zbl MR doi

[34] B.Philippe, L. Reichel: On the generation of Krylov subspace bases. Appl. Numer. Math.
62 (2012), 1171–1186. zbl MR doi

[35] L.Reichel: Newton interpolation at Leja points. BIT 30 (1990), 332–346. zbl MR doi
[36] Y.Saad: Iterative Methods for Sparse Linear Systems. SIAM Society for Industrial and

Applied Mathematics, Philadelphia, 2003. zbl MR doi
[37] V.Simoncini, D. B. Szyld: Theory of inexact Krylov subspace methods and applications

to scientific computing. SIAM J. Sci. Comput. 25 (2003), 454–477. zbl MR doi

150

http://dx.doi.org/10.1177/1094342015593158
https://zbmath.org/?q=an:0860.65021
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1368335
https://zbmath.org/?q=an:0399.41002
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0514830
http://dx.doi.org/10.2307/2006047
https://zbmath.org/?q=an:1273.65050
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3033078
http://dx.doi.org/10.1137/12086563X
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3225342
http://dx.doi.org/10.1016/j.parco.2013.06.001
https://zbmath.org/?q=an:0662.65032
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0978581
http://dx.doi.org/10.1016/0024-3795(89)90285-1
https://zbmath.org/?q=an:0873.65027
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1453539
http://dx.doi.org/10.1137/S0895479895284944
https://zbmath.org/?q=an:0976.65030
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1779725
http://dx.doi.org/10.1137/S0895479897331862
https://zbmath.org/?q=an:0048.09901
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0060307
http://dx.doi.org/10.6028/jres.049.044
https://www.osti.gov/biblio/7008035-note-householder-implementation-gmres-method
https://www.osti.gov/biblio/7008035-note-householder-implementation-gmres-method
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2941535
https://zbmath.org/?q=an:1386.65108
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3747143
http://dx.doi.org/10.1553/etna_vol47s206
https://zbmath.org/?q=an:0759.65008
http://dx.doi.org/10.1080/00207169208804107
https://zbmath.org/?q=an:1263.65034
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3024841
https://zbmath.org/?q=an:0413.65032
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0509674
http://dx.doi.org/10.1007/BF01397475
https://zbmath.org/?q=an:1113.65032
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2269746
http://dx.doi.org/10.1017/S096249290626001X
https://zbmath.org/?q=an:07128072
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR4027652
http://dx.doi.org/10.1007/s11075-018-0634-8
https://zbmath.org/?q=an:1253.65049
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2934761
http://dx.doi.org/10.1016/j.apnum.2010.12.009
https://zbmath.org/?q=an:0702.65012
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1039671
http://dx.doi.org/10.1007/BF02017352
https://zbmath.org/?q=an:1031.65046
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1990645
http://dx.doi.org/10.1137/1.9780898718003
https://zbmath.org/?q=an:1048.65032
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2058070
http://dx.doi.org/10.1137/S1064827502406415

[38] G.L.G. Sleijpen, H.A.Van Der Vorst: Reliable updated residuals in hybrid Bi-CG
methods. Computing 56 (1996), 141–163. zbl MR doi

[39] H.A.Van Der Vorst, Q.Ye: Residual replacement strategies for Krylov subspace iter-
ative methods for the convergence of true residuals. SIAM J. Sci. Comput. 22 (2000),
835–852. zbl MR doi

[40] J.Van Rosendale: Minimizing inner product data dependencies in conjugate gradient
iteration. International Conference on Parallel Processing, ICPP’83. IEEE Computer
Society, Los Alamitos, 1983, pp. 44–46.

[41] S.Williams, M.Lijewski, A. Almgren, B.Van Straalen, E.Carson, N.Knight, J. Dem-
mel: s-step Krylov subspace methods as bottom solvers for geometric multigrid. 28th
IEEE International Parallel and Distributed Processing Symposium. IEEE Computer
Society, Los Alamitos, 2014, pp. 1149–1158. doi

Author’s address: Erin Claire Carson, Department of Numerical Mathematics, Faculty
of Mathematics and Physics, Charles University, Sokolovská 83, 186 75, Praha 8, Czech
Republic, e-mail: carson@karlin.mff.cuni.cz.

151

https://zbmath.org/?q=an:0842.65018
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1382009
http://dx.doi.org/10.1007/BF02309342
https://zbmath.org/?q=an:0983.65039
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1785337
http://dx.doi.org/10.1137/S1064827599353865
http://dx.doi.org/10.1109/ipdps.2014.119

		webmaster@dml.cz
	2020-08-14T08:40:35+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

