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Abstract. We deal with the numerical solution of elliptic not necessarily self-adjoint
problems. We derive a posteriori upper bound based on the flux reconstruction that can
be directly and cheaply evaluated from the original fluxes and we show for one-dimensional

problems that local efficiency of the resulting a posteriori error estimators depends on p1/2

only, where p is the discretization polynomial degree. The theoretical results are verified
by numerical experiments.
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1. Introduction

A posteriori error estimates are important and practical tools in numerical math-

ematics. They serve two main purposes in numerical discretization of PDEs: to pro-

vide information about the discretization error for the current choice of discretization

parameters and to provide the localization of the sources of high errors for upcom-

ing possible adaptive procedures. For the survey of main a posteriori techniques for

PDE discretizations see e.g. [2], [4], [9], [17], [21] and references cited therein. The

applications and comparisons of a posteriori error estimates can be found in e.g. [13].

Since higher order methods and hp-adaptive techniques start to be more and more

popular, the question of robustness with respect to the discretization polynomial

degree becomes very important. On the other hand and in contrast to the number

of existing results devoted to the robustness with respect to the mesh-size, there are

not many theoretical results devoted to the robustness with respect to the polyno-

mial degree. A posteriori error techniques based on the local Neumann problem for
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hp-adaptive discretizations are discussed e.g. in [1] and [3]. For the analysis of the

polynomial dependence of the technique based on the local residual estimators see

e.g. [14]. It shall be pointed out that the efficiency of individual estimators proved

in [14] behaves as p1, where p is the underlying polynomial degree used in the finite

element method (FEM) discretization.

Important class of approaches for deriving guaranteed a posteriori upper bounds is

based on the hypercircle theorem, see [15], where the reconstruction of fluxes should

be fully equilibrated, i.e. they should satisfy exactly certain differential equation.

By the residual splitting using the dual variable, the restrictive condition of exact

solution of full equilibration of the fluxes can be replaced by a milder assumption

that the fluxes should be in H(div) only, see e.g. [16]. The extension of these ideas to

nonconforming discretizations can be found in e.g. [8], [20]. The quality of the result-

ing error estimate depends heavily on the choice of the flux reconstruction. Among

many approaches for flux reconstructions, the local mixed finite element technique is

very popular, since it enables to reconstruct the fluxes based on local relatively cheap

problems and since the resulting reconstruction is completely polynomially robust,

i.e. the resulting estimators are efficient independently of the polynomial degree. The

core of the proof of the polynomial robustness can be found in [7]. The extension of

these ideas to wide class of discretization methods can be found in [11].

We assume in this paper even more simple and cheaper reconstruction following the

ideas from [10] that can be easily evaluated directly, i.e. without the necessity to solve

any local problems. The main aim of this paper is to show its practical usefulness by

proving that the resulting local estimators for one-dimensional problems are efficient

up to extremely mild polynomial dependence p1/2.

This paper is organized as follows: Section 2 contains the continuous problem

setting and the corresponding FEM discretization. Auxiliary results are presented in

Section 3. A posteriori error upper bound is derived in Section 4 and corresponding

efficiency results are proved in Section 5. Finally, Section 6 contains the numerical

experiments illustrating the results derived in Section 5.

2. Continuous problem and its discretization

2.1. Continuous problem. Let Ω ⊂ R
d be a bounded polyhedral domain

with Lipschitz continuous boundary ∂Ω. We use standard notation for Lebesgue

and Sobolev spaces. Let us consider the following boundary value problem: find

u : Ω → R such that

(2.1) −∆u+ b · ∇u + cu = f in Ω,

u = 0 in ∂Ω,
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where f ∈ L2(Ω) and b ∈ R
d, c ∈ R are constants such that c > 0. Moreover, we

assume that the convective constant b is of mediocre size at most, i.e. at most |b| ∼ 1,

to prevent the problem becoming convection dominated. Convection dominated

problems represent a very challenging task, see e.g. [18] and the references cited

therein, and they are beyond the scope of this paper. Let us denote weak space

derivative of u by u′ for d = 1.

Let (·, ·) and ‖·‖ be the L2(Ω) scalar product and norm, respectively. Let us denote

the function space V = H1
0 (Ω).

Definition 2.1. We say that the function u ∈ V is a weak solution of (2.1) if

(2.2) (∇u,∇v) + (b · ∇u+ cu, v) = (f, v) ∀ v ∈ V.

According to the Lax-Milgram lemma, there exists a unique solution of prob-

lem (2.2).

2.2. Discrete problem. We consider a space partition Th consisting of a finite
number of closed, d-dimensional simplices K with mutually disjoint interiors and

covering Ω, i.e. Ω =
⋃

K∈Th

K. We denote the vertices of the mesh by a and edges

(or faces) by e. In the rest of the paper we talk about boundary objects of co-

dimension 1 as about edges, but we mean vertices, edges or faces depending on the

dimension d. For each edge e, let n = ne denote a unit normal vector to e with

arbitrary but fixed direction for the inner edges and with outer direction on ∂Ω.

We assume conforming properties of the mesh, i.e. neighbouring elements share an

entire edge. We set hK = diam(K) and h = maxKhK . We assume shape regularity

of elements, i.e. hK/̺K 6 C for all K ∈ Th, where ̺K is the radius of the largest
d-dimensional ball inscribed into K and constant the C does not depend on Th for
h ∈ (0, h0). Moreover, we assume the local quasi-uniformity of the mesh, i.e. we

assume hK 6 ChK′ for neighbouring elements K and K ′ and constant the C does

not depend on Th for h ∈ (0, h0) again.

In order to simplify the notation, we set (·, ·)M and ‖·‖M the local L2(M)-scalar

products and norms, respectively, where M ⊂ Ω is a union of elements K ∈ Th.
We define classical finite element space

(2.3) Vh = {v ∈ H1
0 (Ω): v|K ∈ Pp(K)},

where the space Pp(K) denotes the space of polynomials up to the degree p > 1.

Now we are able to define finite element solution of problem (2.2).
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Definition 2.2. We say that the function uh ∈ Vh is a discrete solution of (2.2) if

(2.4) (∇uh,∇vh) + (b · ∇uh + cuh, vh) = (f, vh) ∀ vh ∈ Vh.

The existence and uniqueness of the discrete solution follows again from the Lax-

Milgram lemma.

Although the functions from Vh are globally continuous, we will need to work with

piece-wise continuous functions as well. We define one-sided values, jumps and mean

values on the inner edges respectively as

v(x−) = lim
s→0+

v(x− ns), v(x+) = lim
s→0+

v(x + ns),(2.5)

[v](x) = v(x−) − v(x+), 〈v〉(x) = 1

2
(v(x−) + v(x+)).

For the boundary edges we define

(2.6) v(x−) = 〈v〉(x) = lim
s→0+

v(x − ns), [v](x) = 0.

3. Auxiliary results

Let {φ̂s ∈ Ps(−1, 1)}∞s=0 be Legendre orthogonal polynomials, i.e. φ̂s⊥Ps−1(−1, 1)

with respect to L2(−1, 1)-scalar product, normalized by φ̂s(1) = 1. The lowest

degree examples are φ̂0(x) = 1 and φ̂1(x) = x. Let {χ̂s ∈ Ps(−1, 1)}∞s=1 be Radau

polynomials defined by

(3.1) χ̂s =
φ̂s + φ̂s−1

2

and {ψ̂s ∈ Ps(−1, 1)}∞s=2 be Lobatto polynomials defined by

(3.2) ψ̂s = φ̂s − φ̂s−2.

Lemma 3.1. The Legendre polynomials satisfy

(3.3) ‖φ̂s‖2L2(−1,1) =
2

2s+ 1
, φ̂′s(1) =

s(s+ 1)

2
.

The Radau polynomials defined by (3.1) satisfy

(3.4) χ̂s(−1) = 0, χ̂s(1) = 1, χ̂s ⊥ Ps−2(−1, 1), ‖χ̂s‖2L2(−1,1) =
2s

4s2 − 1
.

156



The Lobatto polynomials defined by (3.2) satisfy

(3.5) ψ̂s(1) = 0, ψ̂s(−1) = 0, ψ̂s ⊥ Ps−3(−1, 1), ‖ψ̂s‖2L2(−1,1) =
8s− 4

(2s+ 1)(2s− 3)
,

and

(3.6) ψ̂′
s = (2s− 1)φ̂s−1, ‖ψ̂′

s‖2L2(−1,1) = 4s− 2.

P r o o f. The relation for the norm of Legendre polynomials can be found in

e.g. [19]. Moreover, the Legendre polynomials satisfy the three-term recurrence

(3.7) (s+ 1)φ̂s+1(x) = (2s+ 1)xφ̂s(x)− sφ̂s−1(x),

see e.g. [19]. Differentiating the three-term recurrence, inserting x = 1 and using

φ̂s(1) = 1, we obtain

(3.8) (s+ 1)φ̂′s+1(1) = (2s+ 1) + (2s+ 1)φ̂′s(1)− sφ̂′s−1(1).

Then the relation for φ̂′s(1) follows by induction. Relations (3.4) and (3.5) can

be directly verified from (3.1) and (3.2), respectively, and from the properties of

Legendre polynomials. Now, let us show that ψ̂′
s = Cφ̂s−1, where C = C(s) is

a constant. Since ψ̂′
s ∈ Ps−1(−1, 1), it is sufficient to show that ψ̂′

s ⊥ Ps−2(−1, 1).

Using (3.5), we get

(3.9)

∫ 1

−1

ψ̂′
sw dx = −

∫ 1

−1

ψ̂sw
′ dx− ψ̂s(−1)w(−1) + ψ̂s(1)w(1) = 0

∀w ∈ Ps−2(−1, 1).

From this it follows that

(3.10) Cφ̂s−1(1) = ψ̂′
s(1) = φ̂′s(1)− φ̂′s−2(1).

Applying (3.3), we arrive at C = 2s−1. The relation for the norm of ψ̂′
s then follows

from the relation for the norm of Legendre polynomials. �

The Lobatto polynomials ψs on K = [aL, aR] are defined by transformation of ψ̂s

from the reference interval [−1, 1],

(3.11) ψs(x) = ψ̂s

(2(x− aL)

hK
− 1

)
, x ∈ K.

157



The Legendre polynomials φs and the Radau polynomials χs are defined on K ∈ Th
analogously.

Lemma 3.2. Let v ∈ V . Then there exists vh ∈ Vh and constant CFl > 0

independent of local mesh-size hK and polynomial degree p > 1 such that

(3.12) ‖v − vh‖K 6 CFl
hK
p

‖∇v‖K .

P r o o f. The result can be found in [5]. �

For some cases, the value of the constant CFl from Lemma 3.2 can be determined

exactly. We will show the value of CFl for d = 1.

Lemma 3.3. Let d = 1 and v ∈ V . Then there exists vh ∈ Vh such that esti-

mate (3.12) holds with

(3.13) CFl =
p√

(2p+ 3)(2p− 1)
.

P r o o f. Let us decompose v|K ∈ H1(K) as

(3.14) v|K = ϕ+

∞∑

s=2

αsψs,

where {αs}∞s=2 ⊂ R, ϕ ∈ P1(K) is the linear interpolation at the end points of K

and ψs ∈ Ps(K) are Lobatto basis (bubble) function defined on K ∈ Th by (3.11).
Let us construct suitable vh element-wise as

(3.15) vh|K = ϕ+

p∑

s=2

αsψs.

Applying (3.2) and the orthogonality of Legendre polynomials φs, we get

‖v − vh‖2K =

∥∥∥∥
∞∑

s=p+1

αsψs

∥∥∥∥
2

K

=

∥∥∥∥
∞∑

s=p+1

αs(φs − φs−2)

∥∥∥∥
2

K

(3.16)

=

∞∑

s=p+1

α2
s(‖φs‖2K + ‖φs−2‖2K)− 2

∞∑

s=p+1

αsαs+2‖φs‖2K
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6

∞∑

s=p+1

α2
s(‖φs‖2K + ‖φs−2‖2K) +

∞∑

s=p+1

α2
s‖φs‖2K

+

∞∑

s=p+1

α2
s+2‖φs‖2K 6 2

∞∑

s=p+1

α2
s(‖φs‖2K + ‖φs−2‖2K)

= 2

∞∑

s=p+1

α2
s‖ψs‖2K .

From Lemma 3.1, it follows for Lobatto polynomials scaled to [−1, 1] that

(3.17) ‖ψ̂s‖2(−1,1) =
2

(2s+ 1)(2s− 3)
‖ψ̂′

s‖2(−1,1).

Since the ratio between the original element K and the reference domain [−1, 1] is

hK/2, we get after transformation from [−1, 1] to K that

(3.18) ‖ψs‖2K =
h2K

2(2s+ 1)(2s− 3)
‖ψ′

s‖2K .

Inserting this relation into (3.16), we obtain

(3.19) ‖v − vh‖2K 6 2

∞∑

s=p+1

α2
s‖ψs‖2K = 2

∞∑

s=p+1

α2
s

h2K
2(2s+ 1)(2s− 3)

‖ψ′
s‖2K

6
h2K

(2p+ 3)(2p− 1)

∞∑

s=p+1

α2
s‖ψ′

s‖2K .

Since ψ̂′
s = (2s − 1)φ̂s−1, s > 2, the derivatives of Lobatto basis and constants are

mutually orthogonal. Then we get

(3.20)

∞∑

s=p+1

α2
s‖ψ′

s‖2K 6 ‖ϕ′‖2K +

∞∑

s=2

α2
s‖ψ′

s‖2K =

∥∥∥∥ϕ
′ +

∞∑

s=2

αsψ
′
s

∥∥∥∥
2

K

= ‖v′‖2K .

�
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4. Flux reconstruction, error measure and its upper bound

4.1. Flux reconstruction. Since the discretization by FEM is conforming, the

exact solution u as well as the discrete solution uh belong to common space V =

H1
0 (Ω). This quality, i.e. the exact and the discrete solutions belong to common

space, does not hold for the gradient of the solution, since∇u ∈ H(div,Ω) and∇uh /∈
H(div,Ω) in general. Our aim is to find suitable reconstruction σh = σh(∇uh) ∈
H(div,Ω) such that σh ≈ ∇uh.
Let RTp(K) be the local Raviart-Thomas space of order p for element K ∈ Th,

i.e. RTp(K) = Pp(K)d + xP p(K), where P p(K) is a subspace of Pp(K) containing

only the polynomial terms of degree p. For d = 1, RTp(K) space is simplified to

Pp+1(K). The details about Raviart-Thomas spaces and about FEM-like spaces for

approximation H(div,Ω) in general can be found in [6]. We define the reconstruc-

tion σh element-wise. We seek σh|K ∈ RTp(K) such that

(4.1) σh|e · n = 〈∇uh〉|e · n ∀ e ⊂ K,

(σh, zh)K = (∇uh, zh)K ∀ zh ∈ Pp−1(K)d.

The conditions in (4.1) represent the natural degrees of freedom for RTp(K), see [6],

Proposition 2.3.4. Applying basis corresponding to these degrees of freedom enables

to assemble σh directly without the necessity to solve any local linear problems,

which results in extremely cheap evaluation of the reconstruction σh. This property

will be demonstrated later in Lemma 5.1 for d = 1.

We should point out that the resulting function σh has continuous normal com-

ponents on inter-element edges and therefore the composition of local contributions

of σh is in H(div,Ω), see e.g. [6].

Important property of σh is the orthogonality of f +div σh − b · ∇uh − cuh on Vh

that follows from the discrete problem formulation (2.4) and from (4.1)

(4.2) (f + div σh − b · ∇uh − cuh, vh) = (f, vh)− (b · ∇uh + cuh, vh)− (σh,∇vh)
= (f, vh)− (b · ∇uh + cuh, vh)− (∇uh,∇vh) = 0 ∀ vh ∈ Vh.

R em a r k 4.1. Relation (4.2) represents a weaker version of the equilibrated flux

property

(4.3) (f + div σh − b · ∇uh − cuh, vh)K = 0 ∀ vh ∈ Pp(K),

used in e.g. [11].
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R em a r k 4.2. The important ingredient for relation (4.2) is that uh is the ex-

act solution of the discrete problem (2.4). Such a solution is not available for the

reconstruction in practical computations, since many other sources of errors come

into play (algebraic errors, quadrature errors, rounding errors, etc.). Including these

sources of errors will result in the necessity to enhance relation (4.2) by correspond-

ing remainders, e.g. the algebraic error could be represented by the additional term

corresponding to the algebraic residuum. A posteriori error estimate including alge-

braic error can be found in e.g. [12]. For simplicity, we assume in this paper that the

exact solution uh of problem (2.4) is available.

4.2. Upper bound. We define the error measure for w ∈ V as the dual norm of

residual

(4.4) Err(w) = sup
06=v∈V

(f, v)− (∇w,∇v) − (b · ∇w + cw, v)

‖∇v‖ .

R em a r k 4.3. For the most simple case b = 0, c = 0, the error measure is

equivalent to H1-seminorm, i.e. Err(w) = ‖∇u−∇w‖.

The aim of this section is to bound the error measure Err(uh) from above. Let

v ∈ V be arbitrary, let uh ∈ Vh be the discrete solution given by (2.4) and let σh be

the reconstruction obtained from uh by (4.1). Then

(4.5) (f, v)− (∇uh,∇v)− (b · ∇uh + cuh, v)

= (f + div σh − b · ∇uh − cuh, v) + (σh −∇uh,∇v).

We estimate the terms on the right-hand side individually. We apply (4.2) and

Lemma 3.2 on the first term and we get

(4.6) (f + div σh − b · ∇uh − cuh, v) = inf
vh∈Vh

(f + div σh − b · ∇uh − cuh, v − vh)

6
∑

K

CFl
hK
p

‖f + div σh − b · ∇uh − cuh‖K‖∇v‖K .

The second term can be estimated by the Cauchy inequality

(4.7) (σh −∇uh,∇v) 6
∑

K

‖σh −∇uh‖K‖∇v‖K .

Applying these individual estimates together, we get

(4.8) ((f − b · ∇uh − cuh, v)− (∇uh,∇v))2

6
∑

K

(
CFl

hK
p

‖f + div σh − b · ∇uh − cuh‖K + ‖σh −∇uh‖K
)2
‖∇v‖2.
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Let us denote partial estimators

(4.9) ηR,K = CFl
hK
p

‖f + div σh − b · ∇uh − cuh‖K ,

ηF,K = ‖σh −∇uh‖K .

From these considerations follows the upper a posteriori error estimate.

Theorem 4.1. Let uh ∈ Vh be the discrete solution obtained by (2.4) and σh be

the reconstruction obtained from uh by (4.1). Then

(4.10) Err(uh)
2 6 η2 =

∑

K

(ηR,K + ηF,K)2.

R em a r k 4.4. The constant CFl contained in ηR,K is unknown in general. This

constant can be determined in some special cases, e.g. the application of Lemma 3.3

instead of Lemma 3.2 gives the modification of the estimator ηR,K for d = 1

(4.11) ηR,K =
hK√

(2p+ 3)(2p− 1)
‖f + σ′

h − bu′h − cuh‖K ,

where all the terms in (4.11) are known. Then both the estimators ηR,K and ηF,K

are fully computable.

5. Local error measures and its lower bound in one dimension

In this section we assume d = 1. The aim of this section is to show that the local

individual estimators ηR,K and ηF,K from a posteriori estimate (4.10) are locally

efficient and how this efficiency depends on the polynomial degree p. It means that

these local estimators provide local lower bounds to the local error measure up to

some powers of p and some generic constant C > 0 that may depend on constants

coming from the original continuous problem (the size of the domain Ω, etc.) or

on the constants coming from the discretization (mesh shape regularity constant,

etc.). However, this constant should be independent of the exact solution u, discrete

solution uh, local mesh sizes hK , and polynomial degree p. Dependence of the

estimate up to this generic constant will be denoted by ..

For the purpose of the efficiency analysis we suppose a traditional assumption that

f ∈ Vh. Otherwise, classical oscillation term

(5.1) sup
06=v∈V

(f − fh, v)

‖v′‖
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appears additionally in the efficiency results, where fh is L
2-orthogonal projection

of f on Vh.

To be able to apply the result in a local way, we need the following notation.

Let ωa be a patch consisting of elements sharing common vertex a and ωK be a patch

consisting of elements sharing at least a vertex with K. Let M ⊂ Ω, e.g. M = K or

M = ωK . We define a local version of the space V by

(5.2) VM = {v ∈ V : supp(v) ⊂M}

and a corresponding local version of Err

(5.3) ErrM (w) = sup
06=v∈VM

(f, v)− (w′, v′)− (bw′ + cw, v)

‖v′‖ .

Typically, we use ErrK(uh), Errωa
(uh) or ErrωK

(uh). Since the patch ωK is composed

from three elements at most, it is possible to see that

(5.4)
∑

K

ErrK(uh)
2 6

∑

K

ErrωK
(uh)

2 . Err(uh)
2.

We divide the proof of the local efficiency of the individual partial estimators ηR,K

and ηF,K into next auxiliary lemmas.

Lemma 5.1. Let d = 1. Let us denote a polynomial rL ∈ Pp+1(K) such that

rL(aL) = 1, rL(aR) = 0 and rL ⊥ Pp−1(K) for the element K = [aL, aR]. The

polynomial rR ∈ Pp+1(K) associated with aR instead of aL is defined analogically,

i.e. rR(aR) = 1, rR(aL) = 0 and rR ⊥ Pp−1(K). Then the reconstruction σh defined

by (4.1) can be expressed by

(5.5) σh|K = u′h|K +
1

2
n[u′h](aL)rL − 1

2
n[u′h](aR)rR.

P r o o f. Inserting aL and aR into (5.5), we obtain σh(aL) = 〈u′h〉(aL) and
σh(aR) = 〈u′h〉(aR), respectively. That corresponds to the first condition in (4.1).
Using the orthogonality of polynomials rL and rR on Pp−1(K), we gain the second

condition in (4.1). �

R em a r k 5.1. The polynomials rL and rR are known as Radau polynomials,

e.g. rR = χp+1, where χp+1 is transformation of the reference Radau polynomial χ̂p+1

defined in Section 3. They can be alternatively defined as polynomials with zeros

in the Radau quadrature nodes. They represent natural basis functions associated

with edge degrees of freedom in (4.1) for d = 1.
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Lemma 5.2. Let d = 1, f ∈ Vh, uh ∈ Vh and let σh be the reconstruction

obtained from u′h by (4.1). Then

(5.6) ηF,K = ‖σh − u′h‖K . p1/2 ErrωK
(uh).

P r o o f. Let us denote the end points of K as aL and aR, i.e. K = [aL, aR]. Then

applying Lemma 5.1 and Lemma 3.1 and scaling between reference interval [−1, 1]

and K, we get

(5.7) ‖σh − u′h‖K 6
1

2
(|[u′h](aL)|‖rL‖K + |[u′h](aR)|‖rR‖K)

=
1

4

√
hK√
2

(|[u′h](aL)|+ |[u′h](aR)|)‖χ̂p+1‖(−1,1)

=
1

4

√
hK(p+ 1)√

4(p+ 1)2 − 1
(|[u′h](aL)|+ |[u′h](aR)|)

.

√
hK√
p

(|[u′h](aL)|+ |[u′h](aR)|).

Now, let us show the relation between |[u′h](a)| for a = aL, aR and ErrωK
(uh).

The case a = aR is very similar to the case a = aL. Therefore, we discuss only the

version with a = aL. Let ϕaL
be piece-wise linear function associated with vertex

aL such that ϕaL
(aL) = 1 and ϕaL

(a) = 0 for other vertices a. Let us define φaL

a piece-wise polynomial function of degree at most p+2 satisfying supp(φaL
) ⊂ ωaL

,

φaL
(aL) = 1 and φaL

be orthogonal to piece-wise polynomials up to degree p + 1.

Now, we are able to design a suitable test function waL
∈ VωaL

(5.8) waL
= −sgn([u′h](aL))ϕaL

φaL
.

Then

(5.9) ErrωaL
(uh) = sup

06=v∈VωaL

(f, v)− (u′h, v
′)− (bu′h + cuh, v)

‖v′‖

>
(f, waL

)− (u′h, w
′
aL

)− (bu′h + cuh, waL
)

‖w′
aL

‖

=

∑
K(f + u′′h − bu′h − cuh, waL

)K −
∑

a[u
′
h](a)waL

(a)

‖w′
aL

‖

=
|[u′h](aL)|
‖w′

aL
‖ .
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We shall investigate ‖w′
aL

‖2 = ‖w′
aL
‖2K + ‖w′

aL
‖2K′ , where K ′ ⊂ ωa is the neigh-

bouring element of K. The forthcoming analysis is very similar for both elements.

Therefore, we focus only on ‖w′
aL

‖2K . From (5.8) it follows that

(5.10) ‖w′
aL

‖2K =

∫ aR

aL

(w′
aL

)2 dx =

∫ aR

aL

(ϕ′
aL
φaL

+ ϕaL
φ′aL

)2 dx

.

∫ aR

aL

(ϕ′
aL

)2φ2aL
dx+

∫ aR

aL

ϕ2
aL

(φ′aL
)2 dx.

We estimate the final integrals individually. Since (ϕ′
aL

)2|K = 1/h2K , we obtain by

Lemma 3.1 and by scaling between [−1, 1] and K

(5.11)

∫ aR

aL

(ϕ′
aL

)2φ2aL
dx =

1

h2K

∫ aR

aL

φ2aL
dx =

1

2hK
‖φ̂p+2‖2(−1,1) =

1

hK(2p+ 5)
.

Since 0 6 ϕaL
6 1, we get

(5.12)

∫ aR

aL

ϕ2
aL

(φ′aL
)2 dx 6

∫ aR

aL

ϕaL
(x)(φ′aL

)2 dx

= ϕaL
(aR)φ

′
aL

(aR)φaL
(aR)− ϕaL

(aL)φ
′
aL

(aL)φaL
(aL)

−
∫ aR

aL

(ϕ′
aL
φ′aL

+ ϕaL
φ′′aL

)φaL
dx

= − φ′aL
(aL).

We get by Lemma 3.1 and by scaling between [−1, 1] and K

(5.13) −φ′aL
(aL) =

2

hK
φ̂′p+2(1) =

(p+ 2)(p+ 3)

hK
.

Putting these individual estimates together and applying the local quasi-uniformity

of the mesh, we obtain

(5.14) ‖w′
aL

‖2 = ‖w′
aL

‖2K + ‖w′
aL

‖2K′ .
p2

hK
+

p2

hK′

.
p2

hK
.

Then estimates (5.7), (5.9), and (5.14) give

(5.15) ‖σh − u′h‖2K .
hK
p

(|[u′h](aL)|2 + |[u′h](aR)|2)

6
hK
p

ErrωK
(uh)

2(‖w′
aL

‖2 + ‖w′
aR

‖2) . p ErrωK
(uh)

2.

�
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Lemma 5.3. Let d = 1, f ∈ Vh, uh ∈ Vh and let σh be the reconstruction

obtained from uh by (4.1). Then

(5.16) ηR,K =
hK√

(2p+ 3)(2p− 1)
‖f + σ′

h − bu′h − cuh‖K . p1/2 ErrωK
(uh).

P r o o f. Let us denote w = f + σ′
h − bu′h − cuh. Let us represent v ∈ VK as

(5.17) v =

∞∑

s=2

αsψs,

where ψs are Lobatto polynomials defined by (3.2) and transformed from the refer-

ence element [−1, 1] to K and {αs}∞s=2 ⊂ R are the corresponding coefficients. Let

us show that

(5.18)

∞∑

s=2

α2
s‖ψs‖2K .

∥∥∥∥
∞∑

s=2

αsψs

∥∥∥∥
2

K

= ‖v‖2K .

It is possible to show it equivalently on the reference element [−1, 1] instead of K.

Applying Lemma 3.1, we can see that

(5.19)

∥∥∥∥
∞∑

s=2

αsψ̂s

∥∥∥∥
2

(−1,1)

=

∞∑

s=2

α2
s‖ψ̂s‖2(−1,1) −

∞∑

s=4

αsαs−2‖φ̂s−2‖2(−1,1)

>

∞∑

s=2

α2
s‖ψ̂s‖2(−1,1) −

1

2

∞∑

s=4

(α2
s + α2

s−2)‖φ̂s−2‖2(−1,1)

>

∞∑

s=2

α2
s(‖φ̂s‖2(−1,1) + ‖φ̂s−2‖2(−1,1))

− 1

2

∞∑

s=2

α2
s(‖φ̂s‖2(−1,1) + ‖φ̂s−2‖2(−1,1)) =

1

2

∞∑

s=2

α2
s‖ψ̂s‖2(−1,1).

Using density of H1
0 (K) in L2(K) and (5.18), we get

(5.20) ‖w‖2K = sup
v∈VK

(w, v)2

‖v‖2 . sup
v∈VK

(w, v)2

∞∑
s=2

α2
s‖ψs‖2K

.

Since ψs ⊥ Ps−3(K) and w ∈ Pp(K) and since w ⊥ ψs, s = 2, . . . , p according

to (4.2), we can see that it is possible to take supremum in (5.20) over v ∈ VK,p+1

only, where

(5.21) VK,p+1 = span{ψp+1, ψp+2} ⊂ VK .
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From this follows

(5.22)
h2K
p2

‖w‖2K . sup
v∈VK,p+1

(w, v)2

α2
p+1‖ψp+1‖2K + α2

p+2‖ψp+2‖2K
h2K
p2

= sup
v∈VK,p+1

(w, v)2

‖v′‖2
h2K
p2

‖v′‖2
α2
p+1‖ψp+1‖2K + α2

p+2‖ψp+2‖2K
.

According to Lemma 5.2,

(5.23) sup
v∈VK,p+1

(w, v)

‖v′‖ = sup
v∈VK,p+1

(f + σ′
h − bu′h − cuh, v)

‖v′‖

6 sup
v∈VK,p+1

(f − bu′h − cuh, v)− (u′h, v
′)

‖v′‖

+ sup
v∈VK,p+1

(u′h − σh, v
′)

‖v′‖
6 ErrωK

(uh) + ‖u′h − σh‖K . p1/2 ErrωK
(uh).

Then it is sufficient to prove that

(5.24) h2K‖v′‖2K . p2(α2
p+1‖ψp+1‖2K + α2

p+2‖ψp+2‖2K) ∀ v ∈ VK,p+1

to finish the proof. We can show (3.18) in the same way as in the proof of Lemma 3.3.

Since ψ′
s are othogonal, see Lemma 3.1, we get with the aid of (3.18)

(5.25) h2K‖v′‖2K = h2K(α2
p+1‖ψ′

p+1‖2K + α2
p+2‖ψ′

p+2‖2K)

= h2K

(
α2
p+1

2(2p+ 3)(2p− 1)

h2K
‖ψp+1‖2K

+ α2
p+2

2(2p+ 5)(2p+ 1)

h2K
‖ψp+2‖2K

)

. p2(α2
p+1‖ψp+1‖2K + α2

p+2‖ψp+2‖2K).

�

We summarize the results from Lemma 5.2 and Lemma 5.3 in the following theo-

rem.

Theorem 5.1. Let d = 1, f ∈ Vh, uh ∈ Vh, and let σh be the reconstruction

obtained from uh by (4.1). Then

(5.26) ηR,K . p1/2 ErrωK
(uh),

ηF,K . p1/2 ErrωK
(uh).
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Global efficiency estimate is a direct consequence of Theorem 5.1 and (5.4).

Theorem 5.2. Let d = 1, f ∈ Vh, uh ∈ Vh, and let σh be the reconstruction

obtained from uh by (4.1). Then

(5.27)
∑

K

(ηR,K + ηF,K)2 . pErr(uh)
2.

6. Numerical experiments

The aim of this section is to show the reliability, robustness and efficiency of the

estimate from Theorem 4.1 for d = 1.

The computation of the individual a posteriori error estimators can be made di-

rectly according to (4.9) or (4.11). On the other hand, the computation of the error

measures Err(uh) or ErrωK
(uh) is difficult even if the exact solution is known, since

these error measures are defined as suprema over infinite dimensional spaces. We

approximate these error measures by computing these suprema over space V +
h ⊂ V

that is richer than the original FEM space Vh, but still finite dimensional. We use

four times denser mesh than Vh and polynomial degree p + 2 instead of p for the

construction of V +
h . We construct spaces V

+
h,M ⊂ VM as subspaces of V

+
h containing

functions with supports restricted to M ⊂ Ω. We compute the approximation of the

Riesz representative of residual z ∈ V +
h satisfying

(6.1) (z, vh) = (f − b · ∇uh − cuh, vh)− (∇uh,∇vh) ∀ vh ∈ V +
h .

Then Err(uh) ≈ Err+h (uh) = ‖∇z‖. The localized versions ErrM (uh) are approxi-

mated analogically with the aid of V +
h,M instead of V

+
h .

Let us denote approximate effectivity index

(6.2) Eff =
η

Err+h (uh)

and its local counterparts for element K

(6.3) EffR,K =
ηR,K

Err+h,ωK
(uh)

, EffF,K =
ηF,K

Err+h,ωK
(uh)

.

6.1. Problem settings. We restrict ourselves to d = 1 and Ω = (0, 1). We as-

sume two problems: purely elliptical problem (PEP), where b, c = 0, and convection-

diffusion-reaction problem (CDRP), where b = 2 and c = 1. We set the right-hand

side f = π
2 sin(πx) for PEP and f = 1 for CDRP.
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6.2. Global h-performance. We test the error estimate (4.10) with respect to

the mesh refinement. The polynomial degree is set as p = 3. We assume a sequence of

successively refined equidistant meshes started with h = 1/10 and halved in each step.

We can see from Table 1 that the effectivity indices are tending to one for decreas-

ing h.

PEP CDRP

1/h Err+h (uh) η Eff Err+h (uh) η Eff

10 2.1672− 4 2.6869− 4 1.24 1.7478− 5 2.9540− 5 1.69

20 2.7111− 5 3.0187− 5 1.11 2.1903− 6 3.1610− 3 1.44

40 3.3896− 7 3.5760− 6 1.06 2.7397− 7 3.4520− 7 1.26

80 4.2372− 7 4.3520− 7 1.03 3.4251− 8 3.9150− 8 1.14

160 5.2966− 8 5.3678− 8 1.01 4.2816− 9 4.6046− 9 1.08

320 6.6214− 9 6.6650− 9 1.01 5.3521− 10 5.5598− 10 1.04

Table 1. Global h-performance for PEP and CDRP, p = 3.

6.3. Global p-performance. We test the error estimate (4.10) with respect to

the changing polynomial degree p. We assume equidistant mesh with h = 1/10 and

p = 1, . . . , 7.

We can observe from Table 2 that two regimes for odd and even polynomial degrees

appear. For both regimes the efficiency indices very mildly (sublinearly) increase with

increasing p.

PEP CDRP

p Err+h (uh) η Eff Err+h (uh) η Eff

1 2.0113− 1 2.4015− 1 1.19 3.0604− 2 4.9461− 2 1.62

2 8.1594− 3 1.4489− 2 1.78 8.3845− 4 1.4924− 3 1.78

3 2.1669− 4 2.6883− 4 1.24 1.7478− 5 2.9540− 5 1.69

4 4.2891− 6 9.6339− 6 2.25 2.6469− 7 5.9576− 7 2.25

5 6.7722− 8 8.7754− 8 1.30 3.2125− 9 5.9543− 9 1.85

6 8.8966− 10 2.3607− 9 2.65 3.2419− 11 8.6252− 11 2.66

7 9.9930− 12 1.3472− 11 1.35 3.4397− 13 5.6761− 13 1.65

Table 2. Global p-performance for PEP and CDRP, h = 1/10.

6.4. Local efficiency, h-performance. We test the robustness of efficiency esti-

mates (5.26) with respect to decreasing h. The polynomial degree is set as p = 3. We

assume a sequence of successively refined equidistant meshes started with h = 1/10

and halved in each step. For each mesh we take element K = [0.4, 0.4 + h] and we

investigate local efficiency on this element.
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We can see that the efficiency indices in Table 3 and Table 4 are uniformly bounded

for decreasing h.

1/h Err+h,ωK
(uh) ηR,K EffR,K ηF,K EffF,K

10 1.6053− 4 6.3399− 6 0.04 9.3672− 5 0.58

20 1.4327− 5 3.4539− 7 0.02 8.2921− 6 0.58

40 1.2611− 6 1.7357− 8 0.01 7.2852− 7 0.58

80 1.1099− 7 8.1726− 10 0.01 6.4090− 8 0.58

160 9.7842− 9 3.7263− 11 0.00 5.6491− 9 0.58

320 8.6359− 10 1.6483− 12 0.00 4.9857− 10 0.58

Table 3. Local h-performance for PEP, p = 3, K = [0.4, 0.4 + h].

1/h Err+h,ωK
(uh) ηR,K EffR,K ηF,K EffF,K

10 5.8645− 6 9.6390− 7 0.16 3.3251− 6 0.57

20 4.7421− 7 3.9647− 8 0.08 2.7252− 7 0.58

40 4.0379− 8 1.6952− 9 0.04 2.3286− 8 0.58

80 3.5096− 9 7.3741− 11 0.02 2.0257− 9 0.58

160 3.0776− 10 3.2330− 12 0.01 1.7767− 10 0.58

320 2.7096− 11 1.4142− 13 0.01 1.5645− 11 0.58

Table 4. Local h-performance for CDRP, p = 3, K = [0.4, 0.4 + h].

6.5. Local efficiency, p-performance. We test the robustness of efficiency esti-

mates (5.26) with respect to the changing polynomial degree p. We assume equidis-

tant mesh with h = 1/10 and p = 1, . . . , 7. Similarly as in the previous tests, we

take K = [0.4, 0.5] and we investigate local efficiency on this element.

We can observe again in Table 5 and Table 6 two regimes for odd and even poly-

nomial degrees, where the dominating estimator is ηF,K for odd degrees and ηR,K for

even degrees. The efficiency indices stagnates or very mildly (sublinearly) increase

with increasing p.

p Err+h,ωK
(uh) ηR,K EffR,K ηF,K EffF,K

1 1.4891− 1 4.5229− 3 0.03 8.7188− 2 0.59

2 1.8492− 3 1.6367− 3 0.89 3.7698− 4 0.20

3 1.6053− 4 6.3399− 6 0.04 9.3672− 5 0.58

4 9.6990− 7 1.0032− 6 1.03 2.3560− 7 0.24

5 5.0174− 8 2.4500− 9 0.05 2.9248− 8 0.58

6 2.0106− 10 2.3903− 10 1.19 5.2231− 11 0.26

7 7.4029− 12 4.2582− 13 0.06 4.3191− 12 0.58

Table 5. Local p-performance for PEP, h = 1/10, K = [0.4, 0.5].
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p Err+h,ωK
(uh) ηR,K EffR,K ηF,K EffF,K

1 1.1293− 2 1.6445− 3 0.15 6.4324− 3 0.57

2 2.7437− 4 2.6495− 4 0.97 1.5933− 5 0.06

3 5.8645− 6 9.6390− 7 0.16 3.3251− 6 0.57

4 8.8444− 8 1.0897− 7 1.23 5.3687− 9 0.06

5 1.0742− 9 2.0228− 10 0.19 6.0930− 10 0.57

6 1.0838− 11 1.5873− 11 1.46 6.8052− 13 0.06

7 1.1321− 13 2.4244− 14 0.21 5.4811− 14 0.48

Table 6. Local p-performance for CDRP, h = 1/10, K = [0.4, 0.5].

7. Conclusion

We derived a posteriori upper bound for not necessarily self-adjoint elliptic prob-

lems based on the cheap direct evaluation. We showed that this reconstruction is

efficient up to p1/2 for one-dimensional problems, where p is the underlying polyno-

mial degree given by the finite element approximation. The robustness with respect

to the mesh-size h and to the polynomial degree p was verified by numerical experi-

ments.

Since the majority of the techniques applied in the efficiency proofs in this paper

are extendable to multi-dimensional problems, the author hopes that the proof of

the efficiency up to p1/2 of this direct reconstruction for multi-dimensional problems

will be possible in the future.
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