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Abstract. We examine different approaches to an efficient solution of the stochastic
Galerkin (SG) matrix equations coming from the Darcy flow problem with different, uncer-
tain coefficients in apriori known subdomains. The solution of the SG system of equations is
usually a very challenging task. A relatively new approach to the solution of the SG matrix
equations is the reduced basis (RB) solver, which looks for a low-rank representation of the
solution. The construction of the RB is usually done iteratively and consists of multiple
solutions of systems of equations. We examine multiple approaches and their modifications
to the construction of the RB, namely the reduced rational Krylov subspace method and
Monte Carlo sampling approach. We also aim at speeding up the process using the deflated
conjugate gradients (DCG). We test and compare these methods on a set of problems with
a varying random behavior of the material on subdomains as well as different geometries of
subdomains.

Keywords: stochastic Galerkin method; reduced basis method; deflated conjugate gradi-
ents method; Darcy flow problem
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1. Introduction and motivation

When modeling real-life problems, we often want to obtain the result not only for

one combination of input parameters but for a whole set of acceptable parameters.

This can be caused by the inherent uncertainty in the parameters and the need

for a solution with a characterization of its dependence on uncertain parameters.
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Some examples of such problems are the stochastic homogenization, the uncertainty

quantification or the construction of a response surface.

Until recently, due to the lack of computation power, the standard mathemati-

cal modeling approach was constrained to a limited number of model evaluations.

Therefore, it usually used only one fixed combination of parameters (e.g. averages of

single inputs). But nowadays, the fast development of computational resources al-

lows computations of challenging problems. One of these computationally extensive

problems is the solution of partial differential equations (PDEs) with uncertainties in

parameters. Usual parameters affected by uncertainties are the boundary or initial

conditions, coefficients (material fields) and forcing terms. Natural examples of such

problems can be found for example in geosciences, where the parameters of geomate-

rials (aquifers) are usually highly variable. A particular example is e.g. the saturated

groundwater flow. Here the permeability is unknown and there are only limited and

expensive options on how to measure it. But if we use previous measurements of

similar aquifers, we can build a reasonable statistical description of the permeability

field (e.g. using a random field to describe porosity as in [20], [24], [15]) and approx-

imate the porosity-permeability relationship as in [33]. In this paper, we will focus

solely on the stationary Darcy flow (saturated groundwater flow).

Currently, there exists a broad palette of methods for solving such problems with

uncertainties. These methods can be divided into two basic groups: intrusive and

non-intrusive. Non-intrusive methods work primarily with single evaluations of deter-

ministic models (treated as “black-boxes”) using mostly an existing software. Non-

intrusive methods are easy to use, but cannot utilize specific properties of the prob-

lems. This can often lead to extensive computations. Intrusive methods do not rely

only on the “black-box” solvers but focus on the development of new approaches

taking into account specific properties of these problems.

As the main representatives of non-intrusive approaches, we can mention the fam-

ily of Monte Carlo (MC) methods [28], [10], which includes the Multi-level Monte

Carlo method [4], [16] and the response surface methods which use various methods

of the surrogate construction: space-filling curves [50], stochastic collocation [1], [35]

or radial basis functions [11], [43].

The backbone of most of the intrusive methods is the stochastic Galerkin method

(SGM), outlined in Section 3. It discretizes both the physical domain (using finite el-

ements (FE)) and the parameter space (using e.g. polynomials). A thorough descrip-

tion of the method can be found in [30], [56], [2]. The Galerkin approach, in compari-

son to non-intrusive methods, leads to more accurate predictions and allows for a bet-

ter control of numerical simulations through a posteriori error estimates [8], [17], [47]

and estimation using adaptive refining [9], [26], [55], [46], [31]. The main difficulty of

the use of SGM is the solution of the arising system of equations, which is very large.
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The standard approach uses an iterative Krylov method with a suitable precon-

ditioner, e.g. the block diagonal preconditioner [44], Kronecker preconditioner [53]

hierarchical Schur preconditioner [52]. An improvement of the standard approach

is the application of low-rank compression in each iteration, see e.g. [32], [5], [19],

[29]. Theoretical results about the efficiency of the low-rank approximations can

be found in [5]. A different approach is the Generalized Spectral Decomposition,

where the problem is treated as an extended eigenvalue problem and the solution is

built using the power-type method [36], [37], [41], [38], [40], [39]. There are also ap-

proaches specializing on specific problems with high dimensions which approximate

the solution using the tensor train or the hierarchical Tucker format [27], [3], [18].

A relatively new approach to the solution of the tensor structured stochastic

Galerkin systems of equations is the reduced basis (RB) approach, see Section 4.

The RB solver for the elliptic problem that constructs the RB using the rational

Krylov approximations can be found in [45]. Construction of the RB using MC

sampling (greedy algorithm) was presented in [54]. An alternative construction of

the RB using sampling via sparse grids is presented in [34], where it is applied to

the mixed formulation of the elliptic problem. A comparison of the RB and the

collocation approaches was presented in [13]. A thorough work on RB including

the comparison between greedy and proper orthogonal decomposition approaches to

the RB construction was presented in [14]. An alternative error estimator for the

acceleration of the RB construction was presented in [12].

The main aim of this contribution is the development and comparison of different

approaches to the construction of the RB. We are extending the results presented

in [6]. Sections 2 and 3 provide the problem setting and a minimal necessary in-

troduction to the SGM. Section 4 presents the reduced basis method and proposes

several strategies for its efficient construction. Section 5 contains extensive numerical

experiments showing the properties of the methods and their behavior for different

problem settings. We summarize the obtained results in Section 6.

2. Problem setting

Let us consider the steady Darcy flow with uncertainties in input data. We assume

that these uncertainties are represented by a finite dimensional random vector Z.

In the case of uncertainties given by a random process or a random field (infinite

dimensional), we would need to use a truncation of the Karhunen-Loéve decompo-

sition of such random process/field (see e.g. [30]). Therefore, all of our input data

and the solution are viewed as functions of both the physical domain Ω and a ran-

dom vector Z : uD(x;Z), uN(x;Z), f(x;Z), k(x;Z), u(x;Z) : Ω × R
M → R. The
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formulation of our problem is





−divx(k(x;Z) · ∇xu(x;Z)) = f(x;Z) ∀x ∈ Ω,

u(x;Z) = uD(x;Z) ∀x ∈ ΓD,

∂u(x;Z)

∂n(x)
= uN(x;Z) ∀x ∈ ΓN .

The uncertainty affecting only the right-hand side and boundary conditions uD(x;Z),

uN(x;Z), f(x;Z) (e.g. part of the random vector Z) can be easily stripped away

from the problems due to the superposition principle. We can use projection into

orthogonal polynomials which will yield decoupled problems. Therefore, we focus

only on the uncertainty contained in the permeability field k(x;Z). Without loss of

generality, we will restrict to the problem

(2.1)





−divx(k(x;Z) · ∇xu(x;Z)) = 0 ∀x ∈ Ω,

u(x;Z) = uD(x) ∀x ∈ ΓD,

∂u(x;Z)

∂n(x)
= 0 ∀x ∈ ΓN ,

where Ω = 〈0, 1〉2, ΓD = {0, 1}×〈0, 1〉, ΓN = ∂Ω\ΓD and uD(x) = x1 (pressure 0 on

the left-hand side of the rectangle and pressure 1 on the right-hand side of the rect-

angle). To complete the formulation, we need to specify k(x;Z) together with some

probability distribution of the vector Z = (Z1, . . . , ZM ). Here we assume that Ω

is decomposed into subdomains Ωi and the permeability field k(x;Z) is piecewise

constant. The constant value of k(x;Z) on each subdomain Ωi is controlled by Zi.

The splitting into subdomains is a natural outcome of the computed tomography or

can be provided by geological investigation of an aquifer. Thus, we assume sharp

knowledge of areas with different materials, but uncertainty in the knowledge of per-

meabilities. Additionally, we assume the log-normal distribution of the permeability

on each subdomain, which is natural for the permeability of aquifers, see [24]. The

random material field then takes the form

k(x;Z) =
M∑

i=1

χΩi
(x) exp(σiZi + µi),

where χΩi
(x) is a characteristic function of the subdomain Ωi, exp(σiZi + µi) de-

scribes the distribution of the permeability on the subdomain Ωi, and µi, σi are the

mean value and the standard deviation (std) of the underlying normal distribution.

This qualitatively corresponds to the distribution of the porosity, see [33]. Then the

components of Z are independent standard normal random variables.

194



2.1. Model problems. We want to investigate the behavior of RB construction

techniques, depending on both the mean value/variance of the random variable and

the geometry of the subdomain partitioning. We consider three different schemes

for the partitioning of the subdomains (see Figure 2.1), which create subdomains of

approximately the same sizes.

Figure 2.1. Examples of domain partition into subdomains. From the left: type 1 (3 subdo-
mains), type 1 (7 subdomains), type 2 (5 subdomains), type 3 (3 subdomains).

Type 1 : creates 100 × 100 grid and partitions cells to achieve the approximation

of the lowest cut (number of edges between cells assigned to different domains) using

the METIS package, see [25].

Type 2 : generates a discretized replication of a Gaussian random field on 100×100

grid (see e.g. [30]) and divides the domain into subdomains according to the range

of values.

Type 3 : creates grid 100× 100 and randomly assigns cells to the subdomains.

3. Stochastic Galerkin method

The SGM denotes the Galerkin method applied to the PDE with uncertain pa-

rameters in the form of functions of a random vector (here k(x;Z)). For a detailed

introduction see [30], [7]. The SGM assumes a discretization of both the physical

space (functions on the domain) and the stochastic/parametric space (functions of

random variables).

We start with the variational formulation of the problem (2.1)

(3.1)

{
Find u = uh + uD, uh ∈ V,

a(u, v) = 0, ∀ v ∈ V,

where

a(u, v) =

∫

Ω

(∫

RM

k(x;Z)∇xu(x;Z)∇xv(x;Z) dFZ

)
dx

and V is the tensor product of the Sobolev space H1
0 (Ω) and L

2

dFZ
(RM ), which is

the space of square integrable functions on RM with respect to the distribution of Z.
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Well-posedness of the problem (3.1) depends on the properties of k(x;Z). If

k(x;Z) > kmin > 0 for all x, Z, we can prove the existence and uniqueness of

the solution using the Lax-Milgram (LM) lemma. In the case of log-normal ran-

dom variables, we do not have such strong properties of k. Here we have only

P(k(x;Z) > 0) = 1 for all x and cannot use the LM lemma directly. The proof of the

well-posedness of the problem (3.1) with log-normal random variables can be found

in [21].

For the Galerkin discretization, we use a finite dimensional space with a basis

constructed as the tensor product of the basis 〈ϕ1(x), . . . , ϕNd
(x)〉 of standard linear

elements on Ω and the basis 〈ψ1(Z), . . . , ψNs
(Z)〉 of orthonormal polynomials with

respect to the distribution of Z. Due to the independence of random variables Zi, the

polynomial basis consists of the products of one dimensional Hermite polynomials.

The basis functions which correspond to degrees of freedom on the Dirichlet part of

the boundary ∂Ω are not considered as a part of the aforementioned FE basis.

Due to the separable nature of the material field, the values of the bilinear form

on elements of the tensor product basis can be written as

a(ϕiψj , ϕkψl) =

M∑

m=1

∫

RM

ψjψl exp(amZm + bm) dFZ

∫

Ωm

∇ϕi∇ϕk dx.

This leads to a large system (Ns ×Nd) of linear equations in the form of

(3.2) A · uh = b,

where

A =

M∑

m=1

Gm ⊗Km and b =

M∑

m=1

gm ⊗ fm,

(Gm)j,l :=

∫

RM

ψjψl exp(amZm + bm) dFZ, (Km)i,k :=

∫

Ωm

∇ϕi∇ϕk dx,

(gm)j :=

∫

RM

ψj exp(amZm + bm) dFZ, (fm)i :=

∫

Ωm

∇ϕi∇uD dx.

Matrices and vectorsGm, gm correspond to the discretization of the parametric space

(orthogonal polynomials). Matrices and vectorsKm, fm correspond to the discretiza-

tion of the physical space (FE).

3.1. Assembling of SGM systems. Assembling of the SGM system consists

of two contributions of different origins. The matrix Km and the vector fm come

from the finite element discretization and they can be assembled by the standard FE

assembling software. The more difficult part is the assembly of Gm and gm.
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We assume normalized Hermite polynomials ψi(Z). Note that each ψi(Z) =
M∏
j=1

ψi,j(Zj) is a product of one dimensional normalized Hermite polynomials. The

elements of the matrix Gm can be calculated as

(Gm)k,l =

∫

RM

ψk(Z)ψl(Z) exp(amZm + bm) dFZ

=

∫

R

ψk,m(Zm)ψl,m(Zm) exp(amZm + bm) dFZm

×
∏

i6=m

∫

R

ψk,i(Zi)ψl,i(Zi) dFZi,

where
∏
i6=m

∫
R
ψk,i(Zi)ψl,i(Zi) dFZi is either 0 if some of the polynomials ψk,i do not

equal ψl,i, or 1 otherwise. The rest of the formula can be evaluated according to the

following equalities

∫

R

f(Z) exp(aZ + b) dFZ =

∫

R

f(Z) exp(aZ + b)
1√
2π

exp
(
−Z

2

2

)
dZ

= exp
(a2
2

+ b
)∫

R

f(Z)
1√
2π

exp
(
− (Z − a)2

2

)
dZ

= exp
(a2
2

+ b
)∫

R

f(Z) dFZ̃,

where Z̃ ∼ N (a, 1). In the case of building matrices Gm, the function f(Z) is a prod-

uct of two polynomials (not orthogonal in measure dFZ̃). The integral
∫
R
f(Z) dFZ̃

can be precisely computed using the Gauss-Hermite quadrature rule. Note that∫
R
f(Z) dFZ̃ can be also evaluated analytically (if f is polynomial), but the ana-

lytic formula can be numerically unstable due to operations between small and large

values. The use of the Gaussian quadrature rule is also applicable to other types of

random variables. It converges very fast because the integrand is usually an analytic

function.

4. Reduced basis method

The work presented here is the continuation of [6], which extends the work

in [45], [34]. For theoretical background see [45], here we deal with details only

briefly.

We start with the equality

(4.1) (A⊗B)u = vec(BUA⊤), U = mat(u),

197



where mat(·) denotes the operation of reshaping a vector into a matrix of appropriate
size and vec(·) denotes the operation of unfolding the matrix into a vector. Therefore,
the tensor structure of the matrix A allows the system (3.2) to be viewed as the matrix

equation

(4.2)

M∑

m=1

KmXG
⊤
m =

M∑

m=1

fmg
⊤
m,

where X = mat(uh) denotes a matrix of size Nd × Ns arising from reshaping the

original vector of unknowns uh from (3.2), Nd is the number of degrees of freedom

of the FE basis and Ns is the number of degrees of freedom of the polynomial basis.

This formulation is algebraically equivalent to the system of equations (3.2), where

the matrix and the right-hand side are sums of Kronecker products of matrices.

The core of the RB method is the assumption that there exists a good low-rank

approximation X̃ of the solution X of the equation (4.2):

(4.3) X ≈ X̃ =WY, W ∈ R
Nd×Nk , Y ∈ R

Nk×Ns .

The RB method then seeks one of the factors W , Y . In the context of (4.2), the

factorW reduces the physical (spatial) dimension and the factor Y reduces the para-

metric dimension. Here, we aim at constructing the factor W . This is because the

FE basis has usually much more degrees of freedom and its approximation using the

RB allows us to incorporate existing FE software. In further text, we will addressW

as the RB of the problem. We describe the specifics of the RB construction using

two different approaches in Subsections 4.3 and 4.4, we also consider a combination

of these approaches in Subsection 4.5.

Our strategy is to construct the RB W iteratively. The RB iterations provide

a sequenceW0,W1, . . . In kth iteration (k > 1), we construct the RBWk by extending

the existing basis Wk−1,

Wk = [w1,1, . . . , w1,n1
, . . . , wk,1, . . . , wk,nk

] = [Wk−1, Vk] ∈ R
Nd×Nk , Nk =

k∑

i=1

ni,

where ni denotes the number of new vectors added to the RB in the ith iteration

and Vk is a matrix of nk vectors added in the kth iteration.

We construct the RB in such a way that Wk is orthonormal (W
⊤
k Wk = I). The

enhancement of the RB in the kth iteration Vk is built in the following way:

⊲ suggest new vectors Ṽk which expand the RB; this will be done by one of the

methods described in Subsections 4.3, 4.4, and 4.5,
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⊲ orthogonalize Ṽk with respect to Wk−1 : V k = Ṽk −Wk−1(W
⊤
k−1

Ṽk),

⊲ finally, we obtain Vk by orthonormalizing and compressing V k using e.g. the sin-

gular value decomposition (SVD); in further text, we use drop tolerance for the

compression step 10−12 (the threshold for singular values), this will filter vectors

too close to the linear span of Wk−1.

After its construction, Wk serves for computation of a low-rank approximation

Xk =WkYk of the solution X , and Yk is a reduced solution, which can be obtained

using the orthogonality between the residual of Xk and the RB Wk. The residual of

the low-rank approximation Xk is

(4.4) Rk :=

M∑

m=1

Km(WkYk)G
⊤
m −

M∑

m=1

fmg
⊤
m.

By applying the Galerkin orthogonality condition W⊤
k Rk = 0, we obtain the system

M∑

m=1

W⊤
k KmWkYkG

⊤
m =

M∑

m=1

W⊤
k fmg

⊤
m.

It can be easily seen that Yk is the solution of the matrix equation that has the same

structure as the original system, i.e.

(4.5)

M∑

m=1

Km,kYkG
⊤
m =

M∑

m=1

fm,kg
⊤
m,

where Km,k = W⊤
k KmWk, fm,k = W⊤

k fm. The dimension of the new system (4.5)

is greatly reduced in comparison to the original system (4.2) and can be more easily

solved by Krylov subspace iterative methods. We will elaborate further in Subsec-

tion 4.1.

The RB method can be now viewed as an iterative method with the kth iteration

consisting of the following steps:

⊲ construction of Wk,

⊲ assembly and solution of the reduced system (4.5),

⊲ construction of the approximation of the solution Xk = WkYk and evaluation of

the approximation error.

We can evaluate the approximation error using the relative residual of Xk. This

allows us to compare the results/convergence of the RB method with e.g. Krylov

subspace methods applied to the original system. But the computation of the residual

is very computationally/memory expensive becauseXk is a dense matrix of large size.

We briefly discuss some possibilities of error estimation of Xk in Subsection 4.2.
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4.1. Solution of the reduced system. If we view the system (4.5) in the “sys-

tem of linear equations” format, the matrix of the system is symmetric and positive

definite (SPD). Therefore, we use the conjugate gradients method for its solution.

For our numerical experiments in Section 5, we choose the mean value preconditioner

P = I ⊗W⊤K0W,

where K0 denotes the stiffness matrix corresponding to the mean value of k(x;Z),

see [44]. Note that the application of the preconditioner can be viewed as the solution

of the system with a block diagonal SPD matrix (see (4.1)).

We also suggest some techniques which aim at improving the efficiency of the

solution of the reduced system (4.5):

⊲ The matrices Km,k and the right-hand sides fm,k from the reduced system (4.5)

can be gradually extended with iterations of Wk. The structure Wk = [Wk−1, Vk]

implies that

Km,k =W⊤
k KmWk =

[
Km,k−1 W⊤

k−1
KmVk

V ⊤
k KmWk−1 V ⊤

k KmVk

]
,

fm,k =W⊤
k fm = [fm,k−1, V

⊤
k fm].

⊲ As we compute the solution of the reduced system (4.5) in every RB iteration, we

can use the solution from the (k − 1)st iteration filled by zeros [Y ⊤
k−1

; 0]⊤ as an

initial guess for the kth iteration.

⊲ We compute the reduced solution Yk using the conjugate gradient method and

obtain its approximation Ỹk with the residual rk. Therefore, we obtain the ap-

proximation X̃k = WkỸk with the residual R̃k. Note that the residual Rk of

Xk = WkYk is fully determined by Wk. For the obtained residual R̃k, we have

(using W̃k = I ⊗Wk, which represents the reduced basis Wk as the reduce basis

for the linear system (3.2))

(4.6) ‖R̃k‖ = ‖AW̃kvec(Ỹk)− b‖ = ‖AW̃k(vec(Yk) + (W̃⊤
k AW̃k)

−1vec(rk))− b‖
6 ‖Rk‖+ ‖AW̃k(W̃

⊤
k AW̃k)

−1‖‖rk‖ = ‖Rk‖+ ck‖rk‖,

where ck is an appropriate constant reflecting the properties of the matrix of

the system (3.2) and Wk. The residual ‖Rk‖ will be gradually smaller in each
consecutive RB iteration. Therefore, we can adaptively adjust the precision of the

iterative solution of the reduced system (4.5), so the contribution ck‖rk‖ to ‖R̃k‖
is low enough. We do not need to know the value of ck explicitly. It is sufficient

to start the RB method with low accuracy for the reduced system and gradually

increase it in the following iterations. If the decrease of ‖R̃k‖ is almost the same
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as the decrease of ‖rk‖, the precision of Ỹk is likely insufficient and the residual
error ‖R̃k‖ is driven by ck‖rk‖. Otherwise, we found a reasonable precision for
the current iteration and we can adjust it according to the decrease of ‖R̃k‖ in the
following iterations. For the numerical experiments see Subsection 5.7.

4.2. Stopping criterion. As mentioned above, the calculation of the resid-

ual (4.4) is memory and computationally very expensive. This is due to large di-

mensions of the dense matrix of the solution Xk. One possibility of dealing with

memory complexity is to exploit specific properties of the tensor structure of the

system matrix, compute the residual by parts and avoid the explicit construction

of Xk. The squared norm of the residual takes the form

‖Rk‖2 =
∥∥∥∥

M∑

m=1

Km(WkYk)G
⊤
m −

M∑

m=1

fmg
⊤
m

∥∥∥∥
2

.

First, we multiply factors of Xk by the corresponding matrices K̃m,k := KmWk,

G̃m,k := YkG
⊤
m. Matrix G̃m,k is not needed as a whole, but it is sufficient to construct

it by columns [G̃m,k]·,i. This will reduce the memory needed for the computation

fromNd ·Ns entries ofXk toM ·Nk(Nd+1) entries for K̃m,k, [G̃m,k]·,i. Matrices K̃m,k

can be also constructed gradually as K̃m,k = [K̃m,k−1, VkKm]. Note that this is

suitable only if M ·Nk ≪ Ns, otherwise we do not save much memory. Then we can

construct the squared norm by columns of the residual

‖Rk‖2 =

Ns∑

i=1

∥∥∥∥
M∑

m=1

K̃m,k[G̃m,k]·,i − fm[g⊤m]·,i

∥∥∥∥
2

.

This will also lower the computational complexity because we do not need to multiply

large sparse matrices Km, Gm by the large dense matrix Xk.

Another option is to control the step size ‖Xk−Xk−1‖ instead of the residual. As
we do not want to construct solutions explicitly, we can estimate the step size using

the reduced solutions Yk (recall that Wk = [Wk−1, Vk] and it is orthonormal)

‖Xk −Xk−1‖2 = ‖WkYk −Wk−1Yk−1‖2 =

∥∥∥∥WkYk −Wk

[
Yk−1

0

] ∥∥∥∥
2

=

√

trace

((
Yk −

[
Yk−1

0

])⊤

W⊤
k Wk

(
Yk −

[
Yk−1

0

])⊤)
=

∥∥∥∥Yk −
[
Yk−1

0

]∥∥∥∥
2

.

This is very cheap, but it does not grant a lower bound for the error. Numerical

experiments concerning the behavior of the step size, residual and error of the reduced

solutions are presented in Subsection 5.6.
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4.3. Monte Carlo approach. The Monte Carlo sampling is the simplest ap-

proach to the RB construction. The core of this approach is to sample realizations of

k(x;Z) and construct the RB from the corresponding solutions of the problem (2.1).

We will call this approach the crude MC approach.

In the crude MC approach, each sample k(x;Z) will lead to a solution of one

deterministic system. This can be inefficient when the samples do not carry addi-

tional information to the RB. This can be caused e.g. by the close distance between

samples or generally similar solutions for the samples. The crude MC approach can

be modified to lower the possibility of such samples. This can be done in two main

ways:

⊲ Avoiding already generated samples on the level of the sampler. This approach is

computationally inexpensive but does not directly translate to samples with a good

contribution to the RB. We will denote this technique as “avoiding sampling”.

⊲ Proposing multiple samples k(x;Zi) which leads to systems Aiui = bi. Computing

the reduced solution ũi in the current RB Wk

W⊤
k AiWkũi =W⊤

k bi

and evaluating the residual error of the reduced solution ũi

Ri = AiWkũi − bi.

Then we pick the sample with the highest residual error as the sample for the

expansion of the RB. This approach will ensure that the new sample carries addi-

tional information, but it is computationally expensive.

The first modification, which should avoid the already generated samples, can be

carried out in various ways. The simplest one would be the latin hypercube sampling,

see [28]. The major disadvantage of the latin hypercube sampling is the fact that we

can only generate N samples at one time and cannot add samples later. This is quite

prohibitive for our intended usage. We propose a different approach to the sampling

of k(x;Zi), which is done by altering the probability density function (pdf) of the

sampler. This can be done e.g. by lowering the pdf around the already generated

samples. Samples of k(x;Z) are given solely by the value of Z. Therefore, we will

work with samples and the pdf of Z. Assuming f(Z) the pdf of Z and n the already

generated samples Xi, the altered pdf function can take the form

f̃n(Z) ∝ f(Z) · min
i=1,...,n

wi(Z), wi(Z) := 1− exp
(
−1

2
(Z −Xi)

⊤Σ−1(Z −Xi)
)
,

where ∝ denotes proportionality and Σ is a SPD matrix. The functions wi(Z) are

zero atXi and increase up to 1 with increasing distance fromXi. A reasonable choice
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of Σ is the covariance matrix of Z. Samples from f̃n(Z) can be generated using the

Metropolis-Hastings (MH) method, see [48]. Note that this way of sampling does

not provide samples from the distribution given by f(Z).

We can also compare the MC approach with some deterministic approach of sam-

pling the points (replications of Z). Therefore, we need a way of reasonably filling

the space with points which allows iterative refinements. A possible way how to do

this is to use integration points of nested sparse grids. A description of the nested

Smolyak sparse grids with the Gaussian weight can be found in [42]. For our pur-

poses, we will use the implementation of nested sparse grids from [23]. This approach

of sampling points to construct the RB was used in [34].

Numerical experiments concerning the MC approach and the impact of its two

modification are presented in Subsection 5.1.1.

4.4. Reduced rational Krylov subspace approach. The reduced rational

Krylov subspace (RRKS) approach to the construction of the RB was presented

in [45]. For more information about the rational Krylov subspace (RKS) approxi-

mation of matrix functions see [22].

In our application, we will operate only with SPD matrices. Therefore, the follow-

ing definitions and relations are constrained only to these matrices although some of

them can be extended to more general types of matrices.

Definition 4.1. Let A be a real SPD matrix with eigenvalues λ1, . . . , λn, α =

[α1, . . . , αk−1], αi ∈ R \ {λ1, . . . , λn}, and let v be a real nonzero vector. Then

Kk(A, v,α) := span

{
v, (A− α1I)

−1v, . . . ,

k−1∏

j=1

(A− αjI)
−1v

}

is the RKS of order k associated with the matrix A, the vector v and parameters α.

Definition 4.1 is taken from [51]. Note that Definition 4.1 is specific to our problem

and there are also other definitions of the RKS.

Here, we use the RRKS to create a subspace with a given set of SPD matrices

{Am}Mm=1 and nonzero vectors {vm}Mm=1. We assume one common parameter α for

all matrices, additionally we assume this parameter to be positive. We define partial

subspace

K(α, v) := span{(Am + αI)−1v}Mm=1.

The RB is built iteratively. We start with W0 = orth({vm}Mm=1), where orth(V )

denotes the orthonormalization of the columns of V . Then we enhance Wi−1 by

K(αi, wi) in each RB iteration. The vector wi, which generates the expansion to

the RB, is chosen as the ith column of Wi−1 and αi is the parameter of the RKS.
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Other approach to the choice of wi is discussed in Subsection 4.4.2. The choice of

parameters αi is generally hard (with respect to the approximation quality of W ),

we will focus on a single parameter value α1 = α2 = . . . = αk−1 as it was a viable

choice presented in [45]. The choice of this single parameter is numerically tested in

Subsection 5.1.2.

In our case the matrices {Km}m=1,...,M are symmetric but only positive semi-

definite. In the general case, these matrices can by indefinite if a decomposition of

the permeability field

k(x;Z) =

M∑

i=1

ki(x)gi(Z)

leads to factors ki(x) with negative values. To effectively use the RKS, we need to

transform the problem. The matrices corresponding to the physical discretization

need to be SPD and ideally with spectra in some small interval. We will proceed as

in [45]. Recall the permeability field taking the form

k(x;Z) =

M∑

i=1

χΩi
(x)gi(Z).

We want the matrices Ki to contain as much information about k(x;Z) as possible.

Therefore, we assume that the matrices Ki correspond to the permeability fields

χΩi
(x)E(gi(Z)), i.e., Ki contains additional information about the mean value of

the permeability. Note that E(gi(Z)) is a positive constant. Then we define the

mean value matrix K0 as the sum of Ki. The matrix K0 is SPD. This is easy to see

because in our case

M⋃

i=1

Ωi = Ω and E(gi(Z)) > k0 > 0 ∀ i = 1, . . . ,M.

Next, assume a factorization K0 = LL⊤, where L can be e.g. the Cholesky factor

of K0.

R em a r k 4.2. Let Ki be the finite element matrix corresponding to the prob-

lem (2.1) and the permeability field ki(x) = χΩi
(x)E(gi(Z)). Then Ki are symmetric

positive semidefinite and their sum

K0 =

M∑

i=1

Ki

is SPD with possible factorization K0 = LL⊤. Then the spectrum of L−1KiL
−⊤ is

contained in 〈0, 1〉.
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P r o o f. L−1KiL
−⊤ is symmetric. The largest eigenvalue of L−1KiL

−⊤ can be

expressed as (L is regular)

λmax = sup
x : ‖x‖6=0

x⊤L−1KiL
−⊤x

x⊤x
= sup

y : ‖y‖6=0

y⊤Kiy

y⊤K0y
= sup

y : ‖y‖6=0

y⊤Kiy∑M
j=1

y⊤Kjy
.

Therefore, λmax 6 1. Similarly, because Ki is positively semi-definite, λmin > 0. �

We can transform the system (4.2) to

M∑

m=1

L−1KmL
−⊤L⊤XG⊤

m =

M∑

m=1

L−1fmg
⊤
m.

According to Remark 4.2, the spectrum of each L−1KmL
−⊤ is in 〈0, 1〉. After this

transformation, we will seek the solution X̃ = L⊤X instead of X . We will obtain

SPD matrices by shifting the spectra by some positive value. This leads to the

formulation

M∑

m=1

(L−1KmL
−⊤ + βI)X̃G⊤

m − β

M∑

m=1

X̃G⊤
m =

M∑

m=1

L−1fmg
⊤
m.

Now we have obtained the set of SPD matrices Am = (L−1KmL
−⊤ + βI), all with

spectra in 〈β, 1 + β〉.
Finally, we can implement RRKS with matrices {L−1(Km + βK0)L

−⊤}Mm=1 and

vectors {L−1fm}Mm=1 to approximate the transformed solution X̃. The shift β can

be merged with RKS parameters αi.

4.4.1. Construction of RB without the factor L. The usefulness of the

aforementioned approach is limited by the need to build the factor L. We propose

an alternative construction of the RB, which leads to the same approximation space

without the factor L. First, let us write down how the vectors of W (approximating

X̃ = L⊤X) look like. The first i = 1, . . . ,M iterations of the RB will enhance the

basis by the span of

{L⊤(Km + αK0)
−1 LL−1

︸ ︷︷ ︸
I

fi}Mm=1.

Other i = M + k +M · (l − 1) (k = 1, . . . ,M , l = 1, . . . ,M) iterations will enhance

Wi−1 by the span of

{L⊤(Km + αK0)
−1 LL⊤

︸︷︷︸
K0

(Kk + αK0)
−1 LL−1

︸ ︷︷ ︸
I

fl}Mm=1.
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The process will continue with the same pattern. Note that the factor L remains only

in front of the expression, the others are eliminated or form the matrixK0. Therefore,

the RB W can be expressed asW = L⊤W̃ . The RB W̃ can be built in the same way

asW , but with matrices {K−1

0
Km}m=1,...,M , starting vectors {K−1

0
fm}m=1,...,M and

RRKS parameter α. The first i = 1, . . . ,M iterations expand W̃i−1 by the span of

{(Km + αK0)
−1K0K

−1

0︸ ︷︷ ︸
I

fi}Mm=1

and next i = M + k +M · (l − 1) (k = 1, . . . ,M , l = 1, . . . ,M) iterations expand

W̃i−1 by the span of

{(Km + αK0)
−1K0(Kk + αK0)

−1K0K
−1

0︸ ︷︷ ︸
I

fl}Mm=1.

Now, if the basis W = L⊤W̃ approximates X̃ = L⊤X , we can use the basis W̃

directly to approximate X . We can view the system as the system of linear equations

with the corresponding RBW = I⊗W . Then, Remark 4.3 provides that the obtained
approximation of X is the same whether using W or W̃ .

R em a r k 4.3. Let A,B be regular matrices and W̃ a RB designed to approxi-

mate the solution of the system

Ax = b,

i.e. x ≈ W̃y, W̃⊤AW̃y = W̃⊤b. Further, let W = orth(B⊤W̃ ) be the RB for the

transformed system

AB−⊤x̃ = b, x = B−⊤x̃,

or equivalently

B−1AB−⊤x̃ = B−1b,

i.e. x̃ ≈ Wỹ, W⊤B−1AB−⊤Wỹ = W⊤B−1b. Then the reduced approximation of

the solution is the same for both the original and the transformed system

x ≈ W̃y = B−⊤Wỹ ≈ B−⊤x̃.

P r o o f. W can be expressed in the form W = B⊤W̃G, where G is a regular

matrix, which arises from the orthonormalization of B⊤W̃ (e.g. using the Gram-

Schmidt process). The reduced approximation of the system Ax = b with the RB

W̃ is x ≈ W̃y, where

y = (W̃⊤AW̃ )−1W̃⊤b.
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The reduced approximation of the transformed system B−1AB−⊤x̃ = B−1b with

RB W = B⊤W̃G is x̃ ≈ B⊤W̃Gỹ, where

ỹ = G−1(W̃⊤AW̃ )−1W̃⊤b→ ỹ = G−1y.

Therefore, x̃ ≈Wỹ = B⊤W̃y. �

4.4.2. Approaches to expansion vector choices. In the previous text, we

assumed that the enhancement of the RB is based on the ith vector of the basis.

This is not very optimal because we use vectors regardless of their quality. We can

try to predict the quality of expansions given by vectors by a weighting. Then we

use vector with the highest weight, which was not used yet. We will consider two

different weighting schemes:

(1) Default, i.e. ordering of the vectors—the ith iteration uses the ith vector (as

in [45]).

(2) Using the norms of the corresponding rows of the reduced solution matrix Yi.

When we build the approximation of the solution Xk = WkYk, the values in

rows of Yk correspond to the contribution of each vector of Wk to the reduced

approximation. We can use the norms of these vectors of values as an indicator

of how much is the vector significant in the reduced solution.

Numerical tests of these approaches can be found in Subsection 5.1.2.

4.5. Combination of MC and RRKS approach. Subsections 4.3 and 4.4

described two different approaches to the construction of the RB. Each of these

approaches may be better for different types of problems. This can be a motivation

for combining them to create a more robust approach. The combination of the MC

and the RRKS approaches will be done on the level of RB iterations. This means

that in some RB iterations we will expand the RB using the MC approach and in

others using the RRKS approach. We propose two different schemes of choosing

which approach will be performed in ith RB iteration:

⊲ Alternate iterations—we perform the RRKS approach in odd iterations and the

MC approach in even iterations.

⊲ Weighted iterations—we try to estimate which approach is better in the current

state of the RB by looking at the step size ‖Xi −Xi−1‖. We start with alternate
iterations for the first 2n iterations. Then we choose the approach using the sum

of the step size in the last n RB iterations using the MC approach and the last n

RB iterations using the RRKS approach. The approach with a larger sum of past

step sizes will perform the current RB iteration.
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4.6. Acceleration of reduced basis construction using deflated conjugate

gradient method. During the construction of RB, we need to solve multiple similar

FE systems. In the case of RRKS approach, these systems consist of M different

matrices (Km+αK0) and various right-hand sides. In the case of the MC approach,

these systems are the FE systems arising from random samples of Z. Our aim is

to speed up the solution of the subsequent systems using the information from the

solution of the previous systems, more accurately we will use the available RB as the

deflation space.

Deflated conjugate gradients (DCG) method is an extension of the standard con-

jugate gradient (CG or PCG if using a preconditioner) method, see [49]. The DCG

method takes an additional parameter in the form of the deflation basis W . The

deflation basis W should be able to describe the sought solution reasonably well.

Therefore, the DCG method looks for the solution outside of the deflation basis W .

In our application, we use the current RB as a deflation basis W .

The core of the DCG is to project the residual (or the preconditioned residual)

using the projector P = I −W (W⊤AW )−1W⊤A during the CG routine. The most

significant additional cost of this step is the solution of coarse systems with matrix

Qi = W⊤
i AWi (in ith iteration of the RB solver). In our application, the size of

the matrix Qi (corresponding to the size of the RB) is reasonably small and we

can use e.g. explicit inversion. Additionally, if we have some fixed set of matrices

(RRKS approach) and use the explicit inversion, we can exploit adaptive updates of

deflation basis Wi = [Wi−1, Vi] and calculate Q
−1

i using the Schur complement with

known Q−1

i−1
. The deflation basis in the ith iteration of the RB solver is

Wi = [Wi−1 Vi], Qi =

[
W⊤

i−1AWi−1 W⊤
i−1AVi

V ⊤
i AWi−1 V ⊤

i AVi

]
,

where W⊤
i−1AWi−1 = Qi−1. We reuse Q

−1

i−1
from the previous iteration. Denoting

Bi = V ⊤
i AWi−1 and Ci = V ⊤

i AVi, we get the following update for the calculation of

the inversion:

Q−1

i =

[
Qi−1 B⊤

i

Bi Ci

]−1

=

[
Q−1

i−1
+Q−1

i−1
B⊤

i S
−1

i BiQ
−1

i−1
−Q−1

i−1
B⊤

i S
−1

i

−S−1

i BiQ
−1

i−1
S−1

i

]
,

where Si = Ci −BiQ
−1

i−1
B⊤

i and has the dimension equal to the number of columns

of Vi (can be one). Note that the solution with Qi has to be performed with a suffi-

cient precision otherwise we can encounter stagnation or break down of the DCG.

Numerical experiments considering the number of iterations saved using DCG

compared to PCG can be found in Subsection 5.5.
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5. Numerical experiments

The purpose of this section is to provide extensive numerical experiments of all

aspects of the solution of the stochastic Galerkin equations by the introduced RB

methods. We will assume the following notation and the settings of the methods and

problems:

⊲ according to Subsection 2.1, we assume three types of geometries denoted as P1,

P2, P3,

⊲ the number of subdomains, and therefore the number of random variables, is

denoted by M ,

⊲ the behavior of the material on each subdomain is given by a random variable Zi

with mean value µi and std σi, the mean values µi are considered constant (except

in Subsection 5.3.1) and given by Table 1,

⊲ different FE grid sizes correspond to a regular discretization 100i× 100i (denoted

as “grid lvl i”); if not specifically stated otherwise, “grid lvl 1” is used in further

tests,

⊲ multiple sizes of complete polynomial bases with a given maximal degree; in further

tests, we use polynomials up to degree 4, if not specifically stated otherwise,

⊲ parameters of the methods are chosen according to the results of experiments in

Subsection 5.1.

M i 1 2 3 4 5 6 7

1 −6

2 −15 -6

3 −15 −10.5 −6

4 −15 −12 -9 −6

5 −15 −12.75 −10.5 −8.25 −6

6 −15 −13.2 −11.4 −9.6 −7.8 −6

7 −15 −13.5 −12 −10.5 −9 −7.5 −6

Table 1. Values of µi for different number of variables M .

Apart from the testing of the settings and modifications of selected approaches to

the construction of RB, we will test the impact of different geometries of a subdomain,

mean values µi and stds σi. We can view the analytic solution of problem (2.1) in

the generalized spectral decomposition form

u(x;Z) =

∞∑

i=1

λiϕi(x)ψi(Z),
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where ϕi(x) and ψi(Z) are orthonormal bases of the corresponding spaces. Then

the rate of the decay of the spectra λi determines the efficiency of the low-rank

approximation. Our assumption is that different settings lead to a different rate

of decay of the spectra of the solution operator. This would mean that for some

problems a low-rank approximation does not bring a sufficiently low error. We expect

that these types of behavior will decrease the rate of decay of the spectra:

⊲ an increasing number of subdomains (and variables),

⊲ more complex geometries; we assume that P3 is the most complex geometry, in

comparison with P2 and then P1,

⊲ higher contrast of materials on subdomains (higher differences in mean values µi),

⊲ higher stds σi (larger state space to cover).

5.1. Impact of solvers parameters choice. Approaches presented in Section 4

have several parameters. Here we test the impact of these parameters on the con-

vergence of the RB method and choose some setting for further usage.

5.1.1. Monte Carlo approach. As mentioned in Subsection 4.3, we assume two

possible modifications of the crude MC approach. The first is to propose multiple

samples and then to choose the one with the greatest residual of the reduced solution

in the current RB. The second is an alternative sampling (avoiding sampling) of

proposal samples using an altered pdf with lowered probability around already used

samples. We can also mix these modifications together. Sampling from the altered

pdf will be done using the MH method with 5000 steps and the proposal pdf equal

to the original pdf of Z. As the MC approach includes a significant amount of

randomness, its convergence will differ in each replication (for the same problem).

Therefore, we use 100 sample solutions and then evaluate their results. We will be

interested in both the mean of the convergence and the variance of the convergence.

When comparing two convergence curves, we are more interested in their ratio than

their difference. Therefore, we will use log-transformed average denoted as log-

average, which is equivalent to the geometric mean (in this section N = 100)

(5.1) Xg = exp

(
1

N

N∑

i=1

log(Xi)

)
=

( N∏

i=1

Xi

)1/N

,

and log transformed std denoted as log-std which is equivalent to the geometric std

(5.2) sg = exp

Ã

1

N

N∑

i=1

log

(
Xi

Xg

)2

.

210



For a more convenient view of the results, we can use Chebyshev’s inequality, e.g. in-

terval 〈Xg/s
3
g, Xg · s3g〉 contains 81% values.

We perform tests on geometry P2, FE grid lvl 1, complete polynomials up to

degree 4 and use three different settings (M = 2, σi = 2), (M = 3, σi = 1),

(M = 4, σi = 0.2). The mean values of Zi are chosen according to Table 1. We

test combinations of 1, 10, 100 proposal samples and standard/avoiding sampling

(non-avoiding variant with one proposal sample is the crude MC approach). Here,

one RB iteration is understood as adding one vector to the RB, therefore one RB

iteration corresponds to one solution of a deterministic FE system. The results of

log-averages can be found in Figure 5.1a and the results of log-std can be found in

Figure 5.1b. The results show that avoiding sampling as well as multiple proposal

samples have a significant impact on the convergence speed. The impact is higher for

the problems with a lower number of variables and high std σi of Zi. The benefits of

modifications are not only in the faster convergence but also in the more consistent

results. From the results of log-std, we can see that multiple proposal samples and

avoiding sampling lowers the variance of single algorithm runs. This is again more

significant for a lower number of variables and high σi.

The results also show the sudden stagnation of convergence when the MC approach

reaches a certain precision (relative residual). This is characteristic for all results

obtained with the MC approach and will be further discussed in Subsection 5.4.2.

Figure 5.1a also presents the comparison with deterministically chosen points using

the sparse grid points. The usage of sparse grid points leads to a worse convergence

than the MC approach with modifications, but it brings no additional computational

costs (e.g. in the computation of reduced solutions). It can be preferred in some

cases.

5.1.2. Reduced rational Krylov subspace approach and combined ap-

proach. The first numerical experiment concerns the choice of parameter α of the

RRKS approach (and also the combined approach). We perform tests using FE grid

lvl 1, complete polynomials up to degree 4, M = 5 and σi = 0.2. We test α in the

range 1/10 to 10 and for comparison use all three types of geometries. The combined

approach uses an alternate choice of approaches, even RB iterations use the RRKS

approach and odd RB iterations use the MC approach using 10 proposal samples

and avoiding sampling. One RB iteration of RRKS expands the RB withM vectors.

Therefore, one RB iteration of the MC approach also expands the RB with M vec-

tors (M inner steps of the MC approach) to balance the combined approach. The

results of numerical experiments concerning the impact of α on the relative residual

in the fixed RB iteration can be found in Figure 5.2. The optimal value of α differs

slightly between geometry types. We can see that values α < 1 yield bad results in
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(a) log-average (see (5.1)) compared to the relative residual of sparse grid sample selection.
Horizontal axis: RB iteration, vertical axis: mean of RB relative residual.
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(b) log-std (see (5.2)). Horizontal axis: RB iteration, vertical axis: std of RB relative
residual.

Figure 5.1. Results of the relative residual of 100 sample runs of MC approach with differ-
ent settings (crude—M/Avoided—A; 1, 10, 100 proposal samples) on geometry
type P2. Both figures from the left: (M = 2, σi = 2), (M = 3, σi = 1), (M = 4,
σi = 0.2).

all tested settings and that the results get slightly worse with high values of α, but

any choice of α > 1 leads to satisfactory results. We will use α = 2 in all further

tests. We can link these results to the fact that the spectra of preconditioned ma-

trices L−1KmL
−⊤ are in 〈0, 1〉. Therefore, very high values of α would override the

information in matrices and very low values of α would lead to badly scaled matrices

(high condition number).

Another possible parameter is the scheme for the choice of the new expansion

vector in the RRKS approach (see Subsection 4.4.2). We test the weighted and non-

weighted approach for all three geometry types and for M = 3, 5, 7, the results can

be seen in Figure 5.3. The results show that the weighted approach performs slightly
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Figure 5.2. Dependence of relative residual in fixed RB iteration on the choice of RRKS
parameter α (multiple geometry types (P1, P2, P3), M = 5, σi = 0.2). Left:
RRKS approach, Right: combined approach. Horizontal axis: α, vertical axis:
relative residual of RB.

better. The gain in convergence speed is not significant, but it is consistent. We will

use the weighted approach in all further tests.
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Figure 5.3. Convergence of weighted (W) and non-weighted (N) RRKS approach (M ∈
{3, 5, 7}, σ = 0.2). Geometry types from left: P1, P2, P3. Horizontal axis: RB
iteration, vertical axis: RB relative residual.

The last numerical experiment concerns the choice of approach selection in the

combined approach (see Subsection 4.5). We test the alternate option and the

weighted option. The weighted option uses the step sizes computed during the RB

iterations to decide which approach performs better in the current state of the RB

computation. The weighted approach can be used with a different size of the buffer

(how many of last iterations affect the decision). The results of testing can be found

in Figure 5.4. We show results only for geometry types P2 and P3, there were no

differences between approaches in geometry type P1 due to very fast convergence

(under 10 RB iterations). The results show an improved convergence when using the
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weighted approach. This is more significant in the regions where it is clear which ap-

proach performs better (start—MC, end—RRKS). The gain of the convergence speed

can be up to 2×, when one approach stagnates. The size of the buffer decreases the
speed of switching between approaches but brings more stability to the process. We

will use the weighted approach with buffer size 4 in all further experiments.

Alternate Weighted 1 Weighted 2 Weighted 4
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Figure 5.4. The convergence of MC/RRKS selection techniques (Alternate, Weighted with
buffer size 1, 2, 4) for the combined approach (M = 5, σ = 0.2). Geometry
types from left: P2, P3. Horizontal axis: RB iteration, vertical axis: RB
relative residual.

5.2. Impact of problem geometry. Next experiments concern the impact of

different geometries of the subdomains. First, we test the impact of adding more

subdomains (which increases the number of random variables). We use the geometry

type P2 because it allows the scaling of the number of subdomains while keeping the

arrangement of the subdomain fixed (see Subsection 2.1). This should eliminate at

least some of the behavior caused by different subdomain arrangement. The results

can be found in Figure 5.5. Note that the x axis describes the number of solutions

(M times RB iterations) and it is in the logarithmic scale. The results show that
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Figure 5.5. Convergence of different approaches (P2, M = 2, 3, 4, 5, 6, 7, σi = 0.2). Ap-
proaches from left: MC, RRKS, combined. Horizontal axis: no. of solutions,
vertical axis: RB relative residual.
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all the methods deal with an increasing number of variables in the same way. The

increase in the number of variables leads to a slower convergence rate. We can

also observe the stagnation of the MC approach, this will be further discussed in

Subsection 5.4.2.

The second experiment tests the impact of the different geometry arrangement.

For this, we use the geometry type P2 and generate different Gaussian random field

samples on which the geometry is based. In this way, we get different geometries of

similar properties. The results are in Figure 5.6. The log-average exhibits the same

behavior as the previous tests: the MC approach converges fast and then stagnates,

the RRKS approach keeps a steady but slower convergence rate, and the combined

approach mixes the good properties of these two behaviors together. The log-std

shows that there are fairly significant differences between the geometry samples. The

MC and the combined approach have a higher log-std than the RRKS approach, this

is probably due to its random nature. An interesting fact is that the MC approach

has a high log-std after log-average converges. This is due to different precisions in

which the stagnation of convergence occurs.
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Figure 5.6. Convergence of 20 random samples of geometry type P2 (M = 5, σi = 0.2).
Left: log-average (see (5.1)), Right: log-std (see (5.2)). Horizontal axis: RB
iteration, vertical axis: log mean of RB realative residual.

5.3. Impact of random variables mean and variance. Aside from the geom-

etry of subdomains, a fairly large impact on the convergence can be expected from

the mean values and the stds of Zi.

5.3.1. Mean values of random variables. The impact of the mean value will

be tested using the solutions of problems with randomly generated mean values µi ∼
N (0, 3). We performed 30 samples with all geometry types with M = 5, σi = 0.2.

The results are in Figure 5.7. We can again see that the MC approach stagnates

at some point (will be further discussed in Subsection 5.4.2). The stagnation of
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convergence of the RRKS in P1 is caused by the stopping condition in 10−12. Overall

the convergence of the log-average is in agreement with the previous tests. The

log-std values show that the difference in the convergence due to differing mean

values is significant. Compared to the difference caused by geometry samples, it

has about 4 to 5 times higher log-std. An exception to this is the geometry type

P3, where the log-std is 6 times lower than in P1 and P2. This is caused probably

by the fact that the geometry type P3 represents a problem where the solution

does not have efficient low-rank approximation regardless of the mean values on

subdomains.
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Figure 5.7. The relative residual of problems with random mean value on subdomains
µi ∼ N (0, 3) (30 samples, M = 5, σi = 0.2). On both sub-figures from left:
P1, P2, P3.

5.3.2. Variance of random variables. The results of the tests for stds σi =

0.1, 0.2, 1, 2 are shown in Figure 5.8. We show the results on the geometry type P2,

but the behavior of the convergence curves is the same for other geometry types too.

We can observe the predicted behavior, higher values of std lead to a more complex

problems and therefore slower convergence rate. The decrease in the convergence

rate is similar for all types of the problems and the approaches. Again, we see the

stagnation of the MC approach (see Subsection 5.4.2).
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Figure 5.8. The comparison of convergence for different values of σi (P2, M = 5). Ap-
proaches from left: MC, RRKS, combined. Horizontal axis: RB iteration,
vertical axis: RB relative residual.

5.4. Impact of discretization size. In this section, we focus on the examination

of the impact of different discretizations on the resulting approximation error. In

comparison to the other tests, here we use the RRKS approach with non-weighted

expansion vector selection. We will use the geometry type P2 and 5 subdomains.

5.4.1. Finite element grid sizes. We test three different FE grid levels (1, 2, 4).

The results are in Figure 5.9. We can observe that the convergence does differ

only by a small factor. The relative residual using finer grids is smaller. This

is caused by the usage of the relative residual as the convergence criterion, because

finer discretizations lead to a higher norm of the right-hand side vector. Doubling the

discretization level will increase the norm of the right-hand side vector approximately

by the factor of
√
2. This is in agreement with the measurements, where single

convergence curves are scaled by the multiple of
√
2. Therefore, there is no effect of

different FE discretizations on the convergence of the RB.
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Figure 5.9. The convergence of RB with different finite element discretizations (P2,M = 5,
σi = 0.2). Approaches from left: MC, RRKS, combined. Horizontal axis: no.
of solutions, vertical axis: RB relative residual.

5.4.2. Polynomial chaos degrees. Here, we examine the behavior of the RB

convergence when the discretization of the parameter space changes. We test the
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discretizations consisting of complete polynomials with the maximal degree from 1

to 8. The results can be found in Figure 5.10. The tested RB construction approaches

(MC and RRKS) build the RB independently of the discretization in the parametric

space. Therefore, we expected that when we increase the degree of the polynomial

the error of the current RB approximation will slightly increase. This happened in

the RRKS approach and also in the MC approach before the stagnation occurred.
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Figure 5.10. Convergence of RB with different polynomial chaos discretizations (P2,M = 5,
σi = 0.2). Approaches from left: MC, RRKS, combined. Horizontal axis:
number of solutions, vertical axis: RB relative residual.

The interesting part of our results is the behavior of the stagnation of the MC ap-

proach. It is clear that the stagnation occurs later when we use a finer discretization

in the parametric space. This is probably caused by the approximation properties

of the basis constructed by the MC approach. The MC approach constructs the RB

from the samples of the solution u(·;Z). These samples can dramatically differ from

the equivalent samples of the discretized SGM solution when the degree of polyno-

mials is not sufficient to describe the solution properly. This discrepancy probably

leads to a stagnation of convergence of the MC approach. Therefore, the stagnation

of the MC approach is not a bad property of the approach, but a beneficial one

indicating that the approximation of the parametric space is insufficient.

5.5. Acceleration of inner FE systems computation using the DCG. We

compare the difference between a number of iterations when using the DCG with

the current RB as the deflation basis and the PCG. We perform tests with three

preconditioners:

⊲ additive Schwarz preconditioner, set with 30 subdomains = equal column slices of

our square domain of the size 1/20,

⊲ incomplete Cholesky preconditioner with no filling allowed,

⊲ diagonal preconditioner (Jacobi).
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Graphical comparison of the iterations count can be seen in Figure 5.11. We can

see that the usage of the RB as the deflation basis significantly decreases the number

of iterations. The number of iterations when using PCG is almost constant during

the RB iterations, but the number of DCG iterations gets gradually lower. Note

that the descend of the number of DCG iterations is not granted. It is possible that

the RB method encounters a proposal vector containing new information outside the

deflation basis. In that case, the number of iterations will be higher than in the

previous steps of RB, but never higher than in PCG. Cumulative results are shown

in Table 2. We can see that the usage of the DCG can save up to 80 % of the CG

iterations during the RB computation.
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Figure 5.11. The dependence of the average number of the DCG/PCG iterations per inner
system on RB iterations (until relative residual 10−9), (MC approach, P1,
M = 5, σi = 0.2). Horizontal axis: RB iteration, vertical axis: average
DCG/PCG iteration.

Ad. Schwarz p. diagonal p. ichol (nofill) p.

RRKS savings in % 72.32% 73.47% 73.33%

MC savings in % 82.58% 83.48% 83.06%

Table 2. Computational savings using DCG with the RB as a deflation basis.

5.6. Stopping criterion. In Subsection 4.2, we discussed different stopping crite-

ria. Here we test the behavior of the relative residual and the step size in comparison

to the relative error. The relative error is computed from the solution obtained using

the PCG and the mean value preconditioner [44], note that this is fairly expensive

and we can perform such computation only for small FE grids/polynomial bases. We

perform the experiment using the combined approach and three different settings of

the problem: (P2, M = 3, σi = 1, degree = 4), (P2, M = 5, σi = 0.2, degree = 7)

and (P3,M = 5, σi = 0.2, degree = 8). The results can be found in Figure 5.12. We

can see that both the relative residual and the step size have convergence very similar

to the relative error. It exhibits a little noisy behavior, which can be corrected by
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averaging with a buffer of last step sizes. Overall the step size seems to be a viable

stopping criterion.

relative error relative residual step size
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Figure 5.12. Comparison of different stopping criteria using the combined approach. From
left: (P2, M = 3, σi = 1, degree = 4), (P2, M = 5, σi = 0.2, degree = 7),
(P3, M = 5, σi = 0.2, degree = 8). Horizontal axis: RB iteration, vertical
axis: stopping crit.

5.7. Solutions of the reduced system. In Subsection 4.1, we proposed the use

of the adaptive precision when solving the reduced solution. Here we test the depen-

dence between the residual of the reduced solution (CG precision) and the residual

of the RB, which leads to an estimation of ck from (4.6). The test is performed using

the RRKS approach, P2, M = 2, σi = 0.2. Results can be seen on the left side of

Figure 5.13. We can see that ck is very close to 1 in all tested RB sizes. This is a very

good behavior, because our method estimates ck by lowering CG precision between

RB iterations and compares it with the descend of the RB relative residual (or step

size). Therefore, it will find a good approximation very fast. Next, we compare the

benefits (in terms of the iterations saved) of adaptive precision. Results can be found

on the right side of Figure 5.13. These results are very good, we need to perform

only a few iterations in the first few RB iterations and then it is enough to perform

only one iteration per RB iteration. This lowers the computational cost significantly

without affecting the resulting accuracy.

6. Conclusions

The main contribution of this paper can be divided into two parts: modifications

of the existing approaches to the construction of the RB and the examination of the

behavior of these approaches for various problem settings.

The first of the examined approaches was the MC (Monte Carlo) approach. We

proposed an alternative sampling procedure, which could be combined with the mul-

tiple sample proposal, see Subsection 4.3. Its benefits were more significant for
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problems with a lower number of variables, see Subsection 5.1.1. We observed that

the MC approach always stagnated at some point. The precision where the MC

approach stagnated was lower for more complex problems (high standard deviation,

more subdomains).

Further, we considered the RRKS (reduced rational Krylov subspace) approach.

In Subsection 4.4 we presented an alternative construction without the need for com-

puting the Cholesky factorization of the FE matrix. We also improved the expansion

vector selection scheme (see Subsection 4.4.2) and the results were presented in Sub-

section 5.1.2. The RRKS approach converged more slowly than the MC approach,

but did not encounter stagnation.

We also combined the above approaches into a hybrid method adaptively switch-

ing between MC and RRKS approaches, see Subsections 4.5 and 5.1.2. The com-

bined approach was able to combine the positive properties of both approaches. It

converged fast at the start of RB computation due to switching to MC approach

and preserved at least a lower convergence rate later due to switching to RRKS

approach.

All of the mentioned approaches are built around solutions of FE deterministic

counterparts of the problem. This consumes most of the computational time of the

RB method. Therefore, we proposed to use the DCG (deflated conjugate gradients)

with the RB as a basis of the deflation space for the solution of these systems (Sub-

section 4.6). This does not add any significant overhead to the CG computation and

decreases the number of iterations dramatically (Subsection 5.5).

Apart from the construction of the RB, the RB method includes the solution of the

reduced system. This is done many times during the RB iterations. In Subsection 4.1,

we proposed the usage of an adaptive precision for these solutions. This significantly
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reduced the number of iterations needed in each RB step, see Subsection 5.7. We

also tested different stopping criteria, see Subsections 4.2 and 5.6.

For numerical experiments, we chose a set of problems which should reflect real-

istic problems i.e. subdomains with a log-normal distribution. We tested different

geometries of subdomains as well as mean values and stds of controlling variables.

The increasing std and the number of subdomains/variables affect the convergence of

the RB method most significantly (Subsections 5.2 and 5.3.2). Less significant, but

still notable, were differences in convergence caused by different geometries of subdo-

mains and the contrast between the mean values on the subdomains (Subsections 5.2

and 5.3.1).

We also tested the impact of the used discretization. The convergence results

for different FE grid sizes were almost identical and from our observations, the FE

grid size does not affect the convergence (Subsection 5.4.1). Specific results were

obtained from testing different discretizations of the parametric space (complete

polynomials up to a given degree), see Subsection 5.4.2. The RRKS approach be-

haved as expected, the convergence of the problem with a higher polynomial degree

had a slightly lower rate of convergence. The MC approach behaved in the same

way before it reached stagnation. The interesting observation was that the preci-

sion, where the MC approach stagnates, increases with an increasing polynomial

degree. This means that the stagnation observed in the MC approach is caused by

the discrepancy between MC samples of solution (point values of the analytic so-

lution) and the appropriate point values of the SG approximation of the solution.

Therefore, stagnation indicates a need for the increase of the polynomial degree in

the discretization of the parametric space.

Overall, the MC approach performed best in all of our tests in terms of the speed

of convergence. It experienced stagnation but, as was mentioned above, this just

meant that the degree of polynomial approximation was insufficient. In the rare case

when the system is given with its polynomial discretization and we need to solve it

with high precision, we can effectively use the combined approach. But this is not

a realistic case, because the precision of the RB approximation of the SG solution

is then unnecessarily higher than the precision of the SG approximation itself. We

should also take into consideration that the MC iterations are more expensive than

the RRKS iterations. This is due to multiple proposal samples and a need to assemble

the FE matrix for each system. The matrix of each system can be assembled from

subdomain matrices, but this is still not cheap as we need to initialize preconditioners.

The ratio of the computational cost of MC and the RRKS iterations depends on many

factors and mostly on the implementation. It would be a topic of a further research.
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