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Abstract. The main goal of supervised learning is to construct a function from labeled
training data which assigns arbitrary new data points to one of the labels. Classification
tasks may be solved by using some measures of data point centrality with respect to the
labeled groups considered. Such a measure of centrality is called data depth. In this
paper, we investigate conditions under which depth-based classifiers for directional data are
optimal. We show that such classifiers are equivalent to the Bayes (optimal) classifier when
the considered distributions are rotationally symmetric, unimodal, differ only in location
and have equal priors. The necessity of such assumptions is also discussed.

Keywords: depth-based classifier; von Mises-Fisher distribution; directional data; cosine
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1. Introduction

Supervised classification techniques enjoy a wide range of applications in many

fields. Given a training set of observations and their membership of certain groups,

new observations with unknown membership should be accordingly assigned. A fairly

large number of classification rules are available in the literature (e.g. [9]).

Within this setting, depth-based classification procedures have been introduced.

Depths provide center-outward ordering of points in multidimensional spaces with
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respect to a given distribution, and their applications often lead to effective ro-

bust statistical procedures. As a consequence, depth-based supervised classification

techniques are typically able to deal with the presence of outliers or mislabeled ob-

servations in the training set [8]. Many depth based classifiers are available, and for

a review we refer to the work of Vencálek [25]. On the other hand, depth-based super-

vised classification procedures have only recently been introduced in the directional

data framework [5], [20], [21].

Spherical (or directional) data are data lying on the unit hyper-sphere. They occur

naturally when a direction or an angle in space is of interest (e.g. wind direction),

but also when data consist of time points and the interest is in cycles (time points

on a watch can be treated as angles). In higher dimensions, locations on the Earth

and/or any kind of information recordable as unit vectors can be analyzed from

a directional data perspective.

Such data can be encountered in many fields of science and technology such as

Earth sciences [4], [6], meteorology [3], neurosciences [13] or biology [2] to capture the

direction of some phenomena of interest. Other interesting applications of directional

data include shape analysis and its use in economics [11], [12].

Spherical data have their own specific features and therefore classical statisti-

cal methods need to be adjusted to these kinds of data. In this context, depths

have been successfully applied ([1], [14], [16], [21]) and some robustness aspects

have also been investigated. For instance, Pandolfo et al. [21] showed that the

cosine depth deepest point achieves the highest directional breakdown point in

terms of lower bound when compared to the chord and arc distance depth deepest

points in the case of von Mises-Fisher distributions. A discussion on the finite-

sample maximum bias of the cosine depth deepest point (the spherical mean)

and the arc distance deepest point (the spherical median) is instead available

in [10].

However, although the recently introduced depth-based classifiers for directional

data performed well in simulation studies [5], [20], [21], corresponding theoretical

results are still lacking. For all the above reasons, this work investigates properties of

depth-based classifiers for directional data. It introduces the conditions under which

these classifiers are optimal. That is, they are equivalent to the Bayes classifier, the

classifier with the lowest achievable probability of misclassification. Special attention

is paid to the case of von Mises-Fisher distributions, since they play a central role

among models for directional data.

The paper is organized as follows. Section 2 introduces some basic concepts of

directional data and the directional distance-based depth functions. Furthermore, it

describes the max-depth and the max-rank classifiers for spherical data. Section 3

includes the main results. It provides a discussion on the assumptions under which
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the depth-based classifiers are optimal as well as the necessity of such assumptions.

Final comments are provided in Section 4.

2. Background material

This section reviews basic concepts of directional data and their corresponding

depth measures. Furthermore, it introduces data depth based classifiers.

2.1. Directional data. In q-dimensional space, directions can be depicted as

points on the sphere Sq−1 = {x ∈ R
q : x′x = 1} or as vectors with unit radius and

center at the origin. Note that in the two-dimensional case, any direction can be

also described by an angle (observations are called circular data in this case). In the

three-dimensional case, data points can also be described by two angles corresponding

to longitude and latitude.

The basic location parameter of spherical data is the mean direction µ =

EX/‖EX‖ (defined if and only if the value in the denominator is positive). A possi-

ble measure of variability, denoted traditionally as ̺, is called the mean resultant

length and is defined as ̺ = ‖EX‖ = (EX ′EX)1/2.

In this paper, the class of rotationally symmetric distributions is considered. The

distribution H of a random variable X is said to be rotationally symmetric about

some vector µ ∈ Sq−1 if and only if the distribution of OX is again H for all

q× q orthogonal matrices O satisfying Oµ = µ. This class of distributions was first

studied by Saw [22]. Any distribution which is rotationally symmetric about µ and

absolutely continuous w.r.t. a surface area measure on Sq−1 has a density of the form

h(x) = g(x′µ) for some (univariate) function g : [−1, 1] → R
+
0 , e.g. [19].

The most widely used distribution on the sphere is the von Mises-Fisher distribu-

tion, which is also rotationally symmetric, e.g. [14]. The probability density function

of a von Mises-Fisher distribution is defined as

h(x;µ, κ) = cκ,q exp{κµ
′x},

where µ is the mean direction, κ > 0 is a concentration parameter, and cκ,q > 0 is

a normalizing constant (depending on parameters κ and q). Its value is

cκ,q =
(κ
2

)q/2−1 1

Γ(q/2)Iq/2−1(κ)
,

where Iv is the modified Bessel function of the first kind and order v, e.g. [18].

2.2. Data depth for directional data. The concept of data depth for direc-

tional data was first introduced by Small [23]. Later, it was extended by Liu and
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Singh, see [16]. They introduced the arc distance depth and at the same time ex-

tended the simplicial depth (originally introduced in [15]) to the directional angular

simplicial depth and the halfspace depth (originally introduced in [24]) to the direc-

tional angular Tukey depth.

In this paper, the class of depth based on rotational invariant distance is consid-

ered. It was introduced by Pandolfo et al. [21].

⊲ The directional distance-based depth is defined as follows:

Let d : Sq−1×Sq−1 → R
+
0 be a bounded distance on the sphere S

q−1. Let H be

a probability distribution on Sq−1. The directional d-depth of a point x ∈ Sq−1

with respect to the distribution H is defined as

(2.1) D(x, H) = dsup − EH(d(x,X)),

where dsup is the upper bound of the distance between any two points on Sq−1,

EH is the expected value and X is a random directional variable from H .

⊲ Rotational invariance is an important property of distance and subsequently depth.

A distance d is rotationally-invariant if d(Ox,Oy)=d(x,y) for all x,y∈Sq−1

and all q × q orthogonal matrices O.

Any rotationally-invariant (bivariate) distance d(x,y) can be expressed as a uni-

variate function δ of the scalar product x′y, i.e.

(2.2) d(x,y) = δ(x′y),

as shown in [21] (Proposition 1). It is easy to see that any directional depth based

on rotationally-invariant distance is also rotationally-invariant, i.e. D(x, H) =

D(Ox, HO) for all x ∈ Sq−1 and for all q × q orthogonal matrices O, where HO

denotes distribution of OX when X has distribution H . See also Theorem 1

in [21].

Let us now recall the three most widely used rotationally-invariant distance-

based depth functions: the cosine depth, the arc distance depth, and the chord

depth.

⊲ The cosine depth of a point x ∈ Sq−1 w.r.t. the distribution H of a random

directional variable X is defined as Dcos(x, H) := 2 − EH [(1 − x′X)] = 1 +

EH(x′X) using the cosine distance δ(t) = 1− t.

⊲ The arc distance depth of a point x ∈ Sq−1 w.r.t. the distributionH of a random

directional variable X is defined as Darc(x, H) := π − EH [arccos(x′X)] using

the arc distance δ(t) = arccos(t).

⊲ The chord depth of a point x ∈ Sq−1 w.r.t. the distribution H of a random

directional variableX is defined asDchord(x, H) := 2−EH [
√
2(1− x′X)] using

the chord distance δ(t) =
√
2(1− t).
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2.3. Max-depth and max-rank classifiers for directional data. This section

introduces the max-depth and the max-rank classifiers. The above classifiers can

be associated with all the available depth functions for directional data within the

literature. In this study, the cosine depth is preferred for the following reasons.

First, the cosine depth does not require a large computational effort, unlike the

other depths. Secondly, both classifiers provide good performance when associated

with the cosine depth on hyper-spheres [5], [21]. Finally, the cosine depth (deepest

point) can be considered a robust location estimator [21].

Consider now K different distributions H1, . . . , HK on hyper-sphere S
q−1. A clas-

sification rule in the directional framework is a function

c : Sq−1 → {1, . . . ,K},

which assigns points on the hyper-sphere to distributions from which they are likely

to come. Here we restrict our attention to the two-class problem (K = 2).

2.3.1. Directional max-depth classifier. The concept of max-depth classifier

for multivariate data was developed by Ghosh and Chaudhuri, [7]. More recently,

Pandolfo et al. [21] extended the max-depth classifier to the directional framework.

Let x be the new observation to be classified, and let D(x, Hi), i = 1, . . . ,K,

be the depth of x with respect to the distributions H1, . . . , HK , respectively. The

max-depth classification rule is then given by

(2.3) cm(x) = argmax
i

D(x;Hi).

In practice, theoretical distributions are unknown and need to be estimated. There-

fore, one uses empirical distribution functions Ĥi based on data points in the training

set instead of theoretical distributions Hi.

2.3.2. Directional max-rank classifier. The depth distribution classifier

known also as the max-rank classifier was introduced by Makinde and Fasoran-

baku [17] for multivariate data and then extended to directional data by Demni et

al. [5].

The cumulative distribution function of the depth function D(·, H), denoted as

FD(·, H), is defined as

(2.4) FD(x, H) = P(D(X, H) 6 D(x, H)),

where X is a random directional variable from the distribution H .
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The directional depth distribution classification rule [5] is then defined as

cedd(x) = argmax
i

FD(x, Hi).

In practice, the unknown distributions Hi are again replaced by their corresponding

empirical distributions based on training set observations.

3. Properties of the max-depth and max-rank classifiers

The properties of the max-depth and max-rank classifiers are studied in this sec-

tion. To our best knowledge, the optimality property of the depth-based classifiers

has not been investigated elsewhere in the context of directional data.

The optimality of the considered depth-based classifiers was studied by Ghosh and

Chaudhuri [7] (the max-depth classifier) and by Makinde and Fasoranbaku [17] (the

max-rank classifier) in the context of multivariate (unconstrained) data. Both clas-

sifiers were shown to be equivalent to the optimal Bayes classifier (the classifier with

the lowest total probability of misclassification) in some situations. More precisely,

optimality is achieved if the considered distributions are elliptically symmetric with

density strictly decreasing from the center (which implies unimodality of the distri-

butions), differing only in location and having equal prior probabilities. While the

assumptions on symmetry and unimodality are not too restrictive in practice, the

assumptions on equal dispersions (implied by difference only in location) and equal

priors reduce the applicability of the classifiers in practice quite substantially. We

show that similar assumptions are needed for optimality also in the case of directional

data.

Theorem 3.1. Let H1 and H2 be rotational symmetric unimodal continuous

distributions on the sphere Sq−1 differing only in their mean directions (denoted

by µ1 and µ2, respectively), i.e., their densities hi(·), i = 1, 2, can be expressed as

hi(x) = h(µ′

ix), i = 1, 2 for all x ∈ Sq−1, where h(·) is some strictly increasing

function. Let the distributions have equal prior probabilities p1 = p2. Then for

any rotation-invariant distance-based depth, both the max-depth classifier and the

max-rank classifier are equivalent to the (optimal) Bayes classifier.

P r o o f. First, we simplify the form of the Bayes classifier in the considered set-

tings. The Bayes classification rule assigns x to group 1 if and only if

p1h1(x) > p2h2(x).
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In the case of equal priors and rotational symmetric distributions the inequality

simplifies to h(µ′

1x) > h(µ′

2x). Since h(·) is a strictly increasing function, the

inequality can be rewritten as

µ′

1x > µ′

2x.

Now we show that the max-depth classifier can be expressed in the same way. This

results directly from Theorem 3 of [21] which showed that in the considered situation,

depth can be expressed as a strictly increasing function of the cosine distance from

the mean direction, i.e. D(x, Hi) = ϕ(µ′

ix), i = 1, 2, for some strictly increasing

function ϕ : [−1, 1] → R
+
0 . Since the function ϕ is the same for both distributions,

the inequality D(x, H1) > D(x, H2) holds if and only if

µ′

1x > µ′

2x.

Finally, we deal with the max-rank classifier. For the distribution Hi, i = 1, 2,

the cumulative distribution function of depth (2.4) can be expressed as

FD(x, Hi) = P(D(X, Hi) 6 D(x, Hi)) =

∫

S(x)

hi(y) dy =

∫

S(x)

h(µ′

iy) dy,

where S(x) = {y ∈ Sq−1 : µ′

iy < µ′

ix}. Since we are integrating a non-negative

function, the value of the integral increases with expanding the set S(x). Therefore,

the higher is the product µ′

ix, the higher is the value of the integral, and hence

FD(x, H1) > FD(x, H2) if and only if

µ′

1x > µ′

2x.

�

In the following, we discuss the conditions which guarantee the Bayes optimality.

The depth-based classifiers employ rotation-invariant distance-based depth functions

and therefore the depth is a function of the cosine distance from the mean direction.

To achieve correspondence between depth and density (used in the Bayes classifier),

we have to assume that the density is also a function of the cosine distance from

the mean direction, i.e. the rotational symmetry of the distribution. We further

need assumption of monotonicity of a function h(·) to avoid situations in which

the density is low in points close to the mean direction. As already mentioned

at the beginning of this section, the other assumptions—on equal variability and

equal priors—reduce the applicability of the classifiers in practice quite substantially.

Therefore, we investigated the performance of the classifiers in the case of unequal

concentrations.

337



3.1. The max-depth classifier in a more general case. The following theo-

rem clarifies the form of the max-depth classifier for the cosine depth in the situation

in which the considered distributions may differ not only in location but also in dis-

persion.

Theorem 3.2. Let H1 and H2 be two distributions on the sphere S
q−1, having

mean directions µ1 and µ2, respectively, and mean resultant lengths ̺1 and ̺2,

respectively. If the cosine depth is employed, the max-depth classifier (2.3) has the

form

(3.1) c(x) = argmax
i

̺iµ
′

ix,

and therefore, the distributions are “separated” by the hyperplane

(3.2) (̺1µ1 − ̺2µ2)
′x = 0.

P r o o f. The theorem directly follows from the form of the cosine depth in this

case:

D(x, Hi) = 1 + EHi
x′X = 1 + ̺ix

′µi.

�

The separating hyperplane is determined by the parameters of location (µ1 and

µ2) and parameters reflecting variability of the distributions (̺1 and ̺2). Clearly, the

max-depth classifier does not include (and hence does not account for) information

on priors. Also, the whole information on distribution is reduced only to its mean

direction and mean resultant length.

In the case of equal mean resultant lengths, the max-depth classifier simplifies

to the form c(x) = argmaxµ′

ix. The separating hyperplane is then determined

by the equation (µ1 − µ2)
′x = 0. It is a hyperplane orthogonal to the hyperplane

determined by vectors µ1 and µ2 which halves the angle between them.

Note that the formula of the max-depth classifier cannot be simplified in this way

when using nonlinear transformations of the scalar product µ′

ix in the depth function

even if the transformation is monotone, i.e. for the arc distance depth and the chord

depth.

Geometrically, we can imagine the above-described situation as follows. Denote

the angle between µ1 and µ2 as θ (cos θ = µ′

1µ2). There exists an orthogonal

matrix R such that

Rµ1 =
(
cos θ

2 , sin
θ
2 , 0, . . . , 0

)
′

=: µ0
1
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and

Rµ2 =
(
cos θ

2 ,− sin θ
2 , 0, . . . , 0

)
′

=: µ0
2.

Hence, we can assume that µ1 = µ0
1 and µ2 = µ0

2.

In this situation, the cosine depth of a point x = (x1, x2, . . . , xq)
′ can be expressed

in the following form:

D(x, H1) = 1 + ̺1
(
x1 cos

θ
2 + x2 sin

θ
2

)
,

D(x, H2) = 1 + ̺2
(
x1 cos

θ
2 − x2 sin

θ
2

)
.

The separating hyperplane is then determined by the equation

(̺1 − ̺2)
(
cos θ

2 )x1 + (̺1 + ̺2)
(
sin θ

2

)
x2 = 0,

which simplifies to the form x2 = 0 in the case of equal mean resultant lengths.

3.2. Studied class of spherical distributions. We studied a broad subclass

of unimodal rotational symmetric distributions on the sphere Sq−1 for which the

Bayes classifier can be derived and subsequently compared to the max-depth classifier

discussed above.

Let us consider a density function h(x) proportional to a sum v + g(µ′x), where

v > 0 is a positive real constant, µ ∈ Sq−1 mean direction and g : [−1, 1] → R is an

odd strictly increasing function.

Note that the higher the value of the constant v, the closer is the distribution

to the uniform distribution. Therefore, higher values of v imply higher variability.

Parameter v can be thus understood as a measure of variability.

After plugging in the normalizing constant, the density can be expressed as

h(x) =
1

Aq
+

g(µ′x)

vAq
,

where Aq denotes the surface area of the sphere Sq−1. Assuming that µ =

(1, 0, . . . , 0)′, which can be achieved by a rotation of the distribution, one can

derive a relation between the variability parameter v and the mean resultant length

̺ of the considered distribution:

̺ = EX1 =

∫

Sq−1

x1h(x) dx =

∫

Sq−1

x1

( 1

Aq
+

g(x1)

vAq

)
dx =

1

vAq
Gq,

where Gq =
∫
Sq−1 x1g(x1) dx is a constant. The density can thus be expressed

as a function of its mean direction µ ∈ Sq−1 and mean resultant length ̺ (using

above-defined constants Aq and Gq) in the following way:

(3.3) h(x) =
1

Aq
+

1

Gq
̺g(µ′x).
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Let us now consider a classification problem for two distributions with densities

of the above-mentioned form (3.3) with possibly different mean directions and mean

resultant lengths, but with the same function g(·), i.e., we assume

hi(x) =
1

Aq
+

1

Gq
̺ig(µ

′

ix), i = 1, 2.

Assuming equal prior probabilities, the Bayes classifier can be expressed as

c(x) = argmax
i

̺ig(µ
′

ix).

If g is the identity, i.e. g(y) = y, the Bayes classifier is equivalent to the max-depth

classifier if the cosine depth is employed (see Theorem 3.2 above).

We have shown that equal variability (expressed by the mean resultant length) is

not a necessary condition for optimality. We found a class of distributions, in which

optimality is achieved even if distributions differ in variability (identity or some

multiple of identity are the only cases of g(·) in which the Bayes classifier coincides

with the max-depth classifier).

3.3. Bayes classifier in the case of von Mises-Fisher distributions. The

class of distributions studied in the previous section does not include the most well-

known distribution on the sphere, namely the von Mises-Fisher (vMF) distribution.

In this section, we briefly discuss this important case. Let us consider two different

vMF distributions, i.e. distributions with densities

hi(x;µi, κi) = cκi,q exp{κiµ
′

ix}, i = 1, 2.

The equation defining the separating subspace for the Bayes classifier given by equal-

ity π1h1(x) = π2h2(x) can be rewritten as

(3.4) (κ2µ2 − κ1µ1)
′x = ln

(π1cκ1,q

π2cκ2,q

)
.

As with the max-depth classifier (3.2), the separation subspace is a hyperplane.

However, mean directions are multiplied by concentration parameters κ here, not by

mean resultant lengths ̺. The relationship between these parameters of variability

is not straightforward. The following holds:

(3.5) ̺ =
Iq/2(κ)

Iq/2−1(κ)
,

where Iv is the modified Bessel function of the first kind and order v, see Section 9.3.2

of [18]. Note that the ratio (3.5) is strictly increasing in κ. Moreover, the constant on
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the right-hand side of (3.4) is non-zero in the case of differing priors and concentration

parameters (if the considered ratio is not equal to one by chance).

4. Final Remarks

This paper reviewed two depth-based classifiers for directional data, namely the

max-depth and max-rank classifiers, and discussed conditions under which they are

equivalent to the Bayes (optimal) classifier. Conditions under which optimality is

guaranteed include (rotational) symmetry and unimodality of the underlying distri-

butions, with a difference only in location and equal prior probabilities.

These conditions are not necessary and we found a class of rotational symmetric

distributions for which the max-depth classifier based on the cosine depth can be

optimal even if distributions also differ in variability. On the other hand, such a class

does not include the von Mises-Fisher distributions, and the max-depth classifier is

generally not optimal when groups present different variability levels. Moreover, it

was shown that the above classifiers ignore information on prior probabilities.
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