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Abstract. This paper considers certain pseudometric structures on Ext-semigroups and
gives a unified characterization of several topologies on Ext-semigroups. It is demonstrated
that these Ext-semigroups are complete topological semigroups. To this end, it is proved
that a metric induces a pseudometric on a quotient space with respect to an equivalence
relation if it has certain invariance. We give some properties of this pseudometric space
and prove that the topology induced by the pseudometric coincides with the one induced
by the quotient map.
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1. Introduction

In 1973, in order to study quasidiagonality for operators and for C∗-algebras,

Brown, Douglas and Fillmore recognized that it may be related to the topological

structure on Ext-groups, see [4]. They topologized the group Ext(X) by point-wise

convergence in the norm topology and announced that the closure of zero equaled

the quasidiagonal extensions, where X is a compact metric space. This result was

proved by Brown in 1980, see [3].

In [1] Arveson considered the point-norm topologies on completely positive linear

maps and extensions of a separable C∗-algebra and proved that the set of completely

positive linear maps which is liftable is point-norm closed. He hence obtained the

fact that invertible extensions are point-norm closed for extensions of a separable

C∗-algebra by the compact operators. In [10] Salinas generalized Brown’s investiga-
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tions to the case of extensions of separable nuclear C∗-algebras by the compact oper-

ators, and subsequently to the case of relative quasidiagonal extensions in [11], [12].

In [6] Dadarlat defined a topology on the Kasparov group KK(A,B) in terms of

Cuntz pairs and approximate unitary equivalence for separable C∗-algebrasA and B.

Then he proved that this topology, the Pimsner topology, and the Brown-Salinas

topology coincide for separable C∗-algebras A and B.

In [13], [14], [15] Schochet systematically studied topologies on the Kasparov

groups KK i(A,B). He particularly proved that the Brown-Salinas topology, the

Zekri topology, and the two Cuntz topologies are identical. He also verified that

KK i(A,B) have a natural structure of pseudopolonais topological groups. One re-

markable result of his work is that the well-known UCT (see [9]) is an exact sequence

in the category of topological groups:

0 → Ext(K∗(A),K∗(B)) → KK∗(A,B) → Hom(K∗(A),K∗(B)) → 0.

Notice that Schochet’s work mainly focused on stable Ext-groups for nonunital

extensions. It is known that the original BDF-theory is engaged in classifying unital

extensions. However, classifications of unital extensions are essentially different to

these of nonunital extensions, not only due to invariants but also due to methods,

since the classic Ext-groups and UCT only hold for the nonunital case. Motivated

by the references mentioned above, we aim to topologize Ext-semigroups and UCTs

for unital extensions, and give a unified characterization of several topologies on

Ext-semigroups.

For our purpose, we first study a pseudometric on a quotient space induced by

an equivalence relation in Section 2. It is natural that the pseudometric should be

compatible with the equivalence relation. It is investigated that this requirement is

related to a property analogous to certain invariance. We call this property minimal

invariance (see Definition 2.3). Subsequently, we consider the topological property

of this pseudometric quotient space. One of the results is that we prove that the

topology induced by the pseudometric coincides with the one induced by the quotient

map. In Section 3, by the results of Section 2, it is proved that these Ext-semigroups

are complete topological semigroups. In the subsequent paper we will apply these

topologies to topologizing UCTs for unital extensions of C∗-algebras.

2. Pseudometrics on quotient spaces

In order to describe the topologies on Ext-groups uniformly, we consider pseudo-

metrics on quotient spaces in this section. We are concerned with the question when

a (pseudo)metric induces a pseudometric on a quotient space.
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Recall that a pseudometric on a space X is a function on X ×X with values in

nonnegative real numbers and satisfies the following conditions for any x, y, z ∈ X :

(i) d(x, y) = d(y, x);

(ii) d(x, z) 6 d(x, y) + d(y, z);

(iii) d(x, y) = 0 if x = y.

Suppose that (X, d) is a (pseudo)metric space with an equivalence relation ∼.

Let X/∼ be the quotient space consisting of the equivalence classes. For x ∈ X ,

we denote by x̃ the equivalence class of x. Let π : X → X/∼ be the quotient map

defined by π(x) = x̃ for any x ∈ X . Then d induces a function d̃ on the space

(X/∼)× (X/∼) by

d̃(x̃, ỹ) = inf{d(x′, y′) : x′ ∼ x, y′ ∼ y}.

Obviously, for any x̃, ỹ ∈ X/∼ we have d̃(x̃, ỹ) = d̃(ỹ, x̃) and d̃(x̃, ỹ) = 0 if x̃ = ỹ.

Next, we consider the following questions:

(1) When is d̃ a pseudometric on X/∼?

(2) When does the topology induced by d̃ coincide with the quotient topology?

(3) When is π open?

In fact, d̃ is not a pseudometric in general. We need some restriction to make d̃

a pseudometric. Before answering the above questions, we need to give some proper-

ties of d̃. Firstly, we notice the following fundamental fact of the infimum. Though

it is known, we list it here for the sake of convenience.

Lemma 2.1. Suppose that A, B are two nonempty sets and f is a real function

on A×B. Then the following equalities hold:

inf
y∈B

inf
x∈A

f(x, y) = inf
x∈A,y∈B

f(x, y) = inf
x∈A

inf
y∈B

f(x, y).

Proposition 2.2. For (X, d) given above, the following statements are equivalent:

(1) inf
x′∼x

d(x′, y) = inf
y′∼y

d(x, y′) for any x, y ∈ X ;

(2) inf
x′∼x

d(x′, y) = inf
x′∼x

d(x′, y0) for any x, y ∈ X and any y0 ∼ y;

(3) inf
x′∼x,y′∼y

d(x′, y′) = inf
x′∼x

d(x′, y) for any x, y ∈ X ;

(4) inf
x′∼x,y′∼y

d(x′, y′) = inf
x′∼x

d(x′, y0) for any x, y ∈ X and any y0 ∼ y.

P r o o f. (1)⇒(2) Suppose y0 ∈ X such that y0 ∼ y. By (1), we have

inf
x′∼x

d(x′, y0) = inf
y′′∼y0

d(x, y′′), inf
x′∼x

d(x′, y) = inf
y′∼y

d(x, y′).
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Since y0 ∼ y, it follows that y′′ ∼ y0 if and only if y
′′ ∼ y. Hence

inf
y′′∼y0

d(x, y′′) = inf
y′∼y

d(x, y′).

Therefore inf
x′∼x

d(x′, y) = inf
x′∼x

d(x′, y0).

(2)⇒(3) By (2) and Lemma 2.1, we have

inf
x′∼x,y′∼y

d(x′, y′) = inf
y′∼y

inf
x′∼x

d(x′, y′) = inf
y′∼y

inf
x′∼x

d(x′, y) = inf
x′∼x

d(x′, y).

(3)⇒(1) By (3), it follows that

inf
x′∼x

d(x′, y) = inf
x′∼x,y′∼y

d(x′, y′) 6 inf
y′∼y

d(x, y′).

This implies that inf
x′∼x

d(x′, y) 6 inf
y′∼y

d(x, y′) for any x, y. Hence,

inf
y′∼y

d(x, y′) = inf
y′∼y

d(y′, x) 6 inf
x′∼x

d(y, x′) = inf
x′∼x

d(x′, y).

Therefore inf
x′∼x

d(x′, y) = inf
y′∼y

d(x, y′).

(2)⇒(4) Similarly to the proof of (2)⇒(3), for any x, y ∈ X and any y0 ∼ y we

have

inf
x′∼x,y′∼y

d(x′, y′) = inf
y′∼y

inf
x′∼x

d(x′, y′) = inf
y′∼y

inf
x′∼x

d(x′, y0) = inf
x′∼x

d(x′, y0).

(4)⇒(2) Since y′ ∼ y, by (4) it follows that

inf
x′∼x

d(x′, y) 6 inf
x′∼x,y′∼y

d(x′, y′) = inf
x′∼x

d(x′, y0).

Hence,

inf
x′∼x

d(x′, y) 6 inf
x′∼x

d(x′, y0).

Exchanging the positions of y and y0, we obtain

inf
x′∼x

d(x′, y0) 6 inf
x′∼x

d(x′, y).

Therefore (2) holds. �

Definition 2.3. We say that the metric d has the minimal invariance with re-

spect to the equivalence relation ∼ if for any x, y ∈ X ,

inf{d(x′, y) : x′ ∼ x} = inf{d(x, y′) : y′ ∼ y}.

Next, we prove that d̃ becomes a pseudometric if d has the minimal invariance.

Theorem 2.4. If d has the minimal invariance, then (X/∼, d̃) constitutes a pseu-

dometric space.
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P r o o f. We only need to prove the triangle inequality:

d̃(x̃, ỹ) 6 d̃(x̃, z̃) + d̃(z̃, ỹ)

for any x, y, z ∈ X .

Suppose that x′ ∼ x, y′ ∼ y and z′ ∼ z. By the triangle inequality of d, we have

d(x′, y′) 6 d(x′, z′) + d(z′, y′).

It follows from Lemma 2.1 and Proposition 2.2 that

inf
x′∼x,y′∼y

d(x′, y′) 6 inf
y′∼y

inf
x′∼x

(d(x′, z′) + d(z′, y′)) = inf
y′∼y

( inf
x′∼x

d(x′, z′) + d(z′, y′))

= inf
x′∼x

d(x′, z′) + inf
y′∼y

d(z′, y′)

= inf
x′∼x,z′′∼z′

d(x′, z′′) + inf
y′∼y,z′′∼z′

d(z′′, y′)

= inf
x′∼x,z′′∼z

d(x′, z′′) + inf
y′∼y,z′′∼z

d(z′′, y′).

Therefore d̃(x̃, ỹ) 6 d̃(x̃, z̃) + d̃(z̃, ỹ). �

Corollary 2.5. Suppose that {x̃n} is a sequence in X/∼ and x̃0 ∈ X/∼. If d has

the minimal invariance, then {x̃n} converges to x̃0 under d̃ if and only if there is

a sequence {yn} in X such that yn ∼ xn for all n and {yn} converges to x0 under d.

P r o o f. (⇐) Suppose that there exists {yn} in X such that yn ∼ xn for all n

and {yn} converges to x0 under d. Since d̃(x̃n, x̃0) 6 d(yn, x0), then x̃n
d̃

−→ x̃0.

(⇒) Suppose that x̃n
d̃

−→ x̃0. By Proposition 2.2, we have

d̃(x̃n, x̃0) = inf
y∼xn

d(y, x0).

Hence, for every n there is yn ∈ X such that yn ∼ xn and

d(yn, x0) < d̃(x̃n, x̃0) + 1/n.

Therefore {yn} converges to x0 as n tends to infinity. �

There are many examples that the quotient spaces are pseudometric spaces, espe-

cially when the metrics have certain translation invariance. The following example

is a typical case.
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Example 2.6. Let X be a normed linear space and let M be a linear subspace

of X . Define an equivalence relation on X by x ∼ y ⇔ x − y ∈ M . Set d(x, y) =

‖x− y‖. Then d induces the function

d̃(x̃, ỹ) = inf
x′∼x,y′∼y

‖x′ − y′‖.

One can easily check that inf
x′∼x

d(x′, y) = inf
y′∼y

d(x, y′) for any x, y ∈ X . That is to

say that d has the minimal invariance with respect to the above equivalence relation.

Hence, d̃ is a pseudometric on X/∼.

Define ‖x̃‖ = d̃(x̃, 0̃). Then by Proposition 2.2,

‖x̃‖ = inf
x′∼x

d(x′, 0) = inf
x′∼x

‖x′‖.

This is the usual quotient seminorm on quotient spaces of normed linear spaces.

Moreover, if M is a closed subspace, then ‖x̃‖ is a norm on X/∼.

Example 2.7. Let B be a C∗-algebra with an ideal I. Suppose that A is a sep-

arable C∗-algebra. Denote by CP (A,B) and CP (A,B/I) completely positive linear

maps from A into B and B/I, respectively. For any ϕ and ψ in CP (A,B), we

say they are equivalent if they induce the same map from A into the quotient al-

gebra B/I. Define a metric on CP (A,B) by d(ϕ, ψ) =
∞∑
n=1

2−n‖ϕ(an) − ψ(an)‖,

where {an} is a dense sequence in the unit ball of A. Then by [1], Lemma 3.1, the

metric d has the minimal invariance with respect to the equivalence relation. It fol-

lows that the induced map d̃ is a pseudometric on CP (A,B)/∼, which is a complete

metric subspace of CP (A,B/I) by [1], Theorem 6.

In the following, we assume that (X, d) is a (pseudo)metric space and d has the

minimal invariance with respect to an equivalence relation∼ onX . Let A be a subset

of X and x ∈ X . Set R(A) = {x ∈ X : x ∼ a for some a ∈ A} and Oε(x) =

{y ∈ X : d(y, x) < ε} for ε > 0.

Lemma 2.8. Suppose that x, x′ ∈ X such that x ∼ x′. Then R(Oε(x)) =

R(Oε(x
′)) for any ε > 0.

P r o o f. Let z ∈ R(Oε(x)). Then there exists y ∈ Oε(x) such that z ∼ y. Since

d(x, y) < ε, inf
x′′∼x

d(x′′, y) < ε. By the minimal invariance, we have inf
y′∼y

d(x, y′) < ε.

Since x′ ∼ x, inf
y′∼y

d(x′, y′) < ε by Proposition 2.2. Hence, there is y1 ∈ X such

that y1 ∼ y and d(x′, y1) < ε. Since z ∼ y ∼ y1 and y1 ∈ Oε(x
′), it follows that

z ∈ R(Oε(x
′)). Therefore R(Oε(x)) ⊂ R(Oε(x

′)).

By the symmetry of x and x′, we obtain R(Oε(x
′)) ⊂ R(Oε(x)). So the conclusion

holds. �
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Lemma 2.9. Let G be an open subset of X . Then R(G) is open.

P r o o f. For any y0 ∈ R(G), there is x0 ∈ G such that y0 ∼ x0. Since G is open,

there is ε > 0 such that Oε(x0) ⊂ G. Then y0 ∈ R(Oε(x0)) and R(Oε(x0)) ⊂ R(G).

In the following, we prove that R(Oε(x0)) is open and hence R(G) is open.

Let z ∈ R(Oε(x0)). Then there is x ∈ X such that x ∼ z and d(x, x0) < ε. Hence,

we have

inf
x′∼x

d(x′, x0) = inf
x′′∼x0

d(x, x′′) < ε.

Since x ∼ z, by Proposition 2.2 we have

inf
x′′∼x0

d(z, x′′) = inf
x′′∼x0

d(x, x′′) < ε.

Hence, there is x1 ∈ X such that x1 ∼ x0 and d(z, x1) < ε. So z ∈ Oε(x1) for some

x1 ∼ x0.

On the other hand, by Lemma 2.8, R(Oε(x0)) = R(Oε(x1)). Note that Oε(x1) ⊂

R(Oε(x1)). This implies that

z ∈ Oε(x1) ⊂ R(Oε(x0)).

Therefore R(Oε(x0)) is open. �

Recall that the quotient topology on X/∼ induced by the map π is the family

{U ⊂ X/∼ : π−1(U) is open in (X, d)}

of subsets of X/∼, where π : X → X/∼ is the quotient map.

It should be noted that when X/∼ is equipped with the quotient topology, π is

open if and only if R(G) is open for any open subset G of X .

Theorem 2.10. The topology on X/∼ induced by d̃ coincides with the quotient

topology on X/∼.

P r o o f. Let τd be the topology induced by d on X . Suppose that σ is the

quotient topology on X/∼ and τ is the topology induced by d̃ on X/∼.

Since d̃(x̃, ỹ) 6 d(x, y), the quotient map π : X → X/∼ is continuous. Hence τ is

weaker than σ.

For the inverse direction, we first prove that

Oε(x̃) = π(R(Oε(x))

for any x ∈ X and any ε > 0.
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Suppose that y ∈ X such that d̃(x̃, ỹ) < ε. Then inf
x′∼x

d(x′, y) < ε and hence

there is x′′ ∈ X such that x′′ ∼ x′ and d(x′′, y) < ε. Since x′′ ∼ x, it follows that

y ∈ R(Oε(x). Furthermore, ỹ ∈ π(R(Oε(x)). So Oε(x̃) ⊂ π(R(Oε(x)).

Conversely, let z ∈ R(Oε(x)). Then there is z0 ∈ Oε(x) such that z ∼ z0. The

fact that d(z0, x) < ε implies that d̃(z̃0, x̃) < ε. Since z ∼ z0, we have d̃(z̃, x̃) < ε.

Therefore z̃ ∈ Oε(x̃).

Now we prove that σ is weaker than τ . For any F ∈ σ, then π−1(F ) ∈ τd. Assume

that x̃0 ∈ F and then x0 ∈ π−1(F ). Hence there is ε > 0 such that Oε(x0) ⊂ π−1(F ).

Moreover, R(Oε(x0)) ⊂ R(π−1(F )). Note that R(π−1(F )) = π−1(F ). Therefore

π(R(Oε(x0)) ⊂ F . By the above proof, we have

π(R(Oε(x0)) = Oε(x̃0) ∈ τ.

Hence, F ∈ τ . This implies that σ ⊂ τ . �

Theorem 2.11. The quotient map π : (X, d) → (X/∼, d̃) is open.

P r o o f. Note that for any subset G of X , π−1(π(G)) = R(G). Hence, by

Lemma 2.9, π : (X, d) → (X/∼, σ) is open, where σ is the quotient topology on X/∼

induced by the quotient map π. By Theorem 2.10, (X/∼, d̃) is homeomorphic to

(X/∼, σ). Therefore π : (X, d) → (X/∼, d̃) is open. �

Suppose that X has a binary operation, denoted by ⋄, which preserves the equiv-

alence relation, i.e. a ⋄ c ∼ b ⋄ d if a ∼ b and c ∼ d. Then there is an operation (still

denoted by ⋄) defined by: x̃ ⋄ ỹ = x̃ ⋄ y in the quotient space. On the relation of

continuity of the two operations we have the proposition below.

Proposition 2.12. If (X, d) has a continuous binary operation preserving the

equivalence relation, then the induced binary operation on the quotient space

(X/∼, d̃) is also continuous.

P r o o f. Suppose that {x̃n} and {ỹn} converge to {x̃0} and {ỹ0} in (X/∼, d̃),

respectively. By Corollary 2.5, there are x′n and y
′

n in X such that

x′n ∼ xn, y′n ∼ yn, x′n
d

−→ x0, y′n
d

−→ y0.

Hence x′n ⋄ y′n ∼ xn ⋄ yn and x
′

n ⋄ y′n
d

−→ x0 ⋄ y0.

Since x̃n⋄ỹn = x̃n ⋄ yn = x̃′n ⋄ y′n, by Corollary 2.5 again, it follows that x̃n⋄ỹn
d̃

−→

x̃0 ⋄ ỹ0. Therefore, the induced binary operation is continuous. �
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For the completeness of the quotient space, one can check the following proposition.

Proposition 2.13. If (X, d) is a complete metric space, then (X/∼, d̃) is also

complete.

3. Topologies on Ext-semigroups

In this section, we try to topologize several Ext-semigroups uniformly, espe-

cially the Ext-semigroups of unital extensions. From this, these Ext-semigroups are

equipped with complete topological structures.

Firstly, we need to recall some definitions and notations of C∗-algebra extension.

One can see [2], [16], [17], [18], [19], [20], [21], [22] for more details.

Let A and B be C∗-algebras. An extension of A by B is a short exact sequence

e : 0 −→ B
α

−→ E
β

−→ A −→ 0.

Denote this extension by e or (E,α, β) and the set of all such extensions by Ext(A,B).

The extension (E,α, β) is called trivial if the above sequence splits, i.e., if there

is a homomorphism γ : A → E such that β ◦ γ = idA. We call (E,α, β) essential if

α(A) is an essential ideal in E.

Let 0 −→ B
α

−→ E
β

−→ A −→ 0 be an extension of A by B. Then there is a unique

homomorphism σ : E → M(B) such that σ ◦ α = ι, where M(B) is the multiplier

algebra of B, and ι is the inclusion map from B into M(B).

The Busby invariant of (E,α, β) is a homomorphism τ from A into the corona

algebra Q(B) = M(B)/B defined by τ(a) = π(σ(b)) for a ∈ A, where π : M(B) →

Q(B) is the quotient map, and b ∈ E such that β(b) = a. Note that an extension is

essential if and only if its Busby invariant τ is an injective homomorphism.

If A is unital and the Busby invariant is unital, then (E,α, β) is called unital.

Suppose that A and B are C∗-algebras. There are several equivalence relations

of extensions of A by B. Let ei : 0 → B → Ei → A → 0 be an extension with the

Busby invariant τi for i = 1, 2.

Two extensions e1 and e2 are called (strongly) unitarily equivalent, denoted by

e1
s
∼ e2, if there exists a unitary u ∈M(B) such that τ2(a) = π(u)τ1(a)π(u)

∗ for all

a ∈ A. Denote by Ext(A,B) or Exts(A,B) the set of (strong) unitary equivalence

classes of extensions of A by B. If A is unital, we denote by Ext
u
s (A,B) the set of

unitary equivalence classes of unital essential extensions of A by B.

Two extensions e1 and e2 are called weakly unitarily equivalent, denoted by e1
w
∼ e2,

if there exists a unitary v ∈ Q(B) such that τ2(a) = vτ1(a)v
∗ for all a ∈ A. Denote by

443



Extw(A,B) [Ext
u
w(A,B) when A is unital] the set of equivalence classes of extensions

[unital extensions] of A by B under weak unitary equivalence.

Similarly, we denote essential extensions by adding a superscript “e” on these sets.

Then there are several analogs, e.g. Ext
e(A,B), Ext

eu
s (A,B), Ext

e
w(A,B) etc.

Let H be a separable infinite-dimensional Hilbert space and K the ideal of compact

operators in B(H). If B is a stable C∗-algebra (i.e. B ⊗ K ∼= B), then the sum of

two extensions τ1 and τ2 is defined to be the homomorphism τ1 ⊕ τ2, where

τ1 ⊕ τ2 : A→ Q(B)⊕Q(B) ⊆M2(Q(B)) ∼= Q(B)

and the isomorphism M2(Q(B)) ∼= Q(B) is induced by an inner isomorphism from

M2(M(B)) onto M(B).

The above sets of equivalence classes of extensions are commutative semigroups

with respect to this addition when B is stable. One can similarly define these semi-

groups replacing B by B ⊗K if B is not stable.

A trivial extension τ is called strongly unital if there exists a unital homomorphism

from A to M(B) lifting τ .

Denote by Ext(A,B) the quotient of Exts(A,B) by the subsemigroup of trivial

extensions. If A is unital, Extus (A,B) [or Extuw(A,B)] is the quotient of Ext
u(A,B)

[or Ext
u
w(A,B)] by the subsemigroup of strong unital trivial extensions. Denote by

[τ ] [or [τ ]s, [τ ]w ] the equivalence class of τ in Ext(A,B) [or Extus (A,B), Extuw(A,B)].

Let e1, e2 ∈ Ext(A,B). If e1 and e2 are equal in Ext(A,B) [or Extus (A,B),

Extuw(A,B)], then e1 and e2 are called stably unitarily equivalent, denoted by e1
ss
∼e2.

Let e be an extension of A by B with the Busby invariant τ . Then e is called

absorbing [unital-absorbing when A is unital] if τ is unitarily equivalent to τ ⊕ σ for

any trivial [strong unital trivial] extension σ.

Suppose that A and D are C∗-algebras and let Hom(A,D) be the set of homo-

morphisms form A to D. There are three topologies on Hom(A,D) as follows:

(1) The topology of pointwise convergence;

(2) The compact-open topology;

(3) The topology of uniform convergence on compact sets.

By [13], Proposition 2.1, the above topologies on Hom(A,D) coincide and are

induced by the metric if A is separable:

d(f, g) =

∞∑

i=1

‖(f − g)(ai)‖

2i‖ai‖
,

where {ai} is a dense sequence consisting of nonzero elements in A. These topologies

are the same as the one given by [1], also see Example 2.7. For these topologies, one

can check the following properties.
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Proposition 3.1. Suppose that A and D are two C∗-algebras with A separa-

ble. Then Hom(A,D) is a complete metric space under the metric defined above.

Furthermore,

(1) Homi(A,D) = {f ∈ Hom(A,D) : f is injective} is closed;

(2) Homu(A,D) = {f ∈ Hom(A,D) : f is unital} is closed when A and D are

unital;

(3) Homiu(A,D) = {f ∈ Hom(A,D) : f is injective and unital} is closed when A

and D are unital.

In the following, we assume that A and B are C∗-algebras with A separable and B

stable. Similarly to the addition of extensions, one can define a binary operation on

Hom(A,Q(B)) via an inner isomorphism. To be specific, take two isometries s1, s2
in M(B ⊗K) with s1s

∗

1 + s2s
∗

2 = 1 and then the binary operation is defined by

(f ⊕ g)(a) = π(s1)f(a)π(s
∗

1)⊕ π(s2)g(a)π(s
∗

2)

for any f , g in Hom(A,Q(B)) and a in A, where π is the quotient map from

M(B ⊗K) into Q(B). Notice that Hom(A,Q(B)) is not an abelian semigroup under

this operation in general.

Proposition 3.2. Suppose that ⊕ is the above binary operation defined on the

metric space Hom(A,Q(B)) equipped with the preceding metric d. Then

(1) the operation ⊕ is continuous in the metric;

(2) the metric d has the properties

d(f ⊕ ̺, g ⊕ σ) 6 d(f, g) + d(̺, σ), d(f ⊕ h, g ⊕ h) = d(f, g)

for any f , g, h, ̺, σ in Hom(A,Q(B)).

P r o o f. It suffices to show that (2) holds since continuity of the operation follows

from the inequality in (2).

Note that (f⊕g)(a) = V (f(a)⊕g(a))V ∗ for every a in A, where V = (π(s1), π(s2))

implements that inner isomorphism. Then it follows that:

‖(f ⊕ ̺)(a)− (g ⊕ σ)(a)‖ = ‖V [(f(a)− g(a))⊕ (̺(a)− σ(a))]V ∗‖

= max{‖f(a)− g(a)‖, ‖̺(a)− σ(a)‖}

6 ‖f(a)− g(a)‖+ ‖̺(a)− σ(a)‖.

The above discussion also implies that

‖(f ⊕ h)(a)− (g ⊕ h)(a)‖ = ‖f(a)− g(a)‖.

As a result, the metric d has the properties mentioned above. �
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In fact, Hom(A,Q(B)) is the set of extensions of A by B under strong isomorphism

(see [2], Section 15.4). In the same way, Homi(A,Q(B)) [or Homiu(A,Q(B))] is the

set of essential [or unital essential] extensions of A by B. They are complete metric

spaces under the above metric d.

Since the metric d has minimal invariance on each of the preceding metric

spaces with respect to the unitary equivalence and the weak unitary equiva-

lence, respectively, d induces pseudometric structures on these spaces. By Proposi-

tions 2.12, 2.13, 3.1, and 3.2, we have the following conclusion.

Theorem 3.3. Equipped with the induced pseudometrics (still denoted by d),

these semigroups Ext∗(A,B), Ext
e
∗
(A,B), Ext

eu
∗
(A,B), where ∗ = s, or w, consti-

tute complete topological semigroups.

Next, we will consider how to topologize the Ext-groups, that is Ext(A,B),

Extus (A,B), and Extuw(A,B). But we do not intend to show that the metrics have

minimal invariance with respect to the stable unitary equivalence of extensions. Here

we will achieve the goal with the aid of absorbing extensions.

For the sake of convenience, we let

Ea(A,B) = {τ ∈ Hom(A,Q(B)) : τ is absorbing},

Eua(A,B) = {τ ∈ Homu(A,Q(B)) : τ is unital-absorbing}.

Recall [7] that an extension e : 0 → B → E → A → 0 is called purely large if for

every x ∈ E \ B, the C∗-algebra xBx∗ contains a subalgebra which is stable and is

full in B.

By [7], [8], there is a characterization of absorbing extensions and purely large

extensions in the following.

Lemma 3.4. Let A and B be separable C∗-algebras with A nuclear. Suppose that

e : 0 −→ B −→ E
ψ

−→ A −→ 0

is a nonunital essential extension. Then the following statements are equivalent:

(1) The extension e is absorbing.

(2) The extension e is purely large.

(3) For every ε > 0, x ∈ E+ \ B and b ∈ B+ with ‖ψ(x)‖ = 1 and ‖b‖ = 1, there

exists r ∈ B such that ‖r‖ = 1 and ‖rxr∗ − b‖ < ε.

Theorem 3.5. Assume that A and B satisfy the conditions in Lemma 3.4.

Equipped with the above metric d, Ea(A,B) and Eua(A,B) are complete metric

spaces.
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P r o o f. Suppose that {τn} is a sequence of absorbing extensions with limit τ

in E(A,B). Let π be the quotient homomorphism form M(B) into Q(B) and

en : 0 → B → En → A→ 0

the standard extension of τn, where En = π−1(τn(A)) and ψn = τ−1
n ◦π. Then there

is a commutative diagram:

0 // B // En

��

ψn

// A

τn

��

// 0

0 // B // M(B)
π

// Q(B) // 0.

Similarly, for the extension τ there is an exact short sequence e : 0 → B → E →

A→ 0 such that the following diagram is commutative:

0 // B // E

��

ψ
// A

τ

��

// 0

0 // B // M(B)
π

// Q(B) // 0,

where E = π−1(τ(A)) and ψ = τ−1 ◦ π.

For every ε > 0, x ∈ E+ \ B and b ∈ B+ with ‖ψ(x)‖ = 1 and ‖b‖ = 1, we set

a = ψ(x). Then a ∈ A+ and τ(a) = π(x). Since {τn(a)} converges to τ(a), there

is n such that ‖τn(a) − τ(a)‖ < ε/2. Choose y ∈ M(B)+ such that τn(a) = π(y).

Then y ∈ E+
n and

‖π(y)‖ = ‖τn(a)‖ = ‖a‖ = 1.

Hence,

‖π(x− y)‖ = inf
z∈B

‖x− (y + z)‖ < ε/2.

It follows that there is z0 ∈ B+ such that ‖x− (y+ z0)‖ < ε/2 and ‖π(y+ z0)‖ = 1.

Since en is purely large, for y + z0 ∈ E+
n , b ∈ B+ and ε > 0, by Lemma 3.4 there

exists r ∈ B such that ‖r‖ = 1 and ‖r(y + z0)r
∗ − b‖ < ε/2. Hence,

‖rxr∗ − b‖ 6 ‖rxr∗ − r(y + z0)r
∗‖+ ‖r(y + z0)r

∗ − b‖

6 ‖x− (y + z0)‖+ ‖r(y + z0)r
∗ − b‖ 6 ε/2 + ε/2 < ε.

By Lemma 3.4 again, e is purely large. Therefore Ea(A,B) is complete.

For unital-absorbing extensions, there is an analogue of Lemma 3.4 and hence by

a similar argument of the above we conclude that Eua(A,B) is complete. �
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If there is a trivial absorbing [unital-absorbing] extension, by [2] we have the

following isomorphisms:

Ext(A,B) = Ea(A,B)/
s
∼, Extus (A,B) = Eua(A,B)/

s
∼,

Extuw(A,B) = Eua(A,B)/
w
∼.

Let π, πs and πw denote the tree quotient maps, respectively.

Equipped with the metric d, Ea(A,B) and Eua(A,B) are metric spaces and d

has minimal invariance with respect to the unitary equivalence and the weak uni-

tary equivalence, respectively. Hence, it induces three pseudometrics d̃, d̃s, d̃w on

Ext(A,B), Extus (A,B) and Extuw(A,B), respectively.

With the help of Theorems 2.10, 2.11, Propositions 2.12, 2.13, 3.1, 3.2 and The-

orem 3.5, we summarize the topological properties of these quotient semigroups in

the following.

Theorem 3.6. Suppose that A and B are C∗-algebras with A separable. Assume

that there is a trivial absorbing [or unital-absorbing] extension of A by B. Then:

(1) Ext(A,B), Extus(A,B) and Extuw(A,B) are topological semigroups.

(2) The topologies induced by d̃, d̃s, d̃w coincide with the quotient topologies in-

duced by π, πs and πw on Ext(A,B), Extus (A,B) and Extuw(A,B), respectively.

In addition, these topologies satisfy the first axiom of countability.

(3) The quotient maps π, πs and πw are open in the three situations.

(4) If A is nuclear and B is also separable, then Ext(A,B), Extus (A,B) and

Extuw(A,B) are complete.

Remark 3.7. Special cases of the above semigroups also appeared in [3], [4],

[5], [6], [10], [11], [12], [13] and they are topologized in several ways. Here they are

equipped with topologies uniformly.

It is obvious that the completeness of the above topological semigroups comes from

Theorem 3.5. One may notice that this theorem requires that B is separable. Since

whether an absorbing extension can be lifted to an absorbing completely positive

map into the multiplier algebra is unknown, one can not use the completeness of

completely positive maps to show that the set of absorbing extensions is complete.

But without the help of the separability of B, we can also directly show that the

three topological groups are complete.

Theorem 3.8. Let A be a separable nuclear C∗-algebra and B a σ-unital

C∗-algebra. Suppose that Ext(A,B), Extus (A,B) and Extuw(A,B) are endowed

with the pseudometrics d̃, d̃s, d̃w, respectively. Then they are complete topological

groups.
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P r o o f. By [2], Corollary 15.8.4, the assumption implies that these semigroups

become abelian groups. It suffices to show that the conclusion holds for the case of

(Extus (A,B), d̃s) because the proofs of the others are similar.

Suppose that {[τn]s} is a Cauchy sequence in Extus (A,B). By passing to a sub-

sequence, if necessary, one can assume that d̃s([τn]s, [τn+1]s) < 1/2n+1. By the

definition of d̃s and the mathematical induction, we can choose σn ∈ Eau(A,B) one

by one such that [τn]s = [σn]s and

d̃s([σn]s, [σn+1]s) < 1/2n.

Then {σn} is a Cauchy sequence in E
au(A,B).

By the completeness of Eu(A,B), there is an essential unital extension σ such that

σn
d

−→ σ in Eu(A,B). By the Kasparov absorbing theorem, there is an absorbing

unital trivial extension σ0. Then

σn ⊕ σ0
d

−→ σ ⊕ σ0.

Hence it follows that

d̃s([τn]s, [σ ⊕ σ0]s) = d̃s([σn ⊕ σ0]s, [σ ⊕ σ0]s) 6 d(σn ⊕ σ0, σ ⊕ σ0) → 0

in Extus (A,B) as n→ ∞. Therefore Extus (A,B) is complete.

As regards the invariance under translation, by Proposition 3.2 and similar argu-

ment in [11], Lemma 5.1, one have

d̃s([τ1]s ⊕ [σ1]s, [τ2]s ⊕ [σ2]s) 6 d̃s([τ1]s, [τ2]s) + d̃s([σ1]s, [σ2]s),

d̃s([τ1]s ⊕ [σ]s, [τ2]s ⊕ [σ]s) = d̃s([τ1]s, [τ2]s)

for any τi, σi, σ in Hom(A,Q(B)). This implies that the pseudometric d̃s is trans-

lation invariant for the additive operation in Extus (A,B).

Finally, from the translation invariance, it follows that the inverse operation is

also continuous. Therefore Extus (A,B) is a topological group. �

Remark 3.9. As for the separability of these topological Ext-groups, it should

be pointed out that the above Ext-groups may not be separable in general even if A

is separable and B is σ-unital. The following is a counterexample. But when B is

separable, these topological Ext-groups are separable (see [13]).

Example 3.10. Let A be the C∗-algebra C0(0, 1) consisting of all continuous

functions on the open interval (0, 1) which vanish on the end points. Let B =
⊕
α∈Λ

K,
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where K is the C∗-algebra of compact operators on a separable infinite-dimensional

Hilbert space and Λ is an index set with cardinality uncountable. Then A is separable

and B is σ-unital. By the Kasparov theorem and [13], there are isomorphisms of

topological groups:

Ext(A,B) = KK1(A,B) = KK(C, B).

Using the UCT, one can compute that

KK(C, B) = Hom(K0(C),K0(B)) = Hom

(
Z,

⊕

α∈Λ

Z

)
.

Since the topological group Hom
(
Z,

⊕
α∈Λ

Z
)
is discrete and uncountable, KK(C, B)

is not separable.
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