Czechoslovak Mathematical Journal

Weining Chen; Guixin Deng; Huadong Su
On the binary system of factors of formal matrix rings

Czechoslovak Mathematical Journal, Vol. 70 (2020), No. 3, 693-709

Persistent URL: http://dml.cz/dmlcz/148322

Terms of use:

© Institute of Mathematics AS CR, 2020

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

ON THE BINARY SYSTEM OF FACTORS
 OF FORMAL MATRIX RINGS

Weining Chen, Guixin Deng, Huadong Su, Nanning

Received October 21, 2018. Published online February 19, 2020.

Abstract

We investigate the formal matrix ring over R defined by a certain system of factors. We give a method for constructing formal matrix rings from non-negative integer matrices. We also show that the principal factor matrix of a binary system of factors determine the structure of the system.

Keywords: formal matrix ring; bimodule; system of factors; Wedderburn-Artin theorem MSC 2020: 16S50, 15B99

1. Introduction

Throughout, rings are associative rings with nonzero identity, and modules and bimodules are unitary. The Jacobson radical, the center, the set of zero-divisors and the group of units of a ring R are denoted by $J(R), C(R), Z(R)$ and $U(R)$, respectively. Let $M_{n}(R)$ be the $n \times n$ matrix ring over a ring R.

Let R, S be two rings, M be an R - S-bimodule and N be an S - R-bimodule. Suppose that there are two bimodule homomorphisms $\varphi: M \otimes N \rightarrow R$ and ψ : $N \otimes M \rightarrow S$. We write $m n=\varphi(m \otimes n)$ and $n m=\psi(n \otimes m)$ for all $m \in M, n \in N$. Let K denote the set of all matrices of the form

$$
\left(\begin{array}{cc}
r & m \\
n & s
\end{array}\right), \quad r \in R, s \in S, m \in M, n \in N .
$$

[^0]Then K is an abelian group under usual matrix addition. We define the multiplication of two matrices in K as

$$
\left(\begin{array}{cc}
r_{1} & m_{1} \\
n_{1} & s_{1}
\end{array}\right)\left(\begin{array}{cc}
r_{2} & m_{2} \\
n_{2} & s_{2}
\end{array}\right)=\left(\begin{array}{cc}
r_{1} r_{2}+m_{1} n_{1} & r_{1} m_{2}+m_{1} s_{2} \\
n_{1} r_{2}+s_{1} n_{2} & n_{1} m_{2}+s_{1} s_{2}
\end{array}\right)
$$

It is routine to verify that K is a ring if and only if the associative law holds, that is, $\left(m_{1} n_{1}\right) m_{2}=m_{1}\left(n_{1} m_{2}\right)$ and $\left(n_{1} m_{1}\right) n_{2}=n_{1}\left(m_{1} n_{2}\right)$ for any $m_{i} \in M$ and $n_{i} \in N$. The ring K is called generalized matrix ring in [12] and [13], and is also called formal matrix ring in [8], [16]. If $M=0$ or $N=0$, then K is called triangular formal matrix ring. An important class of these rings consists of Morita context rings, see [10], [11] and [14]. Another important classes of these rings are triangular formal matrix rings which appeared in the representation theory of artinian algebra, see [3]. Many people studied the modules over these rings, see [4], [5], [7] and [8].

The ring K is called formal matrix ring over R when $R=S$ and $M=N=R$ with the usual R - R-bimodule structure. In this case, Krylov in [6] observed that K is determined by a central element s of R and he denoted this ring by $K_{s}(R)$. To be more precise, $K_{s}(R)$ consists of all 2×2 matrices over R with ordinary addition and the multiplication is defined by

$$
\left(\begin{array}{ll}
a_{1} & x_{1} \\
y_{1} & b_{1}
\end{array}\right)\left(\begin{array}{ll}
a_{2} & x_{2} \\
y_{2} & b_{2}
\end{array}\right)=\left(\begin{array}{cc}
a_{1} a_{2}+s x_{1} y_{2} & a_{1} x_{2}+x_{1} b_{2} \\
y_{1} a_{2}+b_{1} y_{2} & b_{1} b_{2}+s y_{1} x_{2}
\end{array}\right) .
$$

If R is commutative and $Z(R) \subseteq J(R)$, then $K_{s}(R) \simeq K_{t}(R)$ if and only if there exists an automorphism ϕ of R and $u \in U(R)$ such that $s=u \phi(t)$, see [6]. In particular, $K_{s}(R)$ is isomorphic to the usual matrix ring $M_{2}(R)$ if and only if $s \in U(R)$. Tang and Zhou in [15] obtained necessary and sufficient conditions for $K_{s}(R)$ to be a strongly clean ring.

The formal matrix ring over R was generalized to the formal matrix ring of order n over R by Tang and Zhou, see [16]. For a collection of central elements $\Sigma=\left\{s_{i j k}\right\}$ of R such that $s_{i i j}=s_{i j j}=1$ and $s_{i j k} s_{j k l}=s_{i j l} s_{j k l}$ for all i, j, k, l, one can define a formal matrix ring $K_{n}(R, \Sigma)$ of order n over R. Such a collection Σ is called a system of factors over R in [1], [2] and [9].

Let $s \in C(R)$ and $\Sigma=\left\{s_{i j k}\right\}$, where

$$
s_{i j k}= \begin{cases}1, & i=j \text { or } j=k \\ s, & i, j, k \text { are pairwise distinct } \\ s^{2}, & k=i \neq j\end{cases}
$$

Then Σ is a system of factors and the formal matrix ring defined by Σ is called a Tang-Zhou ring by Krylov and Tuganbaev, see [9]. Many properties of usual
matrix rings are extended to the Tang-Zhou rings. In particular, the determinant is defined and the Cayley-Hamilton Theorem is proved for matrices in a Tang-Zhou ring. Abyzov and Tapkin in [1], [2], constructed another class of formal matrix rings which contained the class of the Tang-Zhou rings. Krylov and Tuganbaev in [9] obtained many basic properties of system of factors. They generalized the determinant and proved the Cayley-Hamilton Theorem for matrices in formal matrix rings defined by arbitrary systems of factors. As we can see the importance of systems of factors, to study formal matrix rings actually means to study the systems of factors in some ways.

This paper is organized as follows. In Section 2, we introduce definitions and notations of formal matrix rings over a ring R. We also list some basic properties and examples of the system of factors. In Section 3, we show how to construct system of factors from non-negative integer matrices. In Section 4, we mainly study binary system of factors. We show that the principal factor matrix of a binary system of factors determine the structure of the system.

2. Preliminaries

Let $R_{1}, R_{2}, \ldots, R_{n}$ be rings and $M_{i j}$ be R_{i} - R_{j}-bimodule with $M_{i i}=R_{i}$. Suppose that there is bimodule homomorphism $\varphi_{i j k}: M_{i j} \otimes_{R_{j}} M_{j k} \rightarrow M_{i k}$ such that $\varphi_{i i j}$: $R_{i} \otimes_{R_{i}} M_{i j} \rightarrow M_{i j}$ and $\varphi_{i j j}: M_{i j} \otimes_{R_{j}} R_{j} \rightarrow M_{i j}$ are the canonical isomorphisms for any i, j, k. Write $a \circ b=\varphi_{i j k}\left(m_{i j} \otimes m_{j k}\right)$ for any i, j, k. Let $K=K\left(\left\{M_{i j}\right\} ;\left\{\varphi_{i j k}\right\}\right)$ be the set of all $n \times n$ matrices $\left(m_{i j}\right)$ such that $m_{i j} \in M_{i j}$, with the following operations:

$$
\left(m_{i j}\right)+\left(n_{i j}\right):=\left(m_{i j}+n_{i j}\right), \quad\left(m_{i j}\right)\left(n_{i j}\right):=\left(\sum_{k=1}^{n} m_{i k} \circ n_{k j}\right) .
$$

It is routine to verify that K is a ring if and only if $a \circ(b \circ c)=(a \circ b) \circ c$ for all $a, b, c \in K$.

Now suppose that $R_{1}=R_{2}=\ldots=R_{n}=R$ and $M_{i j}=R$ with the usual R - R bimodule structure. If K is a ring, then $\varphi_{i j k}(a \otimes b)=a b \varphi_{i j k}(1 \otimes 1)=\varphi_{i j k}(1 \otimes 1) a b$. Putting $b=1$, we obtain $s_{i j k}=\varphi_{i j k}(1 \otimes 1) \in C(R)$. We claim that for any i, j, k, l
(i) $s_{i i j}=s_{i j j}=1$,
(ii) $s_{i j k} s_{i k l}=s_{i j l} s_{j k l}$.

In fact, the first equality follows immediately from that $\varphi_{i i j}$ and $\varphi_{i j j}$ are canonical isomorphisms. By the associativity of $(a \circ b) \circ c=a \circ(b \circ c)$, we have $s_{i j k} s_{i k l} a b c=$ $s_{i j l} s_{j k l} a b c$. Putting $a=b=c=1$, we obtain equality (ii).

Conversely, for a given collection $\left\{s_{i j k}: 1 \leqslant i, j, k \leqslant n\right\}$ satisfying equalities (i) and (ii), we may set $\varphi_{i j k}(a \otimes b)=s_{i j k} a b$ for any $a, b \in R$. This defines a formal
matrix ring $K\left(R,\left\{\varphi_{i j k}\right\}\right)$ over R of order n. This class of formal matrix rings was first introduced in [9] and $\left\{s_{i j k}\right\}$ is called a system of factors in [2] and [9]. For completeness, we summarize it in the following definition.

Definition 2.1. A system of factors over a ring R of order n is a collection $\Sigma=\left\{s_{i j k}: s_{i j k} \in C(R), 1 \leqslant i, j, k \leqslant n\right\}$ such that for any i, j, k, l,

$$
\begin{equation*}
s_{i i j}=s_{i j j}=1, \quad s_{i j k} s_{i k l}=s_{i j l} s_{j k l} . \tag{2.1}
\end{equation*}
$$

The elements $s_{i j k}$ are called factors and the matrix $S=\left(s_{i j i}\right)_{1 \leqslant i, j \leqslant n}$ is called the principal factor matrix of Σ. The formal matrix ring $\mathbb{M}(R, \Sigma)$ defined by Σ is consists of all $n \times n$ matrices over R with ordinary matrix addition and the multiplication is given by

$$
\left(a_{i j}\right)\left(b_{i j}\right):=\left(\sum_{k=1}^{n} s_{i k j} a_{i k} b_{k j}\right) .
$$

Remark 2.2. Let $i=k$ in (2.1) and exchange i and j. We obtain

$$
s_{i j i}=s_{j i j}=s_{i j l} \cdot s_{j i l}=s_{l i j} \cdot s_{l j i} .
$$

Therefore, the principal factor matrix of a system of factors is symmetric.
Now, we present some examples of system of factors.
Example 2.3 ([16]). Let $s \in C(R)$ and

$$
s_{i j k}= \begin{cases}1, & i=j \text { or } j=k \\ s, & i, j, k \text { are pairwise distinct } \\ s^{2}, & k=i \neq j\end{cases}
$$

Then $\Sigma=\left\{s_{i j k}\right\}$ is a system of factors and the formal matrix ring $\mathbb{M}(R, \Sigma)$ is called Tang-Zhou ring in [2] and [9].

Example 2.4 ([9]). Let $s \in C(R)$ and

$$
s_{i j k}= \begin{cases}s, & i<k<j \text { or } j<i<k \text { or } k<j<i, \\ 1, & \text { otherwise }\end{cases}
$$

Then $\Sigma=\left\{s_{i j k}\right\}$ is a system of factors and the principal factor matrix of Σ is

$$
\left(\begin{array}{cccc}
1 & s & \ldots & s \\
s & 1 & \ldots & s \\
\vdots & \vdots & \ddots & \vdots \\
s & s & \ldots & 1
\end{array}\right)
$$

Example 2.5 ([1]). Let $\beta_{1}, \beta_{2}, \ldots, \beta_{n} \in C(R)$ and

$$
s_{i j k}= \begin{cases}1, & i=j \text { or } j=k \\ \beta_{j}, & i, j, k \text { are pairwise distinct } \\ \beta_{i} \beta_{j}, & k=i \neq j\end{cases}
$$

Then $\Sigma=\left\{s_{i j k}\right\}$ is a system of factors of order n and the formal matrix ring $\mathbb{M}(R, \Sigma)$ is denoted by $\mathbb{M}_{\beta_{1}, \beta_{2}, \ldots, \beta_{n}}(R)$ in $[1]$. This class of systems of factors contains the class of systems of factors in Example 2.3.

Next, we present some basic properties of system of factors, which are used in the sequel. Let $S=\left(s_{i j}\right)$ be an $n \times n$ matrix and σ be a permutation on $\{1,2, \ldots, n\}$. Let $\sigma(S)=\left(s_{\sigma(i) \sigma(j)}\right)$ and S^{t} denote the transpose of S.

Lemma 2.6 ([9]). Let $\Sigma=\left\{s_{i j k}: 1 \leqslant i, j, k \leqslant n\right\}$ be a system of factors with principal factor matrix S, and σ be a permutation on $\{1, \ldots, n\}$. Then $\sigma(\Sigma)=$ $\left\{s_{\sigma(i) \sigma(j) \sigma(k)}: 1 \leqslant i, j, k \leqslant n\right\}$ is a system of factors with principal matrix $\sigma(S)$ and $\mathbb{M}(R, \Sigma) \simeq \mathbb{M}(R, \sigma(\Sigma))$.

Lemma 2.7 ([9]). Let $\Sigma_{l}=\left\{s_{i j k}^{(l)}: 1 \leqslant i, j, k \leqslant n\right\}$ be a system of factors for any $l \in\{1, \ldots, m\}$. Then

$$
\prod_{l=1}^{m} \Sigma_{l}:=\left\{\prod_{l=1}^{m} s_{i j k}^{(l)}: 1 \leqslant i, j, k \leqslant n\right\}
$$

is a system of factors.
Lemma 2.8 ([9]). Let $\Sigma_{1}=\left\{s_{i j k}: 1 \leqslant i, j, k \leqslant n\right\}$ and $\Sigma_{2}=\left\{t_{i j k}: 1 \leqslant i, j, k \leqslant n\right\}$ be two systems of factors over R. Then for any given $l \in\{1, \ldots, n\}$,

$$
\phi_{l}: \mathbb{M}\left(R, \Sigma_{1} \Sigma_{2}\right) \rightarrow \mathbb{M}\left(R, \Sigma_{1}\right), \quad\left(a_{i j}\right) \mapsto\left(t_{i j l} a_{i j}\right)
$$

is a ring homomorphism. Moreover, if $t_{i j k} \in U(R)$ for any i, j, k, then ϕ_{l} is an isomorphism.

3. Construction of system of factors

In this section, we mainly give a method for constructing the system of factors. We begin with a lemma.

Lemma 3.1. Suppose that $a, b \in C(R)$ and $a \notin Z(R)$. Then the equation $a x=b$ has at most one solution. Moreover, if $a c=b$ and $b \notin Z(R)$, then $c \in C(R)$ and $c \notin Z(R)$.

Proof. Assume $a x_{1}=b$ and $a x_{2}=b$. Then $a\left(x_{1}-x_{2}\right)=0$. As a is not a zerodivisor, we have $x_{1}-x_{2}=0$ and $x_{1}=x_{2}$. So the equation $a x=b$ has at most one solution. Let $d \in R$. We have $a c d=b d=d b=d a c=a d c$, and $a(c d-d c)=0$. Since $a \notin Z(R)$, one has $c d=d c$ and thus $c \in C(R)$. If $d c=0$, then $a c d=b d=0$ and $d=0$. Hence, $c \notin Z(R)$.

Theorem 3.2. Let $T=\left(t_{i j}\right)$ with $t_{i j} \in C(R)$ and $t_{i i}=1$. Suppose that $t_{i j} \notin Z(R)$ and $t_{i k} \mid t_{i j} t_{j k}$ for any i, j, k. Let $s_{i j k}$ be a solution of $x \cdot t_{i k}=t_{i j} \cdot t_{j k}$. Then $\Sigma=\left\{s_{i j k}\right\}$ is a system of factors. Moreover, if $t_{i l}=t_{j l}=1$ or $t_{l i}=t_{l j}=1$, then $t_{i j}=s_{i j l}$ or $t_{i j}=s_{l i j}$.

Proof. By Lemma 3.1, $s_{i j k} \in C(R)$ and $s_{i j k} \notin Z(R)$. It is clear that $s_{i j k}=1$ if $i=j$ or $j=k$. We have

$$
\begin{aligned}
\left(s_{i j k} \cdot s_{i k r}\right) \cdot t_{i k} \cdot t_{i r} \cdot t_{j r} & =\left(s_{i j k} \cdot t_{i k}\right) \cdot\left(s_{i k r} \cdot t_{i r}\right) \cdot t_{j r}=\left(t_{i j} \cdot t_{j k}\right) \cdot\left(t_{i k} \cdot t_{k r}\right) \cdot t_{j r} \\
& =\left(t_{i j} \cdot t_{j r}\right) \cdot\left(t_{j k} \cdot t_{k r}\right) \cdot t_{i k}=\left(s_{i j r} \cdot t_{i r}\right) \cdot\left(s_{j k r} \cdot t_{j r}\right) \cdot t_{i k} \\
& =\left(s_{i j r} \cdot s_{j k r}\right) \cdot t_{i k} \cdot t_{i r} \cdot t_{j r} .
\end{aligned}
$$

Since $t_{i k} \cdot t_{i r} \cdot t_{j r}$ is not a zero-divisor, one has $s_{i j k} \cdot s_{i k r}=s_{i j r} \cdot s_{j k r}$ and thus Σ is a system of factors.

By Theorem 3.2, we see that if each factor in a system of factors $\Sigma=\left\{s_{i j k}\right\}$ is not a zero-divisor, then Σ is determined by a matrix $\left(s_{i j l}\right)$ or $\left(s_{l i j}\right)$ of factors. A class of systems of factors whose factors are powers of the same central element s is investigated by Krylov and Tuganbaev in [9]. Motivated by their work and Theorem 3.2, we introduce the following definition.

Claim 3.3. Let \mathcal{M}_{n} be the set of all $n \times n$ non-negative integer matrices ($m_{i j}$) such that $m_{i i}=0$ and $m_{i j}+m_{j k}-m_{i k} \geqslant 0$ for any $1 \leqslant i, j, k \leqslant n$. Then \mathcal{M}_{n} is a semigroup with ordinary matrix addition.

Lemma 3.4. Let $T=\left(m_{i j}\right) \in \mathcal{M}_{n}$ and $s \in C(R)$. Then

$$
\Sigma_{T, s}:=\left\{s_{i j k}=s^{m_{i j}+m_{j k}-m_{i k}}: 1 \leqslant i, j, k \leqslant n\right\}
$$

is a system of factors over R with the principal factor matrix $S=\left(s^{m_{i j}+m_{j i}}\right)$.
Proof. It is straight to verify that (2.1) holds for $\Sigma_{T, s}$ and the principal factor matrix of $\Sigma_{T, s}$ is $\left(s_{i j i}\right)=\left(s_{i j k} \cdot s_{j i k}\right)=\left(s^{m_{i j}+m_{j k}-m_{i k}} \cdot s^{m_{j i}+m_{i k}-m_{j k}}\right)=\left(s^{m_{i j}+m_{j i}}\right)$.

Remark 3.5. Let $s, \beta_{1}, \beta_{2}, \ldots, \beta_{n} \in C(R)$ and

$$
T=\left(\begin{array}{ccccc}
0 & 1 & 1 & \ldots & 1 \\
1 & 0 & 1 & \ldots & 1 \\
1 & 1 & 0 & \ldots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 1 & 1 & \ldots & 0
\end{array}\right), \quad R=\left(\begin{array}{ccccc}
0 & 0 & 0 & \ldots & 0 \\
1 & 0 & 0 & \ldots & 0 \\
1 & 1 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 1 & 1 & \ldots & 0
\end{array}\right) .
$$

It is easy to verify that $T, R \in \mathcal{M}_{n}, \Sigma_{T, s}$ and $\Sigma_{R, s}$ are the systems of factors in Example 2.3 and Example 2.4, respectively.

Let $T_{l}=\left(m_{i j}^{(l)}\right)$, where

$$
m_{i j}^{(l)}= \begin{cases}1, & j=l \neq i \\ 0, & \text { otherwise }\end{cases}
$$

That is, the l th column of T_{l} is equal to the l th column of T, and the other columns are all zero.

If i, j, k are pairwise distinct, then

$$
m_{i j}^{(l)}+m_{j k}^{(l)}-m_{i k}^{(l)}= \begin{cases}1, & j=l \\ 0, & \text { otherwise }\end{cases}
$$

If $i=k \neq j$, then

$$
m_{i j}^{(l)}+m_{j k}^{(l)}-m_{i k}^{(l)}=m_{i j}^{(l)}+m_{j i}^{(l)}= \begin{cases}1, & l=i \text { or } l=j \\ 0, & \text { otherwise }\end{cases}
$$

It follows that $\Sigma=\left\{s_{i j k}=\prod_{l=1}^{n} \beta_{l}^{m_{i j}^{(l)}+m_{j k}^{(l)}-m_{i k}^{(l)}}\right\}=\prod_{l=1}^{n} \Sigma_{T_{l}, \beta_{l}}$ is the system of factors in Example 2.5.

Theorem 3.6. Let Σ be a system of factors of order n over R. Suppose that R is a unique factorization domain and $0 \notin \Sigma$. Then there exist non-negative integer matrices $T_{i} \in \mathcal{M}_{n}$ and irreducible elements $t_{i} \in R$ such that

$$
\mathbb{M}(R, \Sigma) \simeq \mathbb{M}\left(R, \prod_{i=1}^{v} \Sigma_{T_{i}, t_{i}}\right)
$$

Proof. Let $\left\{t_{r}\right\}_{r \in J}$ be a representative class of irreducible elements in R. Since R is a unique factorization domain, we can write $s_{i j k}=u_{i j k} \prod_{r=1}^{v} t_{r}^{m_{i j k}^{(r)}}$ for any i, j, k, where $u_{i j k} \in U(R)$ and $m_{i j k}^{(r)} \geqslant 0$. Since $s_{i j k} s_{i k l}=s_{i j l} s_{j k l}$, one has $u_{i j k} u_{i k l}=u_{i j l} u_{j k l}$
and $m_{i j k}^{(r)}+m_{i k l}^{(r)}=m_{i j l}^{(r)}+m_{j k l}^{(r)}$. Putting $\Sigma_{0}=\left\{u_{i j k}\right\}$ and $T_{r}=\left(m_{i j l}^{(r)}\right)_{1 \leqslant i, j \leqslant n}$ for a fixed $l \in\{1, \ldots, n\}$. By Lemma 3.4, $\Sigma_{T_{r}, t_{r}}=\left\{t_{r}^{m_{i j k}^{(r)}}: 1 \leqslant i, j, k \leqslant n\right\}$ is a system of factors. It follows that $\Sigma=\Sigma_{0} \cdot \prod_{r=1}^{v} \Sigma_{T_{r}, t_{r}}$. Since each factor in Σ_{0} is a unit, by Lemma 2.8 we have

$$
\mathbb{M}(R, \Sigma) \simeq \mathbb{M}\left(R, \prod_{i=1}^{v} \Sigma_{T_{i}, t_{i}}\right)
$$

This completes our proof.
A partition of a matrix is called a square partition if the number of blocks at each row is equal to the number of blocks at each column, and the blocks at the main diagonal are squares.

Definition 3.7. Let $S=\left(s_{i j}\right)$ be a symmetric matrix such that $s_{i j} \in\{1, s\}$. We say that S has canonical form if S has a square partition such that all elements standing at the diagonal block are 1 , and the other elements standing on all remaining positions are s. If there exists a permutation σ such that $\sigma(S)$ has the canonical form, then we say that S can be reduced to the canonical form.

Remark 3.8. Suppose that S has a square partition. If S_{1} is obtained by exchanging the i th block row and the j th block row from S, and S_{2} is obtained by exchanging the i th block column and the j th block column from S_{1}, then there exists a permutation σ such that $\sigma(S)=S_{2}$.

Let us look at the following simple example.
Example 3.9. Let

$$
S=\left(\begin{array}{lll}
1 & 1 & s \\
1 & 1 & s \\
s & s & 1
\end{array}\right), \quad T=\left(\begin{array}{lll}
1 & s & 1 \\
s & 1 & s \\
1 & s & 1
\end{array}\right)
$$

Then S has the canonical form and T can be reduced to canonical form, since $\sigma(T)=S$ for $\sigma=(23)$.

A system of factors $\left\{s_{i j k}\right\}$ is called binary if $s_{i j k} \in\{1, s\}$ for some $s \in C(R)$. It was showed in [9] that if Σ is a system of factors with principal factor matrix S such that each factor belongs to $\{1, s\}$ and $s^{2} \neq 1, s$, then S can be reduced to the canonical form. In [9], the authors also showed that there exists a system of factors with principal factor matrix S for any given S with the canonical form. Here, we give a more straightforward proof of this fact based on Lemma 3.4.

Theorem 3.10. Suppose that $S=\left(s_{i j}\right)$ has the canonical form such that $s_{i j} \in\{1, s\}$ and $s \in C(R)$. Then there exists a system of factors $\Sigma=\left\{s_{i j k}\right\}$ over R with principal factor matrix S such that $s_{i j k} \in\{1, s\}$ for any i, j, k.

Proof. Let $T=\left(m_{i j}\right)$ with the same partition of the canonical form of S such that $m_{i j}=1$ if the (i, j)-position stands above the diagonal block, and $m_{i j}=0$ for any remaining positions. It is easy to verify that $0 \leqslant m_{i j}+m_{j k}-m_{i k} \leqslant 1$. Therefore, by Lemma 3.4, $\Sigma_{T, s}=\left\{s^{m_{i j}+m_{j k}-m_{i k}}: 1 \leqslant i, j, k \leqslant n\right\}$ is a binary system of factors such that each factor is contained in $\{1, s\}$. By the construction of T we have $m_{i j}+m_{j i}=0$ if the (i, j)-position is in the diagonal block of T, and $m_{i j}+m_{j i}=1$ for the remaining blocks. By Lemma 3.4 again, the principal factor matrix of $\Sigma_{T, s}$ is $\left(s^{m_{i j}+m_{j i}}\right)=S$.

4. Structure of binary system of factors

In this section, we study the structure of binary system of factors over R. We use $\mathbf{1}_{m \times n}$ or $\mathbf{s}_{m \times n}$ to denote the $m \times n$ matrices such that all elements are 1 or s, respectively. The first lemma is a modification of Lemma 7.1 in [9].

Lemma 4.1. Let $S=\left(s_{i j i}\right)$ be the principal factor matrix of a system of factors $\left\{s_{i j k}\right\}$ over a ring R. Then there exists a permutation σ such that $\sigma(S)$ has a square partition such that all elements standing at the diagonal block are units, and the other elements standing on all remaining positions are not unit.

Proof. We first show that if $S_{0}=\left(s_{i j}\right)_{n \times n}$ is a matrix over R which satisfies the following two conditions, then S has the desired property of the lemma.
(1) $s_{i j}, s_{j k} \in U(R)$ implies that $s_{i k} \in U(R)$,
(2) S_{0} is symmetric and $s_{i i} \in U(R)$.

Let $\mathbf{U}_{p \times q}$ be a set of $p \times q$ matrices with elements in $U(R)$ and let $\mathbf{V}_{p \times q}$ be a set of $p \times q$ matrices with elements in $R \backslash U(R)$. We induct on n. The case $n=1,2$ is trivial. Since $\left(s_{i j}\right)_{1 \leqslant i, j \leqslant n-1}$ satisfies the conditions (1) and (2), by induction there exists a permutation σ such that $\sigma(n)=n$ and

$$
S_{1}=\sigma\left(S_{0}\right)=\left(\begin{array}{cc}
T & A^{t} \\
A & s_{n n}
\end{array}\right)=\left(t_{i j}\right)
$$

where $A \in R^{1 \times(n-1)}$ and T has a square partition such that all elements standing at the diagonal block of are units, and the other elements standing on all remaining positions are not unit. We divide the remaining part of the proof into two cases.

Case 1: Suppose that $T \in \mathbf{U}_{(n-1) \times(n-1)}$. That is, $t_{i j} \in U(R)$ for $1 \leqslant i, j \leqslant n-1$. If $t_{n i} \in U(R)$ for some $i \in\{1, \ldots, n-1\}$, then we have $t_{n j} \in U(R)$ by condition (1) for every j. It follows that $A \in \mathbf{U}_{1 \times(n-1)}$ or $A \in \mathbf{V}_{1 \times(n-1)}$.

Case 2: Suppose that the number of blocks at the diagonal of T is $r \geqslant 2$. We write

$$
S_{1}=\left(\begin{array}{ccccc}
\mathbf{u}_{1} & & \ldots & & A_{1}^{t} \\
& \mathbf{u}_{2} & \ldots & & A_{2}^{t} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
& & \ldots & \mathbf{u}_{r} & A_{r}^{t} \\
A_{1} & A_{2} & \ldots & A_{r} & u
\end{array}\right)
$$

where $\mathbf{u}_{i} \in \mathbf{U}_{n_{i} \times n_{i}}$, and $A_{i} \in \mathbf{U}_{1 \times n_{i}}$ or $A_{i} \in \mathbf{V}_{1 \times n_{i}}$ for any $i=1, \ldots, r$. If $A_{i} \in \mathbf{U}_{1 \times n_{i}}$ for any $i \in\{1, \ldots, r\}$, then $t_{i j} \in U(R)$ for any i, j by condition (1). It follows that $S_{1} \in \mathbf{U}_{n \times n}$, a contradiction. Hence, $A_{i} \in \mathbf{V}_{1 \times n_{i}}$ for some i. Now we exchange the i th row block and the last row block of S_{1}, and then exchange the i th column block and the last column block. This reduces S_{1} to

$$
S_{2}=\left(\begin{array}{cc}
B & \mathbf{v}^{T} \\
\mathbf{v} & \mathbf{u}_{i}
\end{array}\right)
$$

where $\mathbf{v} \in \mathbf{V}_{n_{i} \times\left(n-n_{i}\right)}$. By induction, B has the desired property of the lemma and is also S_{2}.

It remains to show that the principal matrix $S=\left(s_{i j i}\right)$ satisfies conditions (1) and (2). By Definition 2.1, we have $s_{i i i}=1$. By Remark $2.2, S$ is symmetric and

$$
s_{i j i}=s_{i j k} s_{j i k}=s_{k i j} s_{k j i}, \quad s_{j k j}=s_{j k i} s_{k j i}=s_{i j k} s_{i k j}, \quad s_{i k i}=s_{i k j} s_{k i j}=s_{j i k} s_{j k i}
$$

If $s_{i j i}, s_{j k j} \in U(R)$, then $s_{i j k}, s_{j i k}, s_{j k i}, s_{k j i} \in U(R)$ and $s_{i k i} \in U(R)$. The proof is complete.

Corollary 4.2. Let $\Sigma=\left\{s_{i j k}\right\}$ be a system of factors over R with $s_{i j k} \in\{1, s\}$ and $S=\left(s_{i j i}\right)$ be the principal factor matrix of Σ. Suppose that $s \notin U(R)$. Then S can be reduced to the canonical form.

Proof. It follows immediately from Lemma 4.1 and the fact that $s \notin U(R)$.
Definition 4.3. Let $S=\left(s_{i j}\right)_{1 \leqslant i, j \leqslant n}$ such that $s_{i j} \in\{1, s\}$. We say that S has the triangular canonical form if S has a square partition such that all elements standing above (or below) the diagonal block are s, and the other elements standing on the diagonal blocks and below (or above) the diagonal blocks are 1. If there exists a permutation σ such that $\sigma(S)$ has the triangular canonical form, then we say that S can be reduced to the triangular canonical form.

Example 4.4. Let

$$
S=\left(\begin{array}{llll}
1 & s & s & s \\
1 & 1 & s & s \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right), \quad T=\left(\begin{array}{llll}
1 & s & s & s \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & s & s & 1
\end{array}\right)
$$

Then $\sigma(T)=S$ for $\sigma=(24)$. So S has the triangular canonical form and T can be reduced to the triangular canonical form.

Lemma 4.5. Let $S=\left(s_{i j}\right)_{1 \leqslant i, j \leqslant n}$ such that $s_{i i}=1$ and $s_{i j} \in\{1, s\}$. Suppose that
(1) $s_{i j}=s_{j k}=1$ implies that $s_{i k}=1$,
(2) S has a square partition such that all elements in the diagonal blocks are 1, and $\left(s_{i j}, s_{j i}\right)=(1, s)$ or $(s, 1)$ for any (i, j)-position not contained in the diagonal blocks.

Then S can be reduced to the triangular canonical form. Moreover, if S has the triangular canonical form, then there exists a permutation σ such that $\sigma(S)=S^{t}$.

Proof. We prove the statement by induction on n. The case $n=1$ is trivial. If $n=2$, then S is one of the following:

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right), \quad\left(\begin{array}{ll}
1 & 1 \\
s & 1
\end{array}\right), \quad\left(\begin{array}{ll}
1 & s \\
1 & 1
\end{array}\right) .
$$

Each of them has the triangular canonical form. Suppose the statement is true for any $k<n$. By induction, S can be reduced to

$$
S_{1}=\left(\begin{array}{cc}
C & B \\
A & 1
\end{array}\right)
$$

where C is $(n-1) \times(n-1)$ with the triangular canonical form. We divide the remaining part of the proof into cases.

Case 1: If $C=\mathbf{1}_{(n-1) \times(n-1)}$, then $A=\mathbf{1}_{1 \times(n-1)}$ or $\mathbf{s}_{1 \times(n-1)}$ by similar discussions as in Case 1 of the proof of Lemma 4.1. It follows that S_{1} has the triangular canonical form.

Case 2: If the number of blocks at the diagonal of C is $r \geqslant 2$, then we can partition

$$
S_{1}=\left(\begin{array}{ccccc}
\mathbf{1} & \mathbf{s} & \ldots & \mathbf{s} & B_{1}^{t} \\
\mathbf{1} & \mathbf{1} & \ldots & \mathbf{s} & B_{2}^{t} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\mathbf{1} & \mathbf{1} & \ldots & \mathbf{1} & B_{r}^{t} \\
A_{1} & A_{2} & \ldots & A_{r} & 1
\end{array}\right)
$$

where both A_{i} and B_{i} are of $1 \times n_{i}$, and all elements in A_{i} or B_{i} are equal. Since $s_{i j}=1$ for any $j \leqslant i<n$, if $s_{k n}=1$, then $s_{l n}=1$ for any $l<k$.

Subcase 2.1: If $\left(A_{1}, \ldots, A_{r}\right)=\mathbf{1}_{1 \times(n-1)}$, then $\left(B_{1}, \ldots, B_{r}\right)=\mathbf{s}_{1 \times(n-1)}$ and S has the triangular canonical form.

Subcase 2.2: If $\left(A_{1}, \ldots, A_{r}\right)=\mathbf{s}_{1 \times(n-1)}$, then $\left(B_{1}, \ldots, B_{r}\right)=\mathbf{1}_{1 \times(n-1)}$. By induction, there exists a permutation σ_{1} such that $\sigma_{1}(C)=C^{t}$. Thus, S can be reduced to the triangular canonical form.

Subcase 2.3: If there exists j such that $A_{i}=\mathbf{1}_{1 \times n_{i}}$ for some $i \leqslant j$ and $A_{i}=\mathbf{s}_{1 \times n_{i}}$ for $i>j$, then we consider another partition of

$$
S_{1}=\left(\begin{array}{cc}
J & \mathbf{s}_{m \times(n-m)} \\
\mathbf{1}_{(n-m) \times m} & H
\end{array}\right),
$$

where $m=\sum_{i=1}^{j} n_{i}$. By induction, there exists a permutation matrix P such that PHP P^{-1} has the triangular canonical form with s standing above the diagonal blocks. Let $U=\left(\begin{array}{cc}E_{m} & O \\ O & P\end{array}\right)$. Then U is also a permutation matrix and

$$
\begin{aligned}
U S_{1} U^{-1} & =\left(\begin{array}{cc}
E_{m} & O \\
O & P
\end{array}\right)\left(\begin{array}{cc}
J & \mathbf{s}_{m \times(n-m)} \\
\mathbf{1}_{(n-m) \times m} & H
\end{array}\right)\left(\begin{array}{cc}
E_{m} & O \\
O & P^{-1}
\end{array}\right) \\
& =\left(\begin{array}{cc}
J & \mathbf{s}_{m \times(n-m)} \\
\mathbf{1}_{(n-m) \times m} & P H
\end{array}\right)\left(\begin{array}{cc}
E_{m} & O \\
O & P^{-1}
\end{array}\right)=\left(\begin{array}{cc}
J & \mathbf{s}_{m \times(n-m)} \\
\mathbf{1}_{(n-m) \times m} & P H P^{-1}
\end{array}\right) .
\end{aligned}
$$

Since both J and $P H P^{-1}$ have the triangular canonical form with s standing above the diagonal blocks, so does $U S_{1} U^{-1}$. The proof is complete.

Corollary 4.6. Let $\Sigma=\left\{s_{i j k}:\{1 \leqslant i, j, k \leqslant n\}\right.$ be a system of factors over R with $s_{i j k} \in\{1, s\}$. Let $T_{l}=\left(s_{i j l}\right)_{1 \leqslant i, j \leqslant n}$ or $\left(s_{l i j}\right)_{1 \leqslant i, j \leqslant n}$ for any given $l \in\{1, \ldots, n\}$. Suppose that $s^{2} \neq 1, s$. Then T_{l} can be reduced to the triangular canonical form.

Proof. We only deal with the case when $T_{l}=\left(s_{i j l}\right)$ since the proof of $T_{l}=\left(s_{l i j}\right)$ is similar. By Corollary $4.2, S=\left(s_{i j i}\right)$ can be reduced to the canonical form. After a permutation if necessary, we may assume that S has the canonical form. Then S has a square partition such that 1 stands at the diagonal blocks and s stands at the remaining positions. We partition $T_{l}=\left(s_{i j l}\right)$ as the canonical form of S. Since $s_{i j l} \cdot s_{j i l}=s_{i j i}$ and $s^{2} \neq s, 1$, we have $s_{i j l}=s_{j i l}=1$ if (i, j)-position is in the diagonal blocks, and $\left\{s_{i j l}, s_{j i l}\right\}=\{1, s\}$ if (i, j)-position is not in the diagonal blocks. If $s_{i j l}=s_{j k l}=1$, then $s_{i k l} \cdot s_{j k l}=s_{i j l} \cdot s_{j k l}=1$, and thus $s_{i k l}=1$. By Lemma 4.5, T_{l} can be reduced to the triangular canonical form.

Lemma 4.7. Let Σ_{1}, Σ_{2} be two systems of factors with principal factor matrices S_{1}, S_{2}, respectively. Suppose that each factor of Σ_{i} is 1 or s, and $s^{2} \neq s, 1$. Then $\sigma\left(\Sigma_{1}\right)=\Sigma_{2}$ for some permutation σ if and only if S_{1} and S_{2} can be reduced to the same canonical form.

Proof. The necessity follows from Lemma 2.6. Now we prove the sufficiency. Suppose that S_{1} and S_{2} can be reduced to the same canonical form. By Corollary 4.6, after permutations we may assume that $\Sigma_{1}=\left\{s_{i j k}\right\}, \Sigma_{2}=\left\{t_{i j k}\right\}$ such that $\left(s_{i j l}\right)_{1 \leqslant i, j \leqslant n}=\left(t_{i j l}\right)_{1 \leqslant i, j \leqslant n}$ has the triangular canonical form. Since $s_{i j l} \cdot s_{j k l}=$ $s_{i k l} \cdot s_{i j k}$ and $t_{i j l} \cdot t_{j k l}=t_{i k l} \cdot t_{i j k}$, combining with that $s^{2} \neq 1, s$, we obtain $s_{i j k}=t_{i j k}$ for any i, j, k.

Lemma 4.8 ([9], Proposition 6.3). Let I be an ideal of the formal matrix ring $\mathbb{M}(R, \Sigma)$. Then

$$
I=\left(\begin{array}{cccc}
I_{11} & I_{12} & \ldots & I_{1 n} \\
I_{21} & I_{22} & \ldots & I_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
I_{n 1} & I_{n 2} & \ldots & I_{n n}
\end{array}\right)
$$

where all $I_{i j}$ are ideals of R and the following hold:

$$
I_{i i} \subseteq \bigcap_{l=1}^{n}\left(I_{i l} \cap I_{l i}\right), \quad s_{i j i} I_{i j} \subseteq I_{i i} \cap I_{j j}
$$

for all i, j, and

$$
s_{i k j} I_{k j} \subseteq I_{i j}, \quad s_{j k i} I_{j k} \subset I_{j i}
$$

for all pairwise distinct i, j, k.
Lemma 4.9 ([9], Proposition 6.4). Let $I=\left(I_{i j}\right)$ be an ideal of a formal matrix ring $\mathbb{M}(R, \Sigma)$, where $\Sigma=\left\{s_{i j k}\right\}$ is a system of factors. Then:
(1) The set of matrices

$$
\bar{K}=\left(\begin{array}{cccc}
\frac{R}{I_{11}} & \frac{R}{I_{12}} & \ldots & \frac{R}{I_{1 n}} \\
\frac{R}{I_{21}} & \frac{R}{I_{22}} & \ldots & \frac{R}{I_{2 n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{R}{I_{n 1}} & \frac{R}{I_{n 2}} & \ldots & \frac{R}{I_{n n}}
\end{array}\right)
$$

is a formal matrix ring with bimodule homomorphisms

$$
\varphi_{i j k}: \frac{R}{I_{i j}} \otimes_{R / I_{j j}} \frac{R}{I_{j k}} \rightarrow \frac{R}{I_{i k}}, \quad \varphi_{i j k}(\bar{x} \otimes \bar{y})=s_{i j k} x y+I_{i k}
$$

(2) There is an isomorphism

$$
\sigma: \frac{K}{I} \rightarrow \bar{K}, \quad\left(x_{i j}\right)+I \mapsto\left(x_{i j}+I_{i j}\right)
$$

Lemma $4.10([9])$. Let $\Sigma=\left\{s_{i j k}: 1 \leqslant i, j, k \leqslant n\right\}$ be a system of factors over R. Then the Jacobson radical of $\mathbb{M}(R, \Sigma)$ is

$$
\left(\begin{array}{cccc}
J(R) & J_{12}(R) & \ldots & J_{1 n}(R) \\
J_{21}(R) & J(R) & \ldots & J_{2 n}(R) \\
\vdots & \vdots & \ddots & \vdots \\
J_{n 1}(R) & J_{n 2}(R) & \ldots & J(R)
\end{array}\right)
$$

where $J_{i j}(R)=\left\{x: s_{i j i} x \in J(R)\right\}=J_{j i}(R)$. In particular, $J_{i j}(R)=R$ if $s_{i j i} \in J(R)$.

Corollary 4.11. Let $\Sigma=\left\{s_{i j k}\right\}$ be a system of factors over a ring R and $K=M(R, \Sigma)$ be the formal matrix ring defined by Σ. Let $\bar{R}=R / J(R)$. Suppose that $s_{i j i} \in J(R) \cup U(R)$ for any i, j. Then there exist $n_{1}, n_{2}, \ldots, n_{r}$ such that $\sum_{i=1}^{r} n_{i}=n$ and

$$
\frac{K}{J(K)} \simeq M_{n_{1}}(\bar{R}) \times M_{n_{2}}(\bar{R}) \times \ldots \times M_{n_{r}}(\bar{R})
$$

Proof. By Lemma 4.1 and the hypothesis that $s_{i j i} \in J(R) \cup U(R)$, after a permutation if necessary, we may assume that the principal factor matrix $S=\left(s_{i j i}\right)$ has a square partition such that all elements standing at the diagonal blocks are units and the other elements are contained in $J(R)$. By Lemma 4.10, we have $J(K)=\left(J_{i j}(R)\right)$, where $J_{i j}(R)=J(R)$ if (i, j)-position is at the diagonal blocks of S and $J_{i j}(R)=R$ if (i, j)-position is not at the diagonal blocks of S.

Assume that the i th block at the diagonal of S is $n_{i} \times n_{i}$. Let $N_{i}=\sum_{l=1}^{i} n_{l}$. By Lemma 4.9,

$$
\frac{K}{J(K)} \simeq \mathbb{M}_{n_{1}}\left(\bar{R}, \Sigma_{1}\right) \times \mathbb{M}_{n_{2}}\left(\bar{R}, \Sigma_{2}\right) \times \ldots \times \mathbb{M}_{n_{r}}\left(\bar{R}, \Sigma_{r}\right)
$$

where $\Sigma_{l}=\left\{s_{i j k}+J(R): N_{l}+1 \leqslant i, j, k \leqslant N_{l+1}\right\}$. However, by hypothesis, $s_{i j k}$ is a unit when $s_{i j i}$ is a unit. It follows that $\mathbb{M}_{n_{l}}\left(\bar{R}, \Sigma_{l}\right) \simeq M_{n_{l}}(\bar{R})$. This completes the proof.

Now, we state and prove one of the main results of this paper.

Theorem 4.12. Let $s \in C(R) \cap J(R)$. Let Σ_{1}, Σ_{2} be two systems of factors over R such that each factor of them belongs to $\{1, s\}$. Suppose that R is left artinian. Then $\mathbb{M}\left(R, \Sigma_{1}\right) \simeq \mathbb{M}\left(R, \Sigma_{2}\right)$ if and only if the principal factor matrices of Σ_{1} and Σ_{2} can be reduced to the same canonical form.

Proof. The sufficiency follows immediately from Lemma 4.7 and Lemma 2.6. Now suppose that $\mathbb{M}\left(R, \Sigma_{1}\right) \simeq \mathbb{M}\left(R, \Sigma_{2}\right)$. Let $K_{i}=\mathbb{M}\left(R, \Sigma_{i}\right)$ and S_{i} be the principal matrices of Σ_{i}. After permutations if necessary, we may assume that both S_{1} and S_{2} have canonical form, and the sizes of diagonal blocks of S_{1} are n_{1}, \ldots, n_{r}, the sizes of diagonal blocks of S_{2} are $m_{1}, \ldots, m_{r^{\prime}}$ with $n_{1} \leqslant n_{2} \leqslant \ldots \leqslant n_{r}$ and $m_{1} \leqslant$ $m_{2} \leqslant \ldots \leqslant m_{r^{\prime}}$.

Since R is left artinian, by the Wedderburn-Artin theorem, there exist division rings D_{1}, \ldots, D_{s} and positive integers k_{1}, \ldots, k_{s} such that $\bar{R}=R / J(R) \simeq M_{k_{1}}\left(D_{1}\right) \times$ $M_{k_{2}}\left(D_{2}\right) \times \ldots \times M_{k_{s}}\left(D_{s}\right)$. By Corollary 4.11,

$$
\begin{aligned}
\frac{K_{1}}{J\left(K_{1}\right)} & \simeq M_{n_{1}}(\bar{R}) \times M_{n_{2}}(\bar{R}) \times \ldots \times M_{n_{r}}(\bar{R}) \\
& \simeq \prod_{i=1}^{s} M_{n_{1} k_{i}}\left(D_{i}\right) \times \prod_{i=1}^{s} M_{n_{2} k_{i}}\left(D_{i}\right) \times \ldots \times \prod_{i=1}^{s} M_{n_{r} k_{i}}\left(D_{i}\right) \simeq \prod_{i=1}^{s} \prod_{j=1}^{r} M_{n_{j} k_{i}}\left(D_{i}\right) .
\end{aligned}
$$

Similarly, we have

$$
\frac{K_{2}}{J\left(K_{2}\right)} \simeq \prod_{i=1}^{s} \prod_{j=1}^{r^{\prime}} M_{m_{j} k_{i}}\left(D_{i}\right)
$$

By the Wedderburn-Artin theorem again, we obtain that $r=r^{\prime}$ and $n_{i}=m_{i}^{\prime}$ for $i=1, \ldots, r$. Thus, $S_{1}=S_{2}$ and the proof is completed by Lemma 4.7.

Example 4.13. Let $R=F$ be a field and let $\Sigma_{1}=\left\{s_{i j k}: 1 \leqslant i, j, k \leqslant 3\right\}$, $\Sigma_{2}=\left\{t_{i j k}: 1 \leqslant i, j, k \leqslant 3\right\}$ be two systems of factors, where

$$
s_{i j k}= \begin{cases}1, & i=j \text { or } j=k \\ 1, & i j k=123,231,312 \\ 0, & \text { otherwise }\end{cases}
$$

and

$$
t_{i j k}= \begin{cases}1, & i=j \text { or } j=k \\ 0, & \text { otherwise }\end{cases}
$$

Then both Σ_{1} and Σ_{2} are systems of factors with the same principal factor matrix E_{3}. Since Σ_{1} and Σ_{2} have distinct number of factors $1, \sigma\left(\Sigma_{1}\right) \neq \Sigma_{2}$ for any permutation σ. We also show that $K_{1}=\mathbb{M}\left(F, \Sigma_{1}\right)$ is not isomorphic to $K_{2}=\mathbb{M}\left(F, \Sigma_{2}\right)$.

Suppose to the contrary that there exists a ring isomorphism $\varphi: K_{2} \rightarrow K_{1}$. Let $E_{i j}$ be the standard matrix bases. Let $\mathrm{Ann}_{r} C=\{X: C X=0\}$ be the right annihilator of C in a ring. By the construction of $\left\{t_{i j k}\right\}$, we have $E_{i j} E_{k l}=\delta_{j k} t_{i j l} E_{i l}$ in K_{2}. If $i \neq j$ and $X=\left(x_{i j}\right)$ in K_{2}, then $E_{i j} X=0$ if and only if $x_{j j}=0$. In K_{2}, we have

$$
\operatorname{dim}_{F} \operatorname{Ann}_{r}\left(E_{i j}\right)=8, \quad i \neq j
$$

Let $A=\left(a_{i j}\right)$ and $Y=\left(y_{i j}\right)$. By the construction of $\left\{s_{i j k}\right\}$, in K_{1} we have

$$
A Y=\left(\begin{array}{ccc}
a_{11} y_{11} & a_{11} y_{12}+a_{12} y_{22} & a_{11} y_{13}+a_{12} y_{23}+a_{13} y_{33} \\
a_{21} y_{11}+a_{22} y_{21}+a_{23} y_{31} & a_{22} y_{22} & a_{22} y_{23}+a_{23} y_{33} \\
a_{31} y_{11}+a_{33} y_{31} & a_{31} y_{12}+a_{32} y_{22}+a_{33} y_{32} & a_{33} y_{33}
\end{array}\right)
$$

Thus, $Y \in \operatorname{Ann}_{r}(A)$ if and only if Y is a solution of the system of homogeneous linear equations with nine indeterminates $y_{11}, y_{21}, y_{31}, y_{12}, y_{22}, y_{32}, y_{13}, y_{23}, y_{33}$ and coefficient matrix $C_{0}=\operatorname{diag}\left(C_{1}, C_{2}, C_{3}\right)$, where

$$
C_{1}=\left(\begin{array}{ccc}
a_{11} & 0 & 0 \\
a_{21} & a_{22} & a_{23} \\
a_{31} & 0 & a_{33}
\end{array}\right), \quad C_{2}=\left(\begin{array}{ccc}
a_{11} & a_{12} & 0 \\
0 & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right), \quad C_{3}=\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{22} & a_{23} \\
0 & 0 & a_{33}
\end{array}\right) .
$$

By the standard result of linear algebra, $\operatorname{dim}_{F} \operatorname{Ann}_{r}(A)=8$ if and only if

$$
\operatorname{rank}\left(C_{0}\right)=\sum_{i=1}^{3} \operatorname{rank}\left(C_{i}\right)=1
$$

By a simple computation, we see that in $K_{1} \operatorname{dim}_{F} \operatorname{Ann}_{r}(A)=8$ if and only if $A=c E_{13}, c E_{32}$ or $c E_{21}, c \neq 0$.

Since $\varphi: K_{2} \rightarrow K_{1}$ is a ring isomorphism, we have

$$
\operatorname{dim}_{F} \operatorname{Ann}_{r}(A)=\operatorname{dim}_{F} \operatorname{Ann}_{r}(\varphi(A))
$$

for any $A \in K_{2}$. It follows that $\varphi\left(E_{i j}\right)$ is contained in the subspace spanned by E_{13}, E_{32} and E_{21} for any $i \neq j$. That is, $\left\{E_{i j}: 1 \leqslant i, j \leqslant 3, i \neq j\right\}$ is linear independent, but $\left\{\varphi\left(E_{i j}\right): 1 \leqslant i, j \leqslant 3, i \neq j\right\}$ is linear dependent. This contradicts the fact that φ is an isomorphism.

Acknowledgements. We would like to thank the referee for careful reading of the paper and for his/her valuable comments.

References

[1] A. N. Abyzov, D. T. Tapkin: Formal matrix rings and their isomorphisms. Sib. Math. J. 56 (2015), 955-967; translated from Sib. Mat. Zh. 56 (2015), 1199-1214.
[2] A. N. Abyzov, D. T. Tapkin: On certain classes of rings of formal matrices. Russ. Math. 59 (2015), 1-12; translated from Izv. Vyssh. Uchebn. Zaved., Mat. 2015 (2015), 3-14.
[3] M. Auslander, I. Reiten, S. O.Smalø: Representation Theory of Artin Algebras. Cambridge Studies in Advanced Mathematics 36. Cambridge University Press, Cambridge, 1995.
[4] A. Haghany K. Varadarajan: Study of formal triangular matrix rings. Commun. Algebra 27 (1999), 5507-5525.
[5] A. Haghany K. Varadarajan: Study of modules over formal triangular matrix rings. J. Pure Appl. Algebra 147 (2000), 41-58.
zbl MR doi
[6] P. A. Krylov: Isomorphism of generalized matrix rings. Algebra Logic 47 (2008), 258-262; translated from Algebra Logika 47 (2008), 456-463.
zbl MR doi
[7] P. A. Krylov: Injective modules over formal matrix rings. Sib. Math. J. 51 (2010), 72-77; translated from Sib. Mat. Zh. 51 (2010), 90-97.
[8] P. A. Krylov, A. A. Tuganbaev: Modules over formal matrix rings. J. Math. Sci., New York 171 (2010), 248-295; translated from Fundam. Prikl. Mat. 15 (2009), 145-211.
[9] P. A. Krylov, A. A. Tuganbaev: Formal matrices and their determinants. J. Math. Sci.,
New York $211(2015), 341-380$; translated from Fundam. Prikl. Mat. $19(2014), 65-119$.
[10] T. Y. Lam: Lectures on Modules and Rings. Graduate Texts in Mathematics 189. Springer, New York, 1999.
zbl MR doi
[11] K. Morita: Duality for modules and its applications to the theory of rings with minimum conditions. Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A 6 (1958), 83-142.
zbl MR
[12] M. Müller: Rings of quotients of generalized matrix rings. Commun. Algebra 15 (1987), 1991-2015.
zbl MR doi
[13] W. K. Nicholson, J. F. Watters: Classes of simple modules and triangular rings. Commun. Algebra 20 (1992), 141-153.
[14] G. Tang, C. Li, Y. Zhou: Study of Morita contexts. Commun. Algebra 42 (2014), 1668-1681.
zbl MR doi

15] G. Tang, Y. Zhou: Strong cleanness of generalized matrix rings over a local ring. Linear Algebra Appl. 437 (2012), 2546-2559.
[16] G. Tang, Y. Zhou: A class of formal matrix rings. Linear Algebra Appl. 438 (2013), 4672-4688.

Author's address: Weining Chen, School of Mathematics and Statistics, Nanning Normal University, 175 Mingxiu E Rd, Xixiangtang, Nanning, Guangxi, 530023, P. R. China, e-mail: chenwn2013@163.com; Guixin Deng, School of Mathematics and Statistics, Nanning Normal University, 175 Mingxiu E Rd, Xixiangtang, Nanning, Guangxi, 530023, P. R. China and Guangxi College and Universities Key Laboratory of Data Science, Nanning, Guangxi, 530023, P. R. China, e-mail: dengguixin@live.com; Huadong Su (corresponding author), School of Mathematics and Statistics, Nanning Normal University, 175 Mingxiu E Rd, Xixiangtang, Nanning, Guangxi, 530023, P. R. China, e-mail: huadongsu @sohu.com.

[^0]: This work was supported by the National Natural Science Foundation of China (11801104, 11661013, 11661014), the Guangxi Natural Science Foundation (2016GXNSFCA380014, 2016GXNSFDA380017), and the Scientific Research Foundation of Guangxi Educational Committee (KY2016YB279, KY2016YB280).

