Czechoslovak Mathematical Journal

Chao Li; Weidong Wang
Inequalities for general width-integrals of Blaschke-Minkowski homomorphisms

Czechoslovak Mathematical Journal, Vol. 70 (2020), No. 3, 767-779

Persistent URL: http://dml.cz/dmlcz/148327

Terms of use:

© Institute of Mathematics AS CR, 2020

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

INEQUALITIES FOR GENERAL WIDTH-INTEGRALS OF BLASCHKE-MINKOWSKI HOMOMORPHISMS

Chao Li, Weidong Wang, Yichang

Received November 27, 2018. Published online January 27, 2020.

Abstract. We establish some inequalities for general width-integrals of BlaschkeMinkowski homomorphisms. As applications, inequalities for width-integrals of projection bodies are derived.

Keywords: general width-integral; volume difference type inequality; Blaschke-Minkowski homomorphism; Brunn-Minkowski type inequality; projection body

MSC 2020: 52A20, 52A40

1. Introduction

Let \mathcal{K}^{n} denote the set of convex bodies (compact, convex subsets with nonempty interiors) in Euclidean space \mathbb{R}^{n}. The n-dimensional volume of the body $M \in \mathcal{K}^{n}$ is denoted by $V(M)$. For the standard unit ball U, write $V(U)=\omega_{n}$. The unit sphere, i.e. the boundary of U, is denoted by S^{n-1} and the surface area measure on S^{n-1} is denoted by $S(\cdot)$.

A convex body $M \in \mathcal{K}^{n}$ is uniquely determined by its support function $h(M, \cdot)$: $\mathbb{R}^{n} \rightarrow \mathbb{R}$, which is defined by

$$
h(M, x)=\max \{x \cdot y: y \in M\}, \quad x \in \mathbb{R}^{n},
$$

where $x \cdot y$ denotes the standard inner product of x and y in \mathbb{R}^{n}.
For $M, N \in \mathcal{K}^{n}$ and $\lambda, \mu \geqslant 0$ (not both zero), the Minkowski linear combination $\lambda M+\mu N$ of M and N is defined by

$$
\lambda M+\mu N=\{\lambda x+\mu y: x \in M, y \in N\}
$$

Research is supported in part by the Natural Science Foundation of China (No. 11371224) and the Innovation Foundation of Graduate Student of China Three Gorges University (No. 2019SSPY146).
which is equivalent to

$$
\begin{equation*}
h(\lambda M+\mu N, \cdot)=\lambda h(M, \cdot)+\mu h(N, \cdot) \tag{1.1}
\end{equation*}
$$

We refer to the extensive monographs (see [12], [24]) for more background on convex geometry.

Width-integrals were first proposed by Blaschke, see [3]. In 1975, Lutwak in [20] introduced width-integrals of index i and the mixed width-integral for convex bodies, see [21]. In 2010, Lv in [23] studied the width-integral difference. Later on, Zhao and Mihály in [36] established some Brunn-Minkowski inequalities for width-integrals of mixed projection bodies.

In 2016, Feng in [6] introduced the concept of general mixed width-integrals for convex bodies, and established the inequality of isoperimetric type, the AleksandrovFenchel type inequality and the cyclic inequality. He also considered the general width-integrals of order i and showed its related properties and inequalities. Recently, Zhou in [37] researched the general L_{p}-mixed width-integrals of convex bodies, and gave its extremal values and extended Feng's results. See [4], [9], [18], [30] for more related results on the width-integrals of convex bodies.

For $M_{1}, \ldots, M_{n} \in \mathcal{K}^{n}, \tau \in(-1,1)$, the general mixed width-integral $B^{(\tau)}\left(M_{1}, \ldots\right.$, M_{n}) of M_{1}, \ldots, M_{n} is defined by

$$
\begin{equation*}
B^{(\tau)}\left(M_{1}, \ldots, M_{n}\right)=\frac{1}{n} \int_{S^{n-1}} b^{(\tau)}\left(M_{1}, u\right) \ldots b^{(\tau)}\left(M_{n}, u\right) \mathrm{d} S(u) \tag{1.2}
\end{equation*}
$$

where

$$
\begin{equation*}
b^{(\tau)}(M, u)=f_{1}(\tau) h(M, u)+f_{2}(\tau) h(M,-u) \tag{1.3}
\end{equation*}
$$

for all $u \in S^{n-1}$ and the functions $f_{1}(\tau)$ and $f_{2}(\tau)$ are given by

$$
\begin{equation*}
f_{1}(\tau)=\frac{(1+\tau)^{2}}{2\left(1+\tau^{2}\right)}, \quad f_{2}(\tau)=\frac{(1-\tau)^{2}}{2\left(1+\tau^{2}\right)} \tag{1.4}
\end{equation*}
$$

Clearly,

$$
\begin{equation*}
f_{1}(\tau)+f_{2}(\tau)=1 \tag{1.5}
\end{equation*}
$$

The case $\tau=0$ in (1.2) is just Lutwak's mixed width-integral $B\left(M_{1}, \ldots, M_{n}\right)$. Convex bodies M and N are said to have similar general width if there exists a constant $\lambda>0$ such that $b^{(\tau)}(M, u)=\lambda b^{(\tau)}(N, u)$ for all $u \in S^{n-1}$.

Let $M_{1}=\ldots=M_{n-i}=M$ and $M_{n-i+1}=\ldots=M_{n}=U$ in (1.2), and allow i to be any real and notice that $b^{(\tau)}(U, \cdot)=1$. Then the general width-integrals of index $i, B_{i}^{(\tau)}(M)$, of $M \in \mathcal{K}^{n}$ is given by

$$
\begin{equation*}
B_{i}^{(\tau)}(M)=\frac{1}{n} \int_{S^{n-1}} b^{(\tau)}(M, u)^{n-i} \mathrm{~d} S(u) \tag{1.6}
\end{equation*}
$$

Obviously, $B_{i}^{(\tau)}(U)=\omega_{n}$ and when $i=n$ in (1.6), we have

$$
\begin{equation*}
B_{n}^{(\tau)}(M)=\frac{1}{n} \int_{S^{n-1}} \mathrm{~d} S(u)=\omega_{n} . \tag{1.7}
\end{equation*}
$$

Among other results, Feng in [6] established the following:
Theorem 1.A. If $\tau \in(-1,1)$ and $M \in \mathcal{K}^{n}$, then

$$
B_{2 n}^{(\tau)}(M) \leqslant V\left(M^{*}\right)
$$

with equality if and only if M is origin-symmetric.
Here M^{*} denotes polar body of M which is defined by (see [12], [24]): If M is a convex body that contains the origin in the interior, then

$$
M^{*}=\left\{x \in \mathbb{R}^{n}: x \cdot y \leqslant 1, y \in M\right\} .
$$

Notice that the case $\tau=0$ of Theorem 1.A was given by Lutwak, see [20].
The projection bodies were introduced by Minkowski at the turn of the previous century. For every $M \in \mathcal{K}^{n}$, the projection body ΠM of M is an origin-symmetric convex body whose support function is defined by (see [12])

$$
h(\Pi M, u)=\frac{1}{2} \int_{S^{n-1}}|u \cdot v| \mathrm{d} S(M, v)
$$

for all $u \in S^{n-1}$. Here $S(M, \cdot)$ denotes the surface area measure of M. The projection body is a very important concept in the Brunn-Minkowski theory, see references [2], [13], [19], [22], [27], [28], [29].

Based on the properties of projection bodies, Schuster in [25] introduced the notion of Blaschke-Minkowski homomorphisms as follows:

A map $\Phi: \mathcal{K}^{n} \rightarrow \mathcal{K}^{n}$ is called a Blaschke-Minkowski homomorphism if it satisfies the following conditions:
(a) Φ is continuous,
(b) for all $M, N \in \mathcal{K}^{n}$,

$$
\begin{equation*}
\Phi(M \# N)=\Phi M+\Phi N, \tag{1.8}
\end{equation*}
$$

(c) for all $M \in \mathcal{K}^{n}$ and every $\vartheta \in S O(n), \Phi(\vartheta M)=\vartheta \Phi M$.

Here, $S O(n)$ is the group of rotations in n dimensions. $\Phi M+\Phi N$ denotes the Minkowski sum of ΦM and ΦN, moreover, $M \# N$ denotes the Blaschke addition of convex bodies M and N, that is, the up to translation uniquely determined convex body with the surface area measure $S(M \# N, \cdot)=S(M, \cdot)+S(N, \cdot)$, see [12], [24].

A Blaschke-Minkowski homomorphism is a Minkowski valuation, i.e. a convex body valued valuation. Blaschke-Minkowski homomorphisms have attracted considerable interest, see for example [7], [8], [10], [15], [16], [26], [31], [32], [33], [34], [35].

In this paper, we continue the research on the general width-integrals of index i. First, we establish the following Brunn-Minkowski type inequalities.

Theorem 1.1. Let $M, N \in \mathcal{K}^{n}, \tau \in(-1,1), i, j \in \mathbb{R}$ and $i \neq j$. If $i \leqslant n-1 \leqslant$ $j \leqslant n$, then

$$
\begin{equation*}
\left(\frac{B_{i}^{(\tau)}(\Phi(M \# N))}{B_{j}^{(\tau)}(\Phi(M \# N))}\right)^{1 /(j-i)} \leqslant\left(\frac{B_{i}^{(\tau)}(\Phi M)}{B_{j}^{(\tau)}(\Phi M)}\right)^{1 /(j-i)}+\left(\frac{B_{i}^{(\tau)}(\Phi N)}{B_{j}^{(\tau)}(\Phi N)}\right)^{1 /(j-i)} \tag{1.9}
\end{equation*}
$$

if $n-1 \leqslant i \leqslant n \leqslant j$, then inequality (1.9) is reversed. Equality holds in (1.9) for $i \neq n-1$ or $j \neq n$ if and only if ΦM and ΦN have similar general width. For $i=n-1$ and $j=n,(1.9)$ is an identity.

Let $j=n$ in (1.9). Combining with (1.7), we have the following fact:

Corollary 1.1. If $M, N \in \mathcal{K}^{n}, i$ is any real and $\tau \in(-1,1)$, then for $i<n-1$,

$$
\begin{equation*}
B_{i}^{(\tau)}(\Phi(M \# N))^{1 /(n-i)} \leqslant B_{i}^{(\tau)}(\Phi M)^{1 /(n-i)}+B_{i}^{(\tau)}(\Phi N)^{1 /(n-i)} \tag{1.10}
\end{equation*}
$$

with equality if and only if ΦM and ΦN have similar general width; for $i>n-1$ and $i \neq n$, inequality (1.10) is reversed. For $i=n-1$, (1.10) is an identity.

Since the projection body is a special example of a Blaschke-Minkowski homomorphisms, by Corollary 1.1 we obtain the following result:

Corollary 1.2. Let $M, N \in \mathcal{K}^{n}, i$ be any real and $\tau \in(-1,1)$. Then for $i<n-1$,

$$
B_{i}^{(\tau)}(\Pi(M \# N))^{1 /(n-i)} \leqslant B_{i}^{(\tau)}(\Pi M)^{1 /(n-i)}+B_{i}^{(\tau)}(\Pi N)^{1 /(n-i)} ;
$$

this inequality is reversed for $i>n-1$ and $n \neq i$. Equality holds if and only if ΠM and ΠN have similar general width. For $i=n-1$, this inequality is an identity.

Since ΠM is origin-symmetric, we have that $B_{2 n}^{(\tau)}(\Pi M)=V\left(\Pi^{*} M\right)$ by the equality conditions of Theorem 1.A. Thus, if $i=2 n$, then Corollary 1.2 yields:

Corollary 1.3. If $M, N \in \mathcal{K}^{n}$, then

$$
V\left(\Pi^{*}(M \# N)\right)^{-1 / n} \geqslant V\left(\Pi^{*} M\right)^{-1 / n}+V\left(\Pi^{*} N\right)^{-1 / n}
$$

with equality if and only if ΠM and ΠN are homothetic.
In addition, if $K=\Pi M$ and $L=\Pi N$, then $(K+L)^{*}=\Pi^{*}(M \# N)$ since $\Pi M+\Pi N=\Pi(M \# N)$. Hence, Corollary 1.3 can also be obtained directly by the following classical result of Firey in [11] (also see the case of $i=0$ in [14], Theorem 1.1).

Corollary 1.4. If K and L are convex bodies that contain the origin in their interior, then

$$
V\left((K+L)^{*}\right)^{-1 / n} \geqslant V\left(K^{*}\right)^{-1 / n}+V\left(L^{*}\right)^{-1 / n}
$$

with equality if and only if K and L are dilates.
Next, we establish another form of the Brunn-Minkowski type inequality for general width-integrals.

Theorem 1.2. If $M \in \mathcal{K}^{n}$ and N is a ball in $\mathbb{R}^{n}, \tau \in(-1,1)$, then for all $i=0, \ldots, n-1$,

$$
\begin{equation*}
\frac{B_{i}^{(\tau)}(\Phi(M \# N))}{B_{i+1}^{(\tau)}(\Phi(M \# N))} \leqslant \frac{B_{i}^{(\tau)}(\Phi M)}{B_{i+1}^{(\tau)}(\Phi M)}+\frac{B_{i}^{(\tau)}(\Phi N)}{B_{i+1}^{(\tau)}(\Phi N)} \tag{1.11}
\end{equation*}
$$

Finally, as an application of Corollary 1.1 and its equality condition, we give an analogous version of the volume differences inequality, which is related to the Blaschke-Minkowski homomorphism for the general width-integral of index i.

Theorem 1.3. Let $M, N, D, D^{\prime} \in \mathcal{K}^{n}, \tau \in(-1,1), i \in \mathbb{R}$ and $\Phi D \subset \Phi M$, $\Phi D^{\prime} \subset \Phi N, \Phi M$ and ΦN have similar general width. If $i<n-1$, then

$$
\begin{align*}
& \left(B_{i}^{(\tau)}(\Phi(M \# N))-B_{i}^{(\tau)}\left(\Phi\left(D \# D^{\prime}\right)\right)\right)^{1 /(n-i)} \tag{1.12}\\
& \quad \geqslant\left(B_{i}^{(\tau)}(\Phi M)-B_{i}^{(\tau)}(\Phi D)\right)^{1 /(n-i)}+\left(B_{i}^{(\tau)}(\Phi N)-B_{i}^{(\tau)}\left(\Phi D^{\prime}\right)\right)^{1 /(n-i)}
\end{align*}
$$

if $i>n-1$ and $i \neq n$, inequality (1.12) is reversed. Equality holds in (1.12) if and only if ΦD and ΦD^{\prime} have similar general width and $\left(B_{i}^{(\tau)}(\Phi M), B_{i}^{(\tau)}(\Phi D)\right)=$ $\lambda\left(B_{i}^{(\tau)}(\Phi N), B_{i}^{(\tau)}\left(\Phi D^{\prime}\right)\right)$, where λ is a constant. For $i=n-1,(1.12)$ is an identity.

2. Proofs of results

In this part, we will give the proofs of Theorems 1.1-1.3. First, in order to prove Theorem 1.1, the following lemmas are required.

Lemma 2.1 (The Beckenbach-Dresher inequality [1], [5]). Let functions $f, g \geqslant 0$, \mathbb{E} be a bounded measurable subset in \mathbb{R}^{n} and φ be a distribution function. If $p \geqslant$ $1 \geqslant r \geqslant 0$, then

$$
\begin{equation*}
\left(\frac{\int_{\mathbb{E}}(f+g)^{p} \mathrm{~d} \varphi}{\int_{\mathbb{E}}(f+g)^{r} \mathrm{~d} \varphi}\right)^{1 /(p-r)} \leqslant\left(\frac{\int_{\mathbb{E}} f^{p} \mathrm{~d} \varphi}{\int_{\mathbb{E}} f^{r} \mathrm{~d} \varphi}\right)^{1 /(p-r)}+\left(\frac{\int_{\mathbb{E}} g^{p} \mathrm{~d} \varphi}{\int_{\mathbb{E}} g^{r} \mathrm{~d} \varphi}\right)^{1 /(p-r)} \tag{2.1}
\end{equation*}
$$

with equality if and only if the functions f and g are positively proportional. For $p=1$ and $r=0,(2.1)$ is an identity.

Lemma 2.2 (The inverse Beckenbach-Dresher inequality [17]). Let functions $f, g \geqslant 0, \mathbb{E}$ be a bounded measurable subset in \mathbb{R}^{n} and φ be a distribution function. If $1 \geqslant p \geqslant 0 \geqslant r$, then

$$
\begin{equation*}
\left(\frac{\int_{\mathbb{E}}(f+g)^{p} \mathrm{~d} \varphi}{\int_{\mathbb{E}}(f+g)^{r} \mathrm{~d} \varphi}\right)^{1 /(p-r)} \geqslant\left(\frac{\int_{\mathbb{E}} f^{p} \mathrm{~d} \varphi}{\int_{\mathbb{E}} f^{r} \mathrm{~d} \varphi}\right)^{1 /(p-r)}+\left(\frac{\int_{\mathbb{E}} g^{p} \mathrm{~d} \varphi}{\int_{\mathbb{E}} g^{r} \mathrm{~d} \varphi}\right)^{1 /(p-r)} \tag{2.2}
\end{equation*}
$$

with equality if and only if the functions f and g are positively proportional. For $p=1$ and $r=0,(2.2)$ is an identity.

Pro of of Theorem 1.1. \quad Since $i \leqslant n-1 \leqslant j \leqslant n$ and $i \neq j$, let $p=n-i$, $r=n-j$, then $0 \leqslant r \leqslant 1 \leqslant p$ and $p \neq r$, combining with (1.1), (1.3), (1.5), (1.6)
and (1.8), we get for $M, N \in \mathcal{K}^{n}$ and $\tau \in(-1,1)$,

$$
\begin{align*}
B_{n-p}^{(\tau)} & (\Phi(M \# N))=\frac{1}{n} \int_{S^{n-1}} b^{(\tau)}(\Phi(M \# N), u)^{p} \mathrm{~d} S(u) \tag{2.3}\\
& =\frac{1}{n} \int_{S^{n-1}}\left(f_{1}(\tau) h(\Phi(M \# N), u)+f_{2}(\tau) h(\Phi(M \# N),-u)\right)^{p} \mathrm{~d} S(u) \\
& =\frac{1}{n} \int_{S^{n-1}}\left(f_{1}(\tau) h(\Phi M+\Phi N, u)+f_{2}(\tau) h(\Phi M+\Phi N,-u)\right)^{p} \mathrm{~d} S(u) \\
& =\frac{1}{n} \int_{S^{n-1}}\left(b^{(\tau)}(\Phi M, u)+b^{(\tau)}(\Phi N, u)\right)^{p} \mathrm{~d} S(u) .
\end{align*}
$$

Similarly,

$$
\begin{equation*}
B_{n-r}^{(\tau)}(\Phi(M \# N))=\frac{1}{n} \int_{S^{n-1}}\left(b^{(\tau)}(\Phi M, u)+b^{(\tau)}(\Phi N, u)\right)^{r} \mathrm{~d} S(u) \tag{2.4}
\end{equation*}
$$

From (2.1), (2.3) and (2.4) we have
(2.5) $\left(\frac{B_{n-p}^{(\tau)}(\Phi(M \# N))}{B_{n-r}^{(\tau)}(\Phi(M \# N))}\right)^{1 /(p-r)}$
$=\left(\frac{\int_{S^{n-1}}\left(b^{(\tau)}(\Phi M, u)+b^{(\tau)}(\Phi N, u)\right)^{p} \mathrm{~d} S(u)}{\int_{S^{n-1}}\left(b^{(\tau)}(\Phi M, u)+b^{(\tau)}(\Phi N, u)\right)^{r} \mathrm{~d} S(u)}\right)^{1 /(p-r)}$
$\leqslant\left(\frac{\int_{S^{n-1}} b^{(\tau)}(\Phi M, u)^{p} \mathrm{~d} S(u)}{\int_{S^{n-1}} b^{(\tau)}(\Phi M, u)^{r} \mathrm{~d} S(u)}\right)^{1 /(p-r)}+\left(\frac{\int_{S^{n-1}} b^{(\tau)}(\Phi N, u)^{p} \mathrm{~d} S(u)}{\int_{S^{n-1}} b^{(\tau)}(\Phi N, u)^{r} \mathrm{~d} S(u)}\right)^{1 /(p-r)}$
$=\left(\frac{B_{n-p}^{(\tau)}(\Phi M)}{B_{n-r}^{(\tau)}(\Phi M)}\right)^{1 /(p-r)}+\left(\frac{B_{n-p}^{(\tau)}(\Phi N)}{B_{n-r}^{(\tau)}(\Phi N)}\right)^{1 /(p-r)}$.

Let $i=n-p$ and $j=n-r$ in (2.5), then inequality (1.9) is given.
Similarly to the above method for $n-1 \leqslant i \leqslant n \leqslant j$ the inverse of (1.9) follows from inequalities (2.2), (2.3) and (2.4).

The equality condition of inequality (2.1) implies that equality holds in (1.9) for $i \neq n-1$ or $j \neq n$ and any $u \in S^{n-1}$ if and only if $b^{(\tau)}(\Phi M, u)$ and $b^{(\tau)}(\Phi N, u)$ are positively proportional, i.e. ΦM and ΦN have similar general width.

For $i=n-1$ and $j=n$, by (1.7) we get that (1.9) is an identity.
Because the projection body is a special example of the Blaschke-Minkowski homomorphism, by Theorem 1.1 for $\tau=0$ we can obtain the following result:

Corollary 2.1. If $M, N \in \mathcal{K}^{n}$ and $i, j \in \mathbb{R}$, then for $i \leqslant n-1 \leqslant j \leqslant n$ and $i \neq j$,

$$
\left(\frac{B_{i}(\Pi(M \# N))}{B_{j}(\Pi(M \# N))}\right)^{1 /(j-i)} \leqslant\left(\frac{B_{i}(\Pi M)}{B_{j}(\Pi M)}\right)^{1 /(j-i)}+\left(\frac{B_{i}(\Pi N)}{B_{j}(\Pi N)}\right)^{1 /(j-i)}
$$

this inequality is reversed for $n-1 \leqslant i \leqslant n \leqslant j$ and $i \neq j$. Equality holds for $i \neq n-1$ and $j \neq n$ if and only if ΠM and ΠN have similar width.

Subsequently, we will give the proof of Theorem 1.2. The following lemmas are necessary.

Lemma 2.3 ([6]). If $M \in \mathcal{K}^{n}, \tau \in(-1,1), j=0,1, \ldots, n$ and $\mu>0$, then

$$
B_{j}^{(\tau)}\left(M_{\mu}\right)=\sum_{i=0}^{n-j}\binom{n-j}{i} B_{j+i}^{(\tau)}(M) \mu^{i}
$$

where $M_{\mu}=M+\mu U$.
Lemma 2.4 ([6]). If $M \in \mathcal{K}^{n}, \tau \in(-1,1)$ and reals i, j, k satisfy $i<j<k$, then

$$
B_{j}^{(\tau)}(M)^{k-i} \leqslant B_{i}^{(\tau)}(M)^{k-j} B_{k}^{(\tau)}(M)^{j-i}
$$

with equality if and only if M is a ball in \mathbb{R}^{n}.
Pro of of Theorem 1.2. For $M \in \mathcal{K}^{n}, \tau \in(-1,1)$ and $i=0,1, \ldots, n-2$, let

$$
\begin{equation*}
g_{i}(\mu)=B_{i}^{(\tau)}(\Phi M+\mu U), \quad \mu>0 \tag{2.6}
\end{equation*}
$$

From Lemma 2.3 it follows that

$$
\begin{aligned}
g_{i}(\mu+\varepsilon) & =B_{i}^{(\tau)}(\Phi M+\mu U+\varepsilon U) \\
& =B_{i}^{(\tau)}(\Phi M+\mu U)+\varepsilon(n-i) B_{i+1}^{(\tau)}(\Phi M+\mu U)+o\left(\varepsilon^{2}\right) \\
& =g_{i}(\mu)+\varepsilon(n-i) g_{i+1}(\mu)+o\left(\varepsilon^{2}\right)
\end{aligned}
$$

Thus,

$$
g_{i}^{\prime}(\mu)=(n-i) g_{i+1}(\mu) .
$$

By Lemma 2.4, for $i=0,1, \ldots, n-2$ we have

$$
B_{i+1}^{(\tau)}(\Phi M+\mu U)^{2} \leqslant B_{i}^{(\tau)}(\Phi M+\mu U) B_{i+2}^{(\tau)}(\Phi M+\mu U),
$$

i.e.

$$
g_{i+1}(\mu)^{2} \leqslant g_{i}(\mu) g_{i+2}(\mu)
$$

Now, we define

$$
\begin{equation*}
G_{i}(\mu)=\frac{g_{i}(\mu)}{g_{i+1}(\mu)}, \quad i=0,1, \ldots, n-2 . \tag{2.7}
\end{equation*}
$$

This implies

$$
\begin{aligned}
G_{i}^{\prime}(\mu) & =\frac{g_{i}^{\prime}(\mu) g_{i+1}(\mu)-g_{i}(\mu) g_{i+1}^{\prime}(\mu)}{g_{i+1}(\mu)^{2}} \\
& =\frac{g_{i+1}(\mu)^{2}+(n-i-1)\left(g_{i+1}(\mu)^{2}-g_{i}(\mu) g_{i+2}(\mu)\right)}{g_{i+1}(\mu)^{2}} \leqslant 1 .
\end{aligned}
$$

Thus, for $\lambda>0$ we obtain

$$
\int_{0}^{\lambda} G_{i}^{\prime}(\mu) \mathrm{d} \mu \leqslant \int_{0}^{\lambda} 1 \mathrm{~d} \mu,
$$

i.e.

$$
\begin{equation*}
G_{i}(\lambda) \leqslant G_{i}(0)+\lambda . \tag{2.8}
\end{equation*}
$$

From (2.6), (2.7) and (2.8), for $i=0,1, \ldots, n-2$, we have

$$
\begin{equation*}
\frac{B_{i}^{(\tau)}(\Phi M+\lambda U)}{B_{i+1}^{(\tau)}(\Phi M+\lambda U)} \leqslant \frac{B_{i}^{(\tau)}(\Phi M)}{B_{i+1}^{(\tau)}(\Phi M)}+\lambda . \tag{2.9}
\end{equation*}
$$

But for the standard unit ball U we know $\Phi U=\lambda U$ for some $\lambda>0$ (see [25], page 224). Hence, if N is a ball in \mathbb{R}^{n}, then ΦN is also a ball. From this, let $\Phi N=\lambda U$, and by (1.3) and (1.6) we obtain

$$
\frac{B_{i}^{(\tau)}(\Phi N)}{B_{i+1}^{(\tau)}(\Phi N)}=\frac{B_{i}^{(\tau)}(\lambda U)}{B_{i+1}^{(\tau)}(\lambda U)}=\frac{n^{-1} \int_{S^{n-1}} b^{(\tau)}(\lambda U, u)^{n-i} \mathrm{~d} S(u)}{n^{-1} \int_{S^{n-1}} b^{(\tau)}(\lambda U, u)^{n-i-1} \mathrm{~d} S(u)}=\frac{\lambda^{n-i}}{\lambda^{n-i-1}}=\lambda
$$

This, together with (1.8) and (2.9), yields

$$
\frac{B_{i}^{(\tau)}(\Phi(M \# N))}{B_{i+1}^{(\tau)}(\Phi(M \# N))} \leqslant \frac{B_{i}^{(\tau)}(\Phi M)}{B_{i+1}^{(\tau)}(\Phi M)}+\frac{B_{i}^{(\tau)}(\Phi N)}{B_{i+1}^{(\tau)}(\Phi N)}
$$

This is just inequality (1.11).
Finally, by the following Bellman's inequality, we give the proof of Theorem 1.3.

Lemma 2.5 (Bellman's inequality [1]). Let $\mathbf{a}=\left\{a_{1}, \ldots, a_{n}\right\}$ and $\mathbf{b}=\left\{b_{1}, \ldots, b_{n}\right\}$ be two series of positive real numbers. If $a_{1}^{p}-\sum_{i=2}^{n} a_{i}^{p}>0, b_{1}^{p}-\sum_{i=2}^{n} b_{i}^{p}>0$, then for $p>1$,

$$
\left(a_{1}^{p}-\sum_{i=2}^{n} a_{i}^{p}\right)^{1 / p}+\left(b_{1}^{p}-\sum_{i=2}^{n} b_{i}^{p}\right)^{1 / p} \leqslant\left(\left(a_{1}+b_{1}\right)^{p}-\sum_{i=2}^{n}\left(a_{i}+b_{i}\right)^{p}\right)^{1 / p}
$$

This inequality is reversed for $p<0$ or $0<p<1$ with equality if and only if $\mathbf{a}=c \mathbf{b}$, where c is a constant.

Proof of Theorem 1.3. For $M, N, D, D^{\prime} \in \mathcal{K}^{n}$ and $\tau \in(-1,1)$, if $i<n-1$, then by (1.10),

$$
\begin{equation*}
B_{i}^{(\tau)}\left(\Phi\left(D \# D^{\prime}\right)\right)^{1 /(n-i)} \leqslant B_{i}^{(\tau)}(\Phi D)^{1 /(n-i)}+B_{i}^{(\tau)}\left(\Phi D^{\prime}\right)^{1 /(n-i)} \tag{2.10}
\end{equation*}
$$

with equality if and only if ΦD and ΦD^{\prime} have similar general width. Since ΦM and ΦN have similar general width, according to the equality condition of inequality (1.10), we have

$$
\begin{equation*}
B_{i}^{(\tau)}(\Phi(M \# N))^{1 /(n-i)}=B_{i}^{(\tau)}(\Phi M)^{1 /(n-i)}+B_{i}^{(\tau)}(\Phi N)^{1 /(n-i)} \tag{2.11}
\end{equation*}
$$

Since $\Phi D \subset \Phi M, \Phi D^{\prime} \subset \Phi N$ and by formulæ (1.6) and (1.8), we conclude

$$
\begin{gathered}
B_{i}^{(\tau)}(\Phi M)>B_{i}^{(\tau)}(\Phi D), \quad B_{i}^{(\tau)}(\Phi N)>B_{i}^{(\tau)}\left(\Phi D^{\prime}\right) \\
B_{i}^{(\tau)}(\Phi(M \# N))=B_{i}^{(\tau)}(\Phi M+\Phi N)>B_{i}^{(\tau)}\left(\Phi D+\Phi D^{\prime}\right)=B_{i}^{(\tau)}\left(\Phi\left(D \# D^{\prime}\right)\right)
\end{gathered}
$$

From these, since $n-i>1$ and by (2.10), (2.11) and Lemma 2.5, we obtain

$$
\begin{aligned}
\left(B_{i}^{(\tau)}(\right. & \left.(M(M \# N))-B_{i}^{(\tau)}\left(\Phi\left(D \# D^{\prime}\right)\right)\right)^{1 /(n-i)} \\
\geqslant & {\left[\left(B_{i}^{(\tau)}(\Phi M)^{1 /(n-i)}+B_{i}^{(\tau)}(\Phi N)^{1 /(n-i)}\right)^{n-i}\right.} \\
& \left.-\left(B_{i}^{(\tau)}(\Phi D)^{1 /(n-i)}+B_{i}^{(\tau)}\left(\Phi D^{\prime}\right)^{1 /(n-i)}\right)^{n-i}\right]^{1 /(n-i)} \\
\geqslant & \left(B_{i}^{(\tau)}(\Phi M)-B_{i}^{(\tau)}(\Phi D)\right)^{1 /(n-i)}+\left(B_{i}^{(\tau)}(\Phi N)-B_{i}^{(\tau)}\left(\Phi D^{\prime}\right)\right)^{1 /(n-i)}
\end{aligned}
$$

This yields inequality (1.12).
Along the same line for $i>n-1$ and $i \neq n$ the reversed inequality of (1.12) can be deduced directly from (1.10) and the reversed case of Lemma 2.5.

By the equality conditions of inequalities (1.10) and Lemma 2.5, we see that equality holds in (1.12) if and only if ΦD and ΦD^{\prime} have similar general width and there exists constant λ such that $\left(B_{i}^{(\tau)}(\Phi M), B_{i}^{(\tau)}(\Phi D)\right)=\lambda\left(B_{i}^{(\tau)}(\Phi N), B_{i}^{(\tau)}\left(\Phi D^{\prime}\right)\right)$. For $i=n-1,(1.12)$ is an identity.

Combined with the projection bodies, let $\tau=0$ in Theorem 1.3 and we obtain the following result.

Corollary 2.2. Let $M, N, D, D^{\prime} \in \mathcal{K}^{n}, i \in \mathbb{R}$ and $D \subset M, D^{\prime} \subset N, \Pi M$ and ΠN have similar width. If $i<n-1$, then

$$
\begin{aligned}
\left(B_{i}(\Pi(M \# N))-\right. & \left.B_{i}\left(\Pi\left(D \# D^{\prime}\right)\right)\right)^{1 /(n-i)} \\
& \geqslant\left(B_{i}(\Pi M)-B_{i}(\Pi D)\right)^{1 /(n-i)}+\left(B_{i}(\Pi N)-B_{i}\left(\Pi D^{\prime}\right)\right)^{1 /(n-i)}
\end{aligned}
$$

this inequality is reversed for $i>n-1$ and $i \neq n$ and equality holds if and only if ΠD and ΠD^{\prime} have similar width and $\left(B_{i}(\Pi M), B_{i}(\Pi D)\right)=\lambda\left(B_{i}(\Pi N), B_{i}\left(\Pi D^{\prime}\right)\right)$, where λ is a constant. For $i=n-1$, this inequality is an identity.

Since the projection body is a Blaschke-Minkowski homomorphism and since $\Pi М$ is origin-symmetric, we obtain the following result of Lv's (see [23]) as a special case of Theorem 1.3, i.e. for $i=2 n$ and since $B_{2 n}^{(\tau)}(\Pi M)=V\left(\Pi^{*} M\right)$ by Theorem 1.A.

Corollary 2.3. Let $M, N, D, D^{\prime} \in \mathcal{K}^{n}$. If $D \subset M, D^{\prime} \subset N$ and M is a homothetic copy of N, then

$$
\begin{aligned}
\left(V\left(\Pi^{*}(M \# N)\right)-\right. & \left.V\left(\Pi^{*}\left(D \# D^{\prime}\right)\right)\right)^{-1 / n} \\
& \leqslant\left(V\left(\Pi^{*} M\right)-V\left(\Pi^{*} D\right)\right)^{-1 / n}+\left(V\left(\Pi^{*} N\right)-V\left(\Pi^{*} D^{\prime}\right)\right)^{-1 / n}
\end{aligned}
$$

with equality if and only if D and D^{\prime} are homothetic and $\left(V\left(\Pi^{*} M\right), V\left(\Pi^{*} D\right)\right)=$ $\lambda\left(V\left(\Pi^{*} N\right), V\left(\Pi^{*} D^{\prime}\right)\right)$, where λ is a constant.

Acknowledgements. The authors want to express earnest thankfulness for the referees who provided extremely precious and helpful comments and suggestions.

References

[1] E. Beckenbach, R. Bellman: Inequalities. Ergebnisse der Mathematik und Ihrer Grenzgebiete 30, Springer, New York, 1965.
zbl MR doi
[2] A.Berg, L. Parapatits, F. E. Schuster, M. Weberndorfer: Log-concavity properties of Minkowski valuations. Trans. Am. Math. Soc. 370 (2018), 5245-5277.
[3] W. Blaschke: Vorlesungen über Integralgeometrie. VEB Deutscher Verlag der Wissenschaften, Berlin, 1955. (In German.)
[4] W.-S. Cheung, C.-J. Zhao: Width-integrals and affine surface area of convex bodies. Banach J. Math. Anal. 2 (2008), 70-77.
zbl MR doi
[5] M. Dresher: Moment spaces and inequalities. Duke Math. J. 20 (1953), 261-271.
zbl MR doi
[6] Y. Feng: General mixed width-integral of convex bodies. J. Nonlinear Sci. Appl. 9 (2016), 4226-4234.
[7] Y. Feng, W. Wang: Blaschke-Minkowski homomorphisms and affine surface area. Publ. Math. 85 (2014), 297-308.
zbl MR doi
[8] Y. Feng, W. Wang, J. Yuan: Inequalities of quermassintegrals about mixed Blaschke Minkowski homomorphisms. Tamkang J. Math. 46 (2015), 217-227.
[9] Y. Feng, S. Wu: Brunn-Minkowski type inequalies for width-integrals of index i. J. Comput. Anal. Appl. 24 (2018), 1408-1418.
[10] Y. Feng, S. Wu, W. Wang: Mixed chord-integrals of index i and radial BlaschkeMinkowski homomorphisms. Rocky Mt. J. Math. 47 (2017), 2627-2640.
zbl MR doi
[11] W. J. Firey: Mean cross-section measures of harmonic means of convex bodies. Pac. J. Math. 11 (1961), 1263-1266.
zbl MR doi
[12] R. J. Gardner: Geometric Tomography. Encyclopedia of Mathematics and Its Applications 58, Cambridge University Press, Cambridge, 2006.
zbl MR doi
[13] C.Haberl: Minkowski valuations intertwining with the special linear group. J. Eur. Math. Soc. (JEMS) 14 (2012), 1565-1597.
zbl MR doi
[14] M. A. Hernández Cifre, J. Yepes Nicolás: On Brunn-Minkowski-type inequalities for polar bodies. J. Geom. Anal. 26 (2016), 143-155.
zbl MR doi
[15] L. Ji, Z. Zeng: Some inequalities for radial Blaschke-Minkowski homomorphisms. Czech. Math. J. 67 (2017), 779-793.
zbl MR doi
[16] Y. Li, W. Wang: Monotonicity inequalities for L_{p} Blaschke-Minkowski homomorphism. J. Inequal. Appl. 2014 (2014), Article ID 131, 10 pages.
[17] X.-Y. Li, C.-J. Zhao: On the p-mixed affine surface area. Math. Inequal. Appl. 17 (2014), 443-450.

Zbl MR doi
zbl MR doi
[18] F. Lu, G. Leng: On inequalities for i th width-integrals of convex bodies. Math. Appl. 19 (2006), 632-636. (In Chinese.)
zbl MR
[19] M. Ludwig: Minkowski valuations. Trans. Am. Math. Soc. 357 (2005), 4191-4213.
[20] E. Lutwak: Width-integrals of convex bodies. Proc. Am. Math. Soc. 53 (1975), 435-439.
zbl MR doi
[21] E. Lutwak: Mixed width-integrals of convex bodies. Isr. J. Math. 28 (1977), 249-253.
zbl MR doi
[22] E. Lutwak, D. Yang, G. Zhang: Orlicz projection bodies. Adv. Math. 223 (2010), 220-242.
zbl MR doi
[23] S. Lv: Dual Brunn-Minkowski inequality for volume differences. Geom. Dedicata 145 (2010), 169-180.
zbl MR doi
[24] R. Schneider: Convex Bodies: The Brunn-Minkowski Theory. Encyclopedia of Mathematics and its Applications 151, Cambridge University Press, Cambridge, 2014.
zbl MR doi
[25] F. E. Schuster: Volume inequalities and additive maps of convex bodies. Mathematica 53 (2006), 211-234.
zbl MR doi
[26] F. E. Schuster: Valuations and Busemann-Petty type problems. Adv. Math. 219 (2008), 344-368.
zbl MR doi
[27] F. E. Schuster: Crofton measures and Minkowski valuations. Duke Math. J. 154 (2010), 1-30.
zbl MR doi
[28] F. E. Schuster, T. Wannerer: Even Minkowski valuations. Am. J. Math. 137 (2015), 1651-1683.
zbl MR doi
[29] F. E. Schuster, T. Wannerer: Minkowski valuations and generalized valuations. J. Eur. Math. Soc. (JEMS) 20 (2018), 1851-1884.
zbl MR doi
[30] T. Zhang, W. Wang: Inequalities for mixed width-integrals. Wuhan Univ. J. Nat. Sci. 21 (2016), 185-190.
zbl MR doi
[31] C.-J. Zhao: On Blaschke-Minkowski homomorphisms. Geom. Dedicata 149 (2010), 373-378.
zbl MR doi
[32] C.-J. Zhao: On polars of Blaschke-Minkowski homomorphisms. Math. Scand. 111 (2012), 147-160.
zbl MR doi
[33] C.-J. Zhao: Volume sums of polar Blaschke-Minkowski homomorphisms. Proc. Indian Acad. Sci., Math. Sci. 125 (2015), 209-219.

Zbl MR doi
[34] C.-J. Zhao: On Blaschke-Minkowski homomorphisms and radial Blaschke-Minkowski homomorphisms. J. Geom. Anal. 26 (2016), 1523-1538.
zbl MR doi
[35] C.-J. Zhao, W.-S. Cheung: Radial Blaschke-Minkowski homomorphisms and volume differences. Geom. Dedicata 154 (2011), 81-91.
[36] C.-J. Zhao, B. Mihály: Width-integrals of mixed projection bodies and mixed affine surface area. Gen. Math. 19 (2011), 123-133.
[37] Y. Zhou: General L_{p}-mixed width-integral of convex bodies and related inequalities. J. Nonlinear Sci. Appl. 10 (2017), 4372-4380.
zbl MR doi

Authors' address: Chao Li, Weidong Wang (corresponding author), Department of Mathematics, China Three Gorges University, Three Gorges Mathematical Research Center, 8 Daxue Rd, Xiling, Yichang, Hubei, P. R. China, 443002, e-mail: lichao166298 @163. com, wangwd722@163.com.

