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Abstract. For positive integers n, Euler’s phi function and Dedekind’s psi function are
given by

ϕ(n) = n
∏

p|n
p prime

(

1−
1

p

)

and ψ(n) = n
∏

p|n
p prime

(

1 +
1

p

)

,

respectively. We prove that for all n > 2 we have

(

1−
1

n

)n−1(

1 +
1

n

)n+1
6

(ϕ(n)

n

)ϕ(n)(ψ(n)

n

)ψ(n)

and
(

ϕ(n)

n

)ψ(n)(ψ(n)

n

)ϕ(n)
6

(

1−
1

n

)n+1(

1 +
1

n

)n−1
.

The sign of equality holds if and only if n is a prime. The first inequality refines results
due to Atanassov (2011) and Kannan & Srikanth (2013).
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1. Introduction

In this paper, we are concerned with two classical arithmetical functions: Euler’s

phi (or totient) function ϕ and Dedekind’s psi function ψ. If n ∈ N, then ϕ(n) is the

number of positive integers up to n which are relatively prime to n. The product

formula

ϕ(n) = n
∏

p|n
p prime

(

1−
1

p

)

DOI: 10.21136/CMJ.2020.0530-18 781

http://dx.doi.org/10.21136/CMJ.2020.0530-18


is an important tool for calculating ϕ(n). Closely related to the ϕ-function is

Dedekind’s psi function given by

ψ(n) = n
∏

p|n
p prime

(

1 +
1

p

)

.

Both functions can be expressed in terms of the Möbius function µ which is defined

for n ∈ N by

µ(n) =

{

(−1)k if n is square-free and k is the number of prime factors of n,

0 if n is not square-free.

We have the representations

ϕ(n) =
∑

d|n

n

d
µ(d) and ψ(n) =

∑

d|n

n

d
|µ(d)|.

These functions have remarkable applications in various mathematical and physical

problems. Recently, Solé and Planat in [8] proved that a certain inequality involving

the Dedekind psi function is equivalent to the famous Riemann hypothesis. For more

information on this subject we refer the reader to Apostol, see [1], Mitrinović et al.,

see [4], Sándor, see [5], Sándor and Crstici, see [7] and the references cited therein.

Our work is motivated by two interesting papers published by Atanassov, see [2]

and Kannan and Srikanth, see [3]. Atanassov proved that for n > 2,

(1.1) n2n < ϕ(n)ϕ(n)ψ(n)ψ(n).

Kannan and Srikanth claimed that if

Θ(n) =
ϕ(n) + ψ(n)

2n
,

then for n > 2,

(1.2) n2nΘ(n) 6 ϕ(n)ϕ(n)ψ(n)ψ(n).

Since Θ(n) > 1 (n > 2), it follows that (1.2) refines (1.1). Unfortunately, the proof

given in [3] is incorrect. For instance, the inequality in the last line of page 20 is

false.

A correct proof of (1.2) was given by Sándor, see [6], page 51, who actually offered

an improvement of (1.2):

(1.3) n2nΘ(n)
6

(ϕ(n) + ψ(n)

2

)2nΘ(n)

< ϕ(n)ϕ(n)ψ(n)ψ(n) (n > 2).
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The referee pointed out that a slight modification of the proof of (1.3) leads to the

following chain of inequalities:

(1.4) ϕ(n)ψ(n)ψ(n)ϕ(n) <
(1

2

( 1

ϕ(n)
+

1

ψ(n)

))−2nΘ(n)

< (ϕ(n)ψ(n))nΘ(n) < n2nΘ(n) (n > 2).

From (1.3) and (1.4) we conclude that the elegant inequalities

(1.5) 1 <
(ϕ(n)

n

)ϕ(n)(ψ(n)

n

)ψ(n)

and

(1.6)
(ϕ(n)

n

)ψ(n)(ψ(n)

n

)ϕ(n)

< 1

are valid for n > 2. It is the aim of this paper to present refinements of (1.5)

and (1.6). Moreover, we show that the constant bounds given in (1.5) and (1.6) are

best possible.

In Section 2, we collect several lemmas. Our refinements of (1.5) and (1.6)

(as stated in the Abstract) are presented in Section 3.

2. Lemmas

The following seven lemmas are helpful to prove the two theorems given in the

next section.

Lemma 2.1. Let

(2.1) h(x) = (1− x)1−x(1 + x)1+x

and

(2.2) g(x) = (1− x)1+x(1 + x)1−x.

Then h is strictly increasing on [0, 1] and g is strictly decreasing on [0, 1].

P r o o f. We have

h′(x) = h(x) log
(1 + x

1− x

)

and g′(x) = −g(x)
( 4x

1− x2
+ log

(1 + x

1− x

))

.

This gives h′(x) > 0 and g′(x) < 0 for x ∈ (0, 1). �

783



Lemma 2.2. Let 0 < s, t < 1. Then

(2.3) (1 − st)1−st(1 + st)1+st < [(1 − s)(1− t)](1−s)(1−t)[(1 + s)(1 + t)](1+s)(1+t).

P r o o f. Let 0 < r < 1 < a and

q(a, r) = (a+ r) log(a+ r)− (a− r) log(a− r).

Since

∂

∂a
q(a, r) = log

(a+ r

a− r

)

> 0,
d2

dr2
q(1, r) = −

2r

1− r2
< 0,

q(1, 0) = 0, q(1, 1) = 2 log(2),

we obtain

q(a, r) > q(1, r) > 0.

Thus,

(a+ r)a+r > (a− r)a−r .

This gives

[(1 + s)(1 + t)](1+s)(1+t) = (1 + s+ t+ st)1+s+t+st > (1 + s+ t− st)1+s+t−st.

Let R(s, t) be the expression on the right-hand side of (2.3). Then

(2.4) R(s, t) > (1− s− t+ st)1−s−t+st(1 + s+ t− st)1+s+t−st = h(s+ t− st),

where h is defined in (2.1). Since 0 < st < s+t−st < 1, we conclude from Lemma 2.1

that

(2.5) h(s+ t− st) > h(st).

Combining (2.4) and (2.5) gives (2.3). �

Throughout, we use the following notations:

(2.6) σ =

m
∏

k=1

sk, P =

m
∏

k=1

(1− sk), Q =

m
∏

k=1

(1 + sk).

Lemma 2.3. Let sk ∈ (0, 1) (k = 1, . . . ,m). Then

(2.7) σ + P 6 1.
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P r o o f. We use induction. If m = 1, then σ+P = 1. Next, we assume that (2.7)

holds. Let s = sm+1. Then

σs+ P (1− s) 6 (1 − P )s+ P (1− s) 6 s+ 1− s = 1.

This means that (2.7) is valid if σ and P have m+ 1 factors. �

Lemma 2.4. Let sk ∈ (0, 12 ] (k = 1, . . . ,m). Then

(2.8) PP 6 (1− σ)1−σ .

P r o o f. We have σ 6 P and σ + P 6 1. Next, we apply Bernoulli’s inequality

(1 + t)a > 1 + at (t > −1, a > 1)

with t = −σ and a = (1 − σ)/P . Then we have

(1−σ)(1−σ)/P = (1+ t)a > 1+at = 1+
1− σ

P
(−σ) =

1

P
(P −σ)(1−P −σ)+P > P.

This leads to (2.8). �

Lemma 2.5. Let sk ∈ (0, 12 ] (k = 1, . . . ,m) and t ∈ (0, 1). If

(2.9) (1− σ)1−σ(1 + σ)1+σ 6 PPQQ,

then

(2.10) 1 6

(

PP

(1− σ)1−σ

)1−t(
QQ

(1 + σ)1+σ

)1+t

.

P r o o f. Since 0 < a, b 6 1 implies ab > a, we conclude from (2.8) that

(2.11)

(

PP

(1− σ)1−σ

)1−t

>
PP

(1 − σ)1−σ
.

Using (2.8) and (2.9) gives

(2.12)
QQ

(1 + σ)1+σ
>

(1 − σ)1−σ

PP
> 1.

Since a, b > 1 implies ab > a, we obtain from (2.12)

(2.13)

(

QQ

(1 + σ)1+σ

)1+t

>
QQ

(1 + σ)1+σ
.

Finally, from (2.9), (2.11) and (2.13) we conclude that (2.10) is valid. �
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Let

(2.14) f(t1, . . . , tm) =

m
∏

i=1

(1 + ti)

m
∑

i=1

log(1− ti) +

m
∏

i=1

(1− ti)

m
∑

i=1

log(1 + ti)

with ti ∈ (0, 1) (i = 1, . . . ,m).

Lemma 2.6. Let j ∈ {1, . . . ,m} and

Fj(x) = f(t1, . . . , tj−1, x, tj+1, . . . , tm),

where f is defined in (2.14). If ti ∈ (0, 12 ] (i = 1, . . . ,m, i 6= j), then Fj is strictly

decreasing on (0, 12 ].

P r o o f. Let x ∈ (0, 12 ]. We have

Fj(x) = Dj(1 + x) log(Cj(1− x)) + Cj(1− x) log(Dj(1 + x))

with

Cj =

m
∏

i=1
i6=j

(1− ti) and Dj =

m
∏

i=1
i6=j

(1 + ti).

Since 0 < Cj < 1 < Dj , we obtain

F ′′
j (x) = −

(

Cj
3 + x

(1 + x)2
+Dj

3− x

(1 − x)2

)

< 0.

This yields

F ′
j(x) < F ′

j(0) = Cj −Dj +Dj log(Cj)− Cj log(Dj) < 0,

which implies that Fj is strictly decreasing on (0, 12 ]. �

Lemma 2.7. Let f be the function defined in (2.14) and s ∈ (0, 12 ]. Then

f(s, . . . , s) 6 log((1 − s)1+s(1 + s)1−s).

P r o o f. We define for α ∈ R, α > 1 and s ∈ (0, 12 ]:

K(α, s) = α(1 + s)α log(1− s) + α(1− s)α log(1 + s).
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Partial differentiation yields

∂

∂α
K(α, s) = Y (α, s) + Z(α, s)

with

Y (α, s) = (1 + s)α log(1 − s) + (1 − s)α log(1 + s)

and

Z(α, s) = α[(1 + s)α + (1− s)α] log(1− s) log(1 + s).

We have Z(α, s) < 0 and

α
∂

∂α
Y (α, s) = Z(α, s).

It follows that

(2.15) Y (α, s) 6 Y (1, s) = log(g(s)),

where g is defined in (2.2). Since g(0) = 1, we conclude from Lemma 2.1 and (2.15)

that Y (α, s) < 0. Thus,

∂

∂α
K(α, s) < 0 and K(α, s) 6 K(1, s).

In particular, for m ∈ N,

f(s, . . . , s) = K(m, s) 6 K(1, s) = log
(

(1− s)1+s(1 + s)1−s
)

.

�

3. Main results

We use the following notations:

S(n) =
(ϕ(n)

n

)ϕ(n)(ψ(n)

n

)ψ(n)

and T (n) =
(ϕ(n)

n

)ψ(n)(ψ(n)

n

)ϕ(n)

.

Our first theorem provides a refinement of (1.5).

Theorem 3.1. For all integers n > 2 we have

(3.1)
(

1−
1

n

)n−1(

1 +
1

n

)n+1

6 S(n).

The sign of equality holds if and only if n is a prime.
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P r o o f. Let

n = pr11 . . . prmm ,

where p1, . . . , pm are prime numbers and r1, . . . , rm are positive integers. We distin-

guish two cases.

Case 1 : n is square-free. Then we have n = p1 . . . pm. We prove (3.1) by induction

on m. If m = 1, then

ϕ(n) = p1 − 1 and ψ(n) = p1 + 1.

It follows that the sign of equality holds in (3.1).

Next, we assume that (3.1) is valid if n has m distinct prime factors. This gives

(3.2) (1− σ)1−σ(1 + σ)1+σ 6 PPQQ,

where σ, P and Q are defined in (2.6) with sk = 1/pk ∈ (0, 12 ] (k = 1, . . . ,m).

Now, we suppose that n has one more prime factor pm+1. Then we have to show

that

(3.3) (1− σt)1−σt(1 + σt)1+σt < [P (1− t)]P (1−t)[Q(1 + t)]Q(1+t),

where t = 1/pm+1 ∈ (0, 12 ]. Let

A = (1 − t)(P−1+σ)(1−t) and B = (1 + t)(Q−1−σ)(1+t).

Since P + σ 6 1 6 Q − σ, we have A > 1 and B > 1. Using (3.2) we conclude

that (2.10) holds. Thus,

1 6 AB

(

PP

(1− σ)1−σ

)1−t(
QQ

(1 + σ)1+σ

)1+t

which is equivalent to

(3.4) [(1 − σ)(1 − t)](1−σ)(1−t)[(1 + σ)(1 + t)](1+σ)(1+t)

6 [P (1− t)]P (1−t)[Q(1 + t)]Q(1+t).

Combining (3.4) and (2.3) (with s = σ) we obtain (3.3).

Case 2 : n is not square-free. Let k = p1 . . . pm. Using the result proved in Case 1

gives

(3.5)
(

1−
1

k

)1−1/k(

1 +
1

k

)1+1/k

6

(ϕ(k)

k

)ϕ(k)/k(ψ(k)

k

)ψ(k)/k

.
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Since 1/n < 1/k, we obtain from Lemma 2.1

(3.6)
(

1−
1

n

)1−1/n(

1+
1

n

)1+1/n

= h(1/n) < h(1/k) =
(

1−
1

k

)1−1/k(

1+
1

k

)1+1/k

.

Combining (3.5), (3.6) and

ϕ(k)

k
=
ϕ(n)

n
,

ψ(k)

k
=
ψ(n)

n

reveals that (3.1) holds with “<” instead of “6”. This completes the proof of The-

orem 3.1. �

The following companion of (3.1) is valid.

Theorem 3.2. For all integers n > 2 we have

(3.7) T (n) 6
(

1−
1

n

)n+1(

1 +
1

n

)n−1

.

The sign of equality holds if and only if n is a prime.

P r o o f. Let

n = pr11 . . . prmm ,

where p1, . . . , pm are prime numbers with p1 > . . . > pm and r1, . . . , rm are positive

integers. We set ti = 1/pi ∈ (0, 12 ] (i = 1, . . . ,m). Then we have

ϕ(n)

n
=

m
∏

i=1

(1− ti) and
ψ(n)

n
=

m
∏

i=1

(1 + ti).

This leads to

(3.8)
1

n
log(T (n)) = f(t1, . . . , tm),

where f is given in (2.14). Since

0 < t1 6 . . . 6 tm 6
1

2
,

we conclude from Lemmas 2.6 and 2.7 that

(3.9) f(t1, . . . , tm) 6 f(t1, . . . , t1) 6 log((1− t1)
1+t1(1 + t1)

1−t1).

Let g be the function defined in (2.2). Since 1/n 6 1/p1, Lemma 2.1 implies that

(3.10) (1− t1)
1+t1(1 + t1)

1−t1 = g
( 1

p1

)

6 g
( 1

n

)

= U(n)1/n,

where U(n) denotes the expression on the right-hand side of (3.7). Combining (3.8),

(3.9) and (3.10) yields (3.7).
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If n is a prime number, then T (n) = U(n). Conversely, if T (n) = U(n), then

we conclude from (3.8), (3.9) and (3.10) that g(1/p1) = g(1/n). Since g is strictly

monotonic, we obtain 1/p1 = 1/n, that is, n is a prime number. �

Remark 3.1. From (1.3) and (1.4) we obtain for n > 2,

(ϕ(n) + ψ(n)

2n

)ϕ(n)+ψ(n)

< Sn

and

Tn <

(

2ϕ(n)ψ(n)

n
(

ϕ(n) + ψ(n)
)

)ϕ(n)+ψ(n)

.

The referee asked whether these bounds for Sn and Tn can be compared with those

given in (3.1) and (3.7), respectively. This is not possible. Indeed, using the computer

program MAPLE 13 for n = 2, 3, . . . , 500 reveals that the differences of the lower

and upper bounds attain positive and negative values.

Application of (3.1) and (3.7) leads to inequality (1.5) and its counterpart (1.6).

Corollary 3.1. For all integers n > 2 we have

(3.11) 1 < S(n) and T (n) < 1.

The constant bounds are best possible.

P r o o f. Using Lemma 2.1 gives for n > 2,

(3.12) 1 = h(0) < h(1/n) =
[(

1−
1

n

)n−1(

1 +
1

n

)n+1]1/n

and

(3.13)
[(

1−
1

n

)n+1(

1 +
1

n

)n−1]1/n

= g
( 1

n

)

< g(0) = 1.

From (3.1), (3.12), (3.7) and (3.13) we obtain the two estimates in (3.11).

Let pn be the nth prime number. Then

S(pn) =
(

1−
1

pn

)pn−1(

1 +
1

pn

)pn+1

and

T (pn) =
(

1−
1

pn

)pn+1(

1 +
1

pn

)pn−1

.

Since

lim
n→∞

S(pn) = lim
n→∞

T (pn) = 1,

we conclude that the constant bounds given in (3.11) are sharp. �
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Remark 3.2. In view of the two inequalities in (3.11) it is natural to ask: do

there exist a constant upper bound for S(n) and a positive constant lower bound

for T (n) which are valid for all n > 2? If pn denotes the nth prime number, then

S(p3n) =
(

1−
1

pn

)p2
n
(pn−1)(

1 +
1

pn

)p2
n
(pn+1)

and

T (p3n) =
(

1−
1

pn

)p2
n
(pn+1)(

1 +
1

pn

)p2
n
(pn−1)

.

Since

lim
n→∞

S(p3n) = ∞ and lim
n→∞

T (p3n) = 0,

we conclude that in both cases the answer is “no”.
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