Czechoslovak Mathematical Journal

Horst Alzer; Man Kam Kwong
Inequalities for the arithmetical functions of Euler and Dedekind

Czechoslovak Mathematical Journal, Vol. 70 (2020), No. 3, 781-791

Persistent URL: http://dml.cz/dmlcz/148328

Terms of use:

© Institute of Mathematics AS CR, 2020

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

INEQUALITIES FOR THE ARITHMETICAL FUNCTIONS OF EULER AND DEDEKIND

Horst Alzer, Waldbröl, Man Kam Kwong, Hong Kong

Received December 2, 2018. Published online January 27, 2020.

Abstract. For positive integers n, Euler's phi function and Dedekind's psi function are given by

$$
\varphi(n)=n \prod_{\substack{p \mid n \\ p \text { prime }}}\left(1-\frac{1}{p}\right) \quad \text { and } \quad \psi(n)=n \prod_{\substack{p \mid n \\ p \text { prime }}}\left(1+\frac{1}{p}\right),
$$

respectively. We prove that for all $n \geqslant 2$ we have

$$
\left(1-\frac{1}{n}\right)^{n-1}\left(1+\frac{1}{n}\right)^{n+1} \leqslant\left(\frac{\varphi(n)}{n}\right)^{\varphi(n)}\left(\frac{\psi(n)}{n}\right)^{\psi(n)}
$$

and

$$
\left(\frac{\varphi(n)}{n}\right)^{\psi(n)}\left(\frac{\psi(n)}{n}\right)^{\varphi(n)} \leqslant\left(1-\frac{1}{n}\right)^{n+1}\left(1+\frac{1}{n}\right)^{n-1} .
$$

The sign of equality holds if and only if n is a prime. The first inequality refines results due to Atanassov (2011) and Kannan \& Srikanth (2013).

Keywords: Euler's phi function; Dedekind's psi function; inequalities
MSC 2020: 11A25

1. Introduction

In this paper, we are concerned with two classical arithmetical functions: Euler's phi (or totient) function φ and Dedekind's psi function ψ. If $n \in \mathbb{N}$, then $\varphi(n)$ is the number of positive integers up to n which are relatively prime to n. The product formula

$$
\varphi(n)=n \prod_{\substack{p \mid n \\ p \text { prime }}}\left(1-\frac{1}{p}\right)
$$

is an important tool for calculating $\varphi(n)$. Closely related to the φ-function is Dedekind's psi function given by

$$
\psi(n)=n \prod_{\substack{p \mid n \\ p \text { prime }}}\left(1+\frac{1}{p}\right)
$$

Both functions can be expressed in terms of the Möbius function μ which is defined for $n \in \mathbb{N}$ by

$$
\mu(n)= \begin{cases}(-1)^{k} & \text { if } n \text { is square-free and } k \text { is the number of prime factors of } n \\ 0 & \text { if } n \text { is not square-free. }\end{cases}
$$

We have the representations

$$
\varphi(n)=\sum_{d \mid n} \frac{n}{d} \mu(d) \quad \text { and } \quad \psi(n)=\sum_{d \mid n} \frac{n}{d}|\mu(d)|
$$

These functions have remarkable applications in various mathematical and physical problems. Recently, Solé and Planat in [8] proved that a certain inequality involving the Dedekind psi function is equivalent to the famous Riemann hypothesis. For more information on this subject we refer the reader to Apostol, see [1], Mitrinović et al., see [4], Sándor, see [5], Sándor and Crstici, see [7] and the references cited therein.

Our work is motivated by two interesting papers published by Atanassov, see [2] and Kannan and Srikanth, see [3]. Atanassov proved that for $n \geqslant 2$,

$$
\begin{equation*}
n^{2 n}<\varphi(n)^{\varphi(n)} \psi(n)^{\psi(n)} \tag{1.1}
\end{equation*}
$$

Kannan and Srikanth claimed that if

$$
\Theta(n)=\frac{\varphi(n)+\psi(n)}{2 n}
$$

then for $n \geqslant 2$,

$$
\begin{equation*}
n^{2 n \Theta(n)} \leqslant \varphi(n)^{\varphi(n)} \psi(n)^{\psi(n)} \tag{1.2}
\end{equation*}
$$

Since $\Theta(n) \geqslant 1(n \geqslant 2)$, it follows that (1.2) refines (1.1). Unfortunately, the proof given in [3] is incorrect. For instance, the inequality in the last line of page 20 is false.

A correct proof of (1.2) was given by Sándor, see [6], page 51, who actually offered an improvement of (1.2):

$$
\begin{equation*}
n^{2 n \Theta(n)} \leqslant\left(\frac{\varphi(n)+\psi(n)}{2}\right)^{2 n \Theta(n)}<\varphi(n)^{\varphi(n)} \psi(n)^{\psi(n)} \quad(n \geqslant 2) \tag{1.3}
\end{equation*}
$$

The referee pointed out that a slight modification of the proof of (1.3) leads to the following chain of inequalities:

$$
\begin{align*}
\varphi(n)^{\psi(n)} \psi(n)^{\varphi(n)} & <\left(\frac{1}{2}\left(\frac{1}{\varphi(n)}+\frac{1}{\psi(n)}\right)\right)^{-2 n \Theta(n)} \tag{1.4}\\
& <(\varphi(n) \psi(n))^{n \Theta(n)}<n^{2 n \Theta(n)} \quad(n \geqslant 2)
\end{align*}
$$

From (1.3) and (1.4) we conclude that the elegant inequalities

$$
\begin{equation*}
1<\left(\frac{\varphi(n)}{n}\right)^{\varphi(n)}\left(\frac{\psi(n)}{n}\right)^{\psi(n)} \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{\varphi(n)}{n}\right)^{\psi(n)}\left(\frac{\psi(n)}{n}\right)^{\varphi(n)}<1 \tag{1.6}
\end{equation*}
$$

are valid for $n \geqslant 2$. It is the aim of this paper to present refinements of (1.5) and (1.6). Moreover, we show that the constant bounds given in (1.5) and (1.6) are best possible.

In Section 2, we collect several lemmas. Our refinements of (1.5) and (1.6) (as stated in the Abstract) are presented in Section 3.

2. Lemmas

The following seven lemmas are helpful to prove the two theorems given in the next section.

Lemma 2.1. Let

$$
\begin{equation*}
h(x)=(1-x)^{1-x}(1+x)^{1+x} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
g(x)=(1-x)^{1+x}(1+x)^{1-x} . \tag{2.2}
\end{equation*}
$$

Then h is strictly increasing on $[0,1]$ and g is strictly decreasing on $[0,1]$.
Proof. We have

$$
h^{\prime}(x)=h(x) \log \left(\frac{1+x}{1-x}\right) \quad \text { and } \quad g^{\prime}(x)=-g(x)\left(\frac{4 x}{1-x^{2}}+\log \left(\frac{1+x}{1-x}\right)\right) .
$$

This gives $h^{\prime}(x)>0$ and $g^{\prime}(x)<0$ for $x \in(0,1)$.

Lemma 2.2. Let $0<s, t<1$. Then

$$
\begin{equation*}
(1-s t)^{1-s t}(1+s t)^{1+s t}<[(1-s)(1-t)]^{(1-s)(1-t)}[(1+s)(1+t)]^{(1+s)(1+t)} \tag{2.3}
\end{equation*}
$$

Proof. Let $0<r<1<a$ and

$$
q(a, r)=(a+r) \log (a+r)-(a-r) \log (a-r) .
$$

Since

$$
\begin{gathered}
\frac{\partial}{\partial a} q(a, r)=\log \left(\frac{a+r}{a-r}\right)>0, \quad \frac{\mathrm{~d}^{2}}{\mathrm{~d} r^{2}} q(1, r)=-\frac{2 r}{1-r^{2}}<0, \\
q(1,0)=0, \quad q(1,1)=2 \log (2)
\end{gathered}
$$

we obtain

$$
q(a, r)>q(1, r)>0 .
$$

Thus,

$$
(a+r)^{a+r}>(a-r)^{a-r}
$$

This gives

$$
[(1+s)(1+t)]^{(1+s)(1+t)}=(1+s+t+s t)^{1+s+t+s t}>(1+s+t-s t)^{1+s+t-s t} .
$$

Let $R(s, t)$ be the expression on the right-hand side of (2.3). Then

$$
\begin{equation*}
R(s, t)>(1-s-t+s t)^{1-s-t+s t}(1+s+t-s t)^{1+s+t-s t}=h(s+t-s t) \tag{2.4}
\end{equation*}
$$

where h is defined in (2.1). Since $0<s t<s+t-s t<1$, we conclude from Lemma 2.1 that

$$
\begin{equation*}
h(s+t-s t)>h(s t) \tag{2.5}
\end{equation*}
$$

Combining (2.4) and (2.5) gives (2.3).
Throughout, we use the following notations:

$$
\begin{equation*}
\sigma=\prod_{k=1}^{m} s_{k}, \quad P=\prod_{k=1}^{m}\left(1-s_{k}\right), \quad Q=\prod_{k=1}^{m}\left(1+s_{k}\right) \tag{2.6}
\end{equation*}
$$

Lemma 2.3. Let $s_{k} \in(0,1)(k=1, \ldots, m)$. Then

$$
\begin{equation*}
\sigma+P \leqslant 1 \tag{2.7}
\end{equation*}
$$

Proof. We use induction. If $m=1$, then $\sigma+P=1$. Next, we assume that (2.7) holds. Let $s=s_{m+1}$. Then

$$
\sigma s+P(1-s) \leqslant(1-P) s+P(1-s) \leqslant s+1-s=1
$$

This means that (2.7) is valid if σ and P have $m+1$ factors.
Lemma 2.4. Let $s_{k} \in\left(0, \frac{1}{2}\right](k=1, \ldots, m)$. Then

$$
\begin{equation*}
P^{P} \leqslant(1-\sigma)^{1-\sigma} \tag{2.8}
\end{equation*}
$$

Proof. We have $\sigma \leqslant P$ and $\sigma+P \leqslant 1$. Next, we apply Bernoulli's inequality

$$
(1+t)^{a} \geqslant 1+a t \quad(t \geqslant-1, a \geqslant 1)
$$

with $t=-\sigma$ and $a=(1-\sigma) / P$. Then we have
$(1-\sigma)^{(1-\sigma) / P}=(1+t)^{a} \geqslant 1+a t=1+\frac{1-\sigma}{P}(-\sigma)=\frac{1}{P}(P-\sigma)(1-P-\sigma)+P \geqslant P$.
This leads to (2.8).
Lemma 2.5. Let $s_{k} \in\left(0, \frac{1}{2}\right](k=1, \ldots, m)$ and $t \in(0,1)$. If

$$
\begin{equation*}
(1-\sigma)^{1-\sigma}(1+\sigma)^{1+\sigma} \leqslant P^{P} Q^{Q} \tag{2.9}
\end{equation*}
$$

then

$$
\begin{equation*}
1 \leqslant\left(\frac{P^{P}}{(1-\sigma)^{1-\sigma}}\right)^{1-t}\left(\frac{Q^{Q}}{(1+\sigma)^{1+\sigma}}\right)^{1+t} \tag{2.10}
\end{equation*}
$$

Proof. Since $0<a, b \leqslant 1$ implies $a^{b} \geqslant a$, we conclude from (2.8) that

$$
\begin{equation*}
\left(\frac{P^{P}}{(1-\sigma)^{1-\sigma}}\right)^{1-t} \geqslant \frac{P^{P}}{(1-\sigma)^{1-\sigma}} . \tag{2.11}
\end{equation*}
$$

Using (2.8) and (2.9) gives

$$
\begin{equation*}
\frac{Q^{Q}}{(1+\sigma)^{1+\sigma}} \geqslant \frac{(1-\sigma)^{1-\sigma}}{P^{P}} \geqslant 1 . \tag{2.12}
\end{equation*}
$$

Since $a, b \geqslant 1$ implies $a^{b} \geqslant a$, we obtain from (2.12)

$$
\begin{equation*}
\left(\frac{Q^{Q}}{(1+\sigma)^{1+\sigma}}\right)^{1+t} \geqslant \frac{Q^{Q}}{(1+\sigma)^{1+\sigma}} \tag{2.13}
\end{equation*}
$$

Finally, from (2.9), (2.11) and (2.13) we conclude that (2.10) is valid.

Let

$$
\begin{equation*}
f\left(t_{1}, \ldots, t_{m}\right)=\prod_{i=1}^{m}\left(1+t_{i}\right) \sum_{i=1}^{m} \log \left(1-t_{i}\right)+\prod_{i=1}^{m}\left(1-t_{i}\right) \sum_{i=1}^{m} \log \left(1+t_{i}\right) \tag{2.14}
\end{equation*}
$$

with $t_{i} \in(0,1)(i=1, \ldots, m)$.

Lemma 2.6. Let $j \in\{1, \ldots, m\}$ and

$$
F_{j}(x)=f\left(t_{1}, \ldots, t_{j-1}, x, t_{j+1}, \ldots, t_{m}\right)
$$

where f is defined in (2.14). If $t_{i} \in\left(0, \frac{1}{2}\right](i=1, \ldots, m, i \neq j)$, then F_{j} is strictly decreasing on $\left(0, \frac{1}{2}\right]$.

Proof. Let $x \in\left(0, \frac{1}{2}\right]$. We have

$$
F_{j}(x)=D_{j}(1+x) \log \left(C_{j}(1-x)\right)+C_{j}(1-x) \log \left(D_{j}(1+x)\right)
$$

with

$$
C_{j}=\prod_{\substack{i=1 \\ i \neq j}}^{m}\left(1-t_{i}\right) \quad \text { and } \quad D_{j}=\prod_{\substack{i=1 \\ i \neq j}}^{m}\left(1+t_{i}\right)
$$

Since $0<C_{j}<1<D_{j}$, we obtain

$$
F_{j}^{\prime \prime}(x)=-\left(C_{j} \frac{3+x}{(1+x)^{2}}+D_{j} \frac{3-x}{(1-x)^{2}}\right)<0 .
$$

This yields

$$
F_{j}^{\prime}(x)<F_{j}^{\prime}(0)=C_{j}-D_{j}+D_{j} \log \left(C_{j}\right)-C_{j} \log \left(D_{j}\right)<0
$$

which implies that F_{j} is strictly decreasing on $\left(0, \frac{1}{2}\right]$.

Lemma 2.7. Let f be the function defined in (2.14) and $s \in\left(0, \frac{1}{2}\right]$. Then

$$
f(s, \ldots, s) \leqslant \log \left((1-s)^{1+s}(1+s)^{1-s}\right) .
$$

Proof. We define for $\alpha \in \mathbb{R}, \alpha \geqslant 1$ and $s \in\left(0, \frac{1}{2}\right]$:

$$
K(\alpha, s)=\alpha(1+s)^{\alpha} \log (1-s)+\alpha(1-s)^{\alpha} \log (1+s) .
$$

Partial differentiation yields

$$
\frac{\partial}{\partial \alpha} K(\alpha, s)=Y(\alpha, s)+Z(\alpha, s)
$$

with

$$
Y(\alpha, s)=(1+s)^{\alpha} \log (1-s)+(1-s)^{\alpha} \log (1+s)
$$

and

$$
Z(\alpha, s)=\alpha\left[(1+s)^{\alpha}+(1-s)^{\alpha}\right] \log (1-s) \log (1+s) .
$$

We have $Z(\alpha, s)<0$ and

$$
\alpha \frac{\partial}{\partial \alpha} Y(\alpha, s)=Z(\alpha, s) .
$$

It follows that

$$
\begin{equation*}
Y(\alpha, s) \leqslant Y(1, s)=\log (g(s)) \tag{2.15}
\end{equation*}
$$

where g is defined in (2.2). Since $g(0)=1$, we conclude from Lemma 2.1 and (2.15) that $Y(\alpha, s)<0$. Thus,

$$
\frac{\partial}{\partial \alpha} K(\alpha, s)<0 \quad \text { and } \quad K(\alpha, s) \leqslant K(1, s)
$$

In particular, for $m \in \mathbb{N}$,

$$
f(s, \ldots, s)=K(m, s) \leqslant K(1, s)=\log \left((1-s)^{1+s}(1+s)^{1-s}\right) .
$$

3. Main results

We use the following notations:

$$
S(n)=\left(\frac{\varphi(n)}{n}\right)^{\varphi(n)}\left(\frac{\psi(n)}{n}\right)^{\psi(n)} \quad \text { and } \quad T(n)=\left(\frac{\varphi(n)}{n}\right)^{\psi(n)}\left(\frac{\psi(n)}{n}\right)^{\varphi(n)} .
$$

Our first theorem provides a refinement of (1.5).

Theorem 3.1. For all integers $n \geqslant 2$ we have

$$
\begin{equation*}
\left(1-\frac{1}{n}\right)^{n-1}\left(1+\frac{1}{n}\right)^{n+1} \leqslant S(n) \tag{3.1}
\end{equation*}
$$

The sign of equality holds if and only if n is a prime.

Proof. Let

$$
n=p_{1}^{r_{1}} \ldots p_{m}^{r_{m}}
$$

where p_{1}, \ldots, p_{m} are prime numbers and r_{1}, \ldots, r_{m} are positive integers. We distinguish two cases.

Case 1: n is square-free. Then we have $n=p_{1} \ldots p_{m}$. We prove (3.1) by induction on m. If $m=1$, then

$$
\varphi(n)=p_{1}-1 \quad \text { and } \quad \psi(n)=p_{1}+1
$$

It follows that the sign of equality holds in (3.1).
Next, we assume that (3.1) is valid if n has m distinct prime factors. This gives

$$
\begin{equation*}
(1-\sigma)^{1-\sigma}(1+\sigma)^{1+\sigma} \leqslant P^{P} Q^{Q}, \tag{3.2}
\end{equation*}
$$

where σ, P and Q are defined in (2.6) with $s_{k}=1 / p_{k} \in\left(0, \frac{1}{2}\right](k=1, \ldots, m)$.
Now, we suppose that n has one more prime factor p_{m+1}. Then we have to show that

$$
\begin{equation*}
(1-\sigma t)^{1-\sigma t}(1+\sigma t)^{1+\sigma t}<[P(1-t)]^{P(1-t)}[Q(1+t)]^{Q(1+t)} \tag{3.3}
\end{equation*}
$$

where $t=1 / p_{m+1} \in\left(0, \frac{1}{2}\right]$. Let

$$
A=(1-t)^{(P-1+\sigma)(1-t)} \quad \text { and } \quad B=(1+t)^{(Q-1-\sigma)(1+t)} .
$$

Since $P+\sigma \leqslant 1 \leqslant Q-\sigma$, we have $A \geqslant 1$ and $B \geqslant 1$. Using (3.2) we conclude that (2.10) holds. Thus,

$$
1 \leqslant A B\left(\frac{P^{P}}{(1-\sigma)^{1-\sigma}}\right)^{1-t}\left(\frac{Q^{Q}}{(1+\sigma)^{1+\sigma}}\right)^{1+t}
$$

which is equivalent to

$$
\begin{align*}
& {[(1-\sigma)(1-t)]^{(1-\sigma)(1-t)}[(1+\sigma)(1+t)]^{(1+\sigma)(1+t)} } \tag{3.4}\\
& \leqslant[P(1-t)]^{P(1-t)}[Q(1+t)]^{Q(1+t)}
\end{align*}
$$

Combining (3.4) and (2.3) (with $s=\sigma$) we obtain (3.3).
Case 2: n is not square-free. Let $k=p_{1} \ldots p_{m}$. Using the result proved in Case 1 gives

$$
\begin{equation*}
\left(1-\frac{1}{k}\right)^{1-1 / k}\left(1+\frac{1}{k}\right)^{1+1 / k} \leqslant\left(\frac{\varphi(k)}{k}\right)^{\varphi(k) / k}\left(\frac{\psi(k)}{k}\right)^{\psi(k) / k} \tag{3.5}
\end{equation*}
$$

Since $1 / n<1 / k$, we obtain from Lemma 2.1

$$
\begin{equation*}
\left(1-\frac{1}{n}\right)^{1-1 / n}\left(1+\frac{1}{n}\right)^{1+1 / n}=h(1 / n)<h(1 / k)=\left(1-\frac{1}{k}\right)^{1-1 / k}\left(1+\frac{1}{k}\right)^{1+1 / k} \tag{3.6}
\end{equation*}
$$

Combining (3.5), (3.6) and

$$
\frac{\varphi(k)}{k}=\frac{\varphi(n)}{n}, \quad \frac{\psi(k)}{k}=\frac{\psi(n)}{n}
$$

reveals that (3.1) holds with "<" instead of " \leqslant ". This completes the proof of Theorem 3.1.

The following companion of (3.1) is valid.
Theorem 3.2. For all integers $n \geqslant 2$ we have

$$
\begin{equation*}
T(n) \leqslant\left(1-\frac{1}{n}\right)^{n+1}\left(1+\frac{1}{n}\right)^{n-1} \tag{3.7}
\end{equation*}
$$

The sign of equality holds if and only if n is a prime.
Proof. Let

$$
n=p_{1}^{r_{1}} \ldots p_{m}^{r_{m}}
$$

where p_{1}, \ldots, p_{m} are prime numbers with $p_{1} \geqslant \ldots \geqslant p_{m}$ and r_{1}, \ldots, r_{m} are positive integers. We set $t_{i}=1 / p_{i} \in\left(0, \frac{1}{2}\right](i=1, \ldots, m)$. Then we have

$$
\frac{\varphi(n)}{n}=\prod_{i=1}^{m}\left(1-t_{i}\right) \quad \text { and } \quad \frac{\psi(n)}{n}=\prod_{i=1}^{m}\left(1+t_{i}\right) .
$$

This leads to

$$
\begin{equation*}
\frac{1}{n} \log (T(n))=f\left(t_{1}, \ldots, t_{m}\right) \tag{3.8}
\end{equation*}
$$

where f is given in (2.14). Since

$$
0<t_{1} \leqslant \ldots \leqslant t_{m} \leqslant \frac{1}{2}
$$

we conclude from Lemmas 2.6 and 2.7 that

$$
\begin{equation*}
f\left(t_{1}, \ldots, t_{m}\right) \leqslant f\left(t_{1}, \ldots, t_{1}\right) \leqslant \log \left(\left(1-t_{1}\right)^{1+t_{1}}\left(1+t_{1}\right)^{1-t_{1}}\right) \tag{3.9}
\end{equation*}
$$

Let g be the function defined in (2.2). Since $1 / n \leqslant 1 / p_{1}$, Lemma 2.1 implies that

$$
\begin{equation*}
\left(1-t_{1}\right)^{1+t_{1}}\left(1+t_{1}\right)^{1-t_{1}}=g\left(\frac{1}{p_{1}}\right) \leqslant g\left(\frac{1}{n}\right)=U(n)^{1 / n} \tag{3.10}
\end{equation*}
$$

where $U(n)$ denotes the expression on the right-hand side of (3.7). Combining (3.8), (3.9) and (3.10) yields (3.7).

If n is a prime number, then $T(n)=U(n)$. Conversely, if $T(n)=U(n)$, then we conclude from (3.8), (3.9) and (3.10) that $g\left(1 / p_{1}\right)=g(1 / n)$. Since g is strictly monotonic, we obtain $1 / p_{1}=1 / n$, that is, n is a prime number.

Remark 3.1. From (1.3) and (1.4) we obtain for $n \geqslant 2$,

$$
\left(\frac{\varphi(n)+\psi(n)}{2 n}\right)^{\varphi(n)+\psi(n)}<S_{n}
$$

and

$$
T_{n}<\left(\frac{2 \varphi(n) \psi(n)}{n(\varphi(n)+\psi(n))}\right)^{\varphi(n)+\psi(n)}
$$

The referee asked whether these bounds for S_{n} and T_{n} can be compared with those given in (3.1) and (3.7), respectively. This is not possible. Indeed, using the computer program MAPLE 13 for $n=2,3, \ldots, 500$ reveals that the differences of the lower and upper bounds attain positive and negative values.

Application of (3.1) and (3.7) leads to inequality (1.5) and its counterpart (1.6).
Corollary 3.1. For all integers $n \geqslant 2$ we have

$$
\begin{equation*}
1<S(n) \quad \text { and } \quad T(n)<1 \tag{3.11}
\end{equation*}
$$

The constant bounds are best possible.
Proof. Using Lemma 2.1 gives for $n \geqslant 2$,

$$
\begin{equation*}
1=h(0)<h(1 / n)=\left[\left(1-\frac{1}{n}\right)^{n-1}\left(1+\frac{1}{n}\right)^{n+1}\right]^{1 / n} \tag{3.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\left(1-\frac{1}{n}\right)^{n+1}\left(1+\frac{1}{n}\right)^{n-1}\right]^{1 / n}=g\left(\frac{1}{n}\right)<g(0)=1 \tag{3.13}
\end{equation*}
$$

From (3.1), (3.12), (3.7) and (3.13) we obtain the two estimates in (3.11).
Let p_{n} be the nth prime number. Then

$$
S\left(p_{n}\right)=\left(1-\frac{1}{p_{n}}\right)^{p_{n}-1}\left(1+\frac{1}{p_{n}}\right)^{p_{n}+1}
$$

and

$$
T\left(p_{n}\right)=\left(1-\frac{1}{p_{n}}\right)^{p_{n}+1}\left(1+\frac{1}{p_{n}}\right)^{p_{n}-1} .
$$

Since

$$
\lim _{n \rightarrow \infty} S\left(p_{n}\right)=\lim _{n \rightarrow \infty} T\left(p_{n}\right)=1
$$

we conclude that the constant bounds given in (3.11) are sharp.

Remark 3.2. In view of the two inequalities in (3.11) it is natural to ask: do there exist a constant upper bound for $S(n)$ and a positive constant lower bound for $T(n)$ which are valid for all $n \geqslant 2$? If p_{n} denotes the nth prime number, then

$$
S\left(p_{n}^{3}\right)=\left(1-\frac{1}{p_{n}}\right)^{p_{n}^{2}\left(p_{n}-1\right)}\left(1+\frac{1}{p_{n}}\right)^{p_{n}^{2}\left(p_{n}+1\right)}
$$

and

$$
T\left(p_{n}^{3}\right)=\left(1-\frac{1}{p_{n}}\right)^{p_{n}^{2}\left(p_{n}+1\right)}\left(1+\frac{1}{p_{n}}\right)^{p_{n}^{2}\left(p_{n}-1\right)} .
$$

Since

$$
\lim _{n \rightarrow \infty} S\left(p_{n}^{3}\right)=\infty \quad \text { and } \quad \lim _{n \rightarrow \infty} T\left(p_{n}^{3}\right)=0
$$

we conclude that in both cases the answer is "no".
Acknowledgement. We thank the referee for helpful comments.

References

[1] T. M. Apostol: Introduction to Analytic Number Theory. Undergraduate Texts in Mathematics, Springer, New York, 1976.
[2] K. T. Atanassov: Note on φ, ψ and σ-functions III. Notes Number Theory Discrete Math. 17 (2011), 13-14.
[3] V. Kannan, R. Srikanth: Note on φ and ψ functions. Notes Number Theory Discrete Math. 19 (2013), 19-21.
[4] D. S. Mitrinović, J. Sándor, B. Crstici: Handbook of Number Theory. Mathematics and Its Applications 351, Kluwer, Dordrecht, 1996.
[5] J. Sándor: On certain inequalities for σ, φ, ψ and related functions. Notes Number Theory Discrete Math. 20 (2014), 52-60.
[6] J. Sándor: Theory of Means and Their Inequalities. 2018. Available at http://www.math.ubbcluj.ro/~jsandor/lapok/Sandor-Jozsef-Theory of Means and Their Inequalities.pdf.
[7] J. Sándor, B. Crstici: Handbook of Number Theory II. Kluwer, Dordrecht, 2004.
[8] P. Solé, M. Planat: Extreme values of Dedekind's ψ-function. J. Comb. Number Theory 3 (2011), 33-38.

Authors' addresses: Horst Alzer (corresponding author), Morsbacher Straße 10, 51545 Waldbröl, Germany, e-mail: h.alzer@gmx.de; Man Kam Kwong, Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P.R. China, e-mail: mankwong@connect.polyu.hk.

