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Abstract. Let T be a tree with n vertices. To each edge of T we assign a weight which
is a positive definite matrix of some fixed order, say, s. Let Dij denote the sum of all the
weights lying in the path connecting the vertices i and j of T . We now say that Dij is
the distance between i and j. Define D := [Dij ], where Dii is the s × s null matrix and
for i 6= j, Dij is the distance between i and j. Let G be an arbitrary connected weighted
graph with n vertices, where each weight is a positive definite matrix of order s. If i and j

are adjacent, then define Lij := −W−1
ij , where Wij is the weight of the edge (i, j). Define

Lii :=
n∑

i6=j,j=1

W−1
ij . The Laplacian of G is now the ns × ns block matrix L := [Lij ]. In

this paper, we first note that D−1−L is always nonsingular and then we prove that D and
its perturbation (D−1 − L)−1 have many interesting properties in common.
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1. Introduction

Consider a finite, simple and undirected graph G = (V, E), where V is the set

of vertices and E is the set of edges. We write V = {1, . . . , n} and (i, j) ∈ E if i

and j are adjacent. To an edge (i, j) of G we assign a weight Wij which is a positive

definite matrix of order s. We now say that G is a weighted graph. Define

Vij =

{
W−1

ij , (i, j) ∈ E ,

0s, else,
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where 0s is the s× s null matrix. The Laplacian of G is then the matrix

L(G) :=




∑
k

V1k −V12 −V13 . . . −V1n

−V21

∑
k

V2k −V23 . . . −V2n

. . . . . . . . . . . . . . .

−Vn1 −Vn2 −Vn3 . . .
∑
k

Vnk




.

Recall that a tree is a connected acyclic graph. Let T be a tree with n-vertices. The

distance Sij between any two vertices i and j of T is the sum of all the weights lying

in the path connecting i and j. Define

Dij =

{
Sij , i 6= j,

0s, i = j.

Now the distance matrix of T denoted by D(T ) is the ns × ns block matrix with

(i, j)th block equal to Dij . Distance matrices are well studied when s = 1, i.e., the

weights are positive scalars. These matrices have a wide literature with numerous

applications; see for example [3], [4] and references therein. Our objective in this

paper is to go beyond the usual scalar case and study much more general class of

matrices for which the theory can be extended by some additional matrix theoretical

techniques.

Several interesting properties of D(T ) and L(T ) are known. In addition, there are

identities that connect D(T ) and L(T ). Distance matrices in this weighted setup are

introduced in [2] and further investigated extensively in [1]. Some of those important

properties are listed below. These will be useful for proving our result. For brevity,

we write D = D(T ) and L = L(T ).

(P1) Let L† be the Moore-Penrose inverse of L. Then

Dij = L
†
ii + L

†
jj − 2L

†
ij.

See Theorem 3.4 in [1].

(P2) Let δi be the degree of the vertex i and τ be the column vector with ith

component equal to 2− δi. Suppose Is is the s× s identity matrix. Then

D−1 = −
1

2
L+

1

2
∆R−1∆T ,

where R is the sum of all the weights in T and ∆ := τ ⊗ Is; see Theorem 3.7

in [1].
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(P3) If J is the block matrix with each block equal to Is, then D is negative definite

on null-space of J . So, D has exactly s positive eigenvalues; see Section 2.3

in [1].

(P4) If G is connected, then L(G) is positive semidefinite, LJ = 0 and rank(L) =

ns − s. This can be proved easily. Now, it follows that column space of L is

contained inM.

1.1. Objective of the paper. Let T be a weighted tree and G be a weighted

graph with n vertices. Assume G is connected. As before we shall write D for

D(T ) and L for L(G). The blocks of D and L will be Dij and Lij which are s × s

matrices. We first show in this paper thatD−1−L is always nonsingular. Define F :=

(D−1−L)−1. We say that F is a perturbation ofD. By performing certain numerical

experiments, we observed that any perturbation F has the following properties.

(a) Each block of F is positive definite.

(b) F has exactly s positive eigenvalues.

(c) F is negative definite on null-space of J .

Items (a), (b), and (c) are satisfied by any distance matrix D. Our objective in this

paper is to prove (a), (b), and (c) for any perturbation F of D. When the weights

are positive scalars, Bapat, Kirkland and Neumann established a similar result in [3].

It can be noted that the result in this paper is a far reaching generalization of that

result.

1.2. Notation. We fix the following notation.

(N1) We say that G is an ns× ns block matrix if G can be partitioned as




G11 G12 . . . G1n

G12 G22 . . . G2n

...
...

...
...

G1n G2n . . . G2n


 ,

where each Gij is an s× s matrix. We now write G = [Gij ].

(N2) Let Is denote the identity matrix of order s. Fix a positive integer n. Now, J

will be the ns× ns block matrix [Is].

(N3) We useM to denote the null space of J .

(N4) Define U := e⊗ Is, where e is the column vector of all ones in R
n. Thus, J can

be written as [U, . . . , U ]. Let ei be the n-vector with 1 in the position i and

zeros elsewhere and Ei := ei ⊗ Is.

(N5) The transpose of a matrix A is denoted by A′.
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(N6) If A is a symmetric matrix, we use In(A) to denote the inertia of A. We write

In(A) = (n−(A), nz(A), n+(A)), where n−(A) and n+(A) are the number of

negative and positive eigenvalues of A, respectively, and nz(A) is the nullity

of A.

(N7) Suppose m is a positive integer. The notation [m] will denote the finite set

{1, . . . ,m}.

(N8) If ∆1,∆2 ⊆ [n], then G[[∆1,∆2]] = [Xij ] will denote the |∆1| × |∆2| block

matrix, where (i, j) ∈ ∆1 ×∆2. If ∆ = ∆1 = ∆2, then we simply write G[[∆]]

for G[[∆1,∆2]].

2. Result

We now prove our main result.

Theorem 2.1. Let T be a weighted tree with n vertices, where each weight is of

order s. Let D = [Dij ] be the distance matrix of T . Suppose G is a connected and

weighted graph with n vertices, where each weight is of order s. Let L = [Lij ] be

the Laplacian matrix of G. For any β > 0, the following are true.

(i) D−1 − βL is nonsingular.

(ii) In(D−1 − βL) = (ns− s, 0, s).

(iii) Let i ∈ [n] and ∆ := [n] \ {i}. Define F := D−1 − βL. Then F [[∆]] is negative

definite.

(iv) The bordered matrix G :=

[
(D−1 − βL)−1 U

U ′ 0

]
is nonsingular and has exactly

s positive eigenvalues.

(v) (D−1 − βL)−1 is negative semidefinite onM.

(vi) Every block in (D−1 − L)−1 is positive definite.

P r o o f. (i) Let x ∈ R
ns be such that

x′(D−1 − βL) = 0.

Put y = D−1x. Then y′ = βx′L and so, by (P4), y ∈ M. By (P1), D is negative

semidefinite onM, and hence y′Dy 6 0. This implies that x′D−1x 6 0 and hence,

x′Lx 6 0. As L is positive semidefinite, x′Lx = 0, and therefore, Lx = 0. This leads

to x′D−1 = 0 and hence, x = 0. Thus we get (i).

(ii) By (P2) and (P3), In(D−1) = (ns − s, 0, s). In view of (i), D−1 − δL is

nonsingular for any δ > 0. Using the continuity of eigenvalues, we get

In(D−1 − βL) = (ns− s, 0, s).
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(iii) Without loss of generality, we assume i = n. Now ∆ = {1, . . . , n − 1}.

We complete the proof by showing that L[[∆]] is positive definite and D−1[[∆]] is

negative semidefinite. Let L[[∆]]x = 0 for some nonzero x in Rns−s. Define x̃ ∈ R
ns

by x̃ := (x, 0)′. Then x̃′Lx̃ = 0. So, Lx̃ = 0. Hence, by (P4), x̃ is an element in the

column space of J . This implies that x̃ is of the form (p, p, . . . , p)′ for some p ∈ R
s.

Since x̃ = (x, 0)′, this means that x = 0. Thus, L[[∆]] is positive definite.

We now show thatD−1[[∆]] is negative semidefinite. Since In(D−1) = (ns−s, 0, s),

by interlacing theorem, D−1[[∆]] can have at most s nonnegative eigenvalues. As

Dnn = 0, by Theorem 2 of Fiedler and Markham [5], nullity of D−1[[∆]] must

be s. Therefore, D−1[[∆]] has no positive eigenvalues and thus, D−1[[∆]] is negative

semidefinite. Hence, F [[∆]] = D−1[[∆]]− L[[∆]] is negative definite.

(iv) Define F := (D−1 − βL)−1. Then G =

[
F U

U ′ 0

]
. Let the Schur complement

of F in G be G/F . Since LU = 0, we have

G/F = −U ′F−1U = −U ′(D−1 − βL)U = −U ′D−1U.

By Corollary 2.8 in [1], U ′D−1U is positive definite, and hence,

In(G/F ) = (s, 0, 0).

By (ii), In(F ) = (ns− s, 0, s). In view of Haynsworth inertia additivity formula,

In(G/F ) = In(G)− In(F ),

and so

In(G) = In(G/F ) + In(F ) = (s, 0, 0) + (ns− s, 0, s) = (ns, 0, s).

This completes the proof of (iv).

(v) We now show that (D−1 − βL)−1 is negative semidefinite onM. Assume the

contrary. Let p ∈ R
ns be such that

p ∈ M and p′(D−1 − βL)−1p > 0.

Now consider the following subspace of Rns+s:

W := {(αp, y)′ : α ∈ R and y ∈ R
s}.

Let v := (δp, y)′ be an arbitrary nonzero vector in W . As before, define

G =

[
(D−1 − βL)−1 U

U ′ 0

]
.
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Since U ′p = 0, we see that

v′Gv = δ2p′(D−1 − βL)−1p > 0.

So, G is positive semidefinite on W . Since the dimension of W is s+ 1, G will have

at least s+1 nonnegative eigenvalues. But from (iv), we see that In(G) = (ns, 0, s).

This is a contradiction. Hence, (D−1 − βL)−1 is negative semidefinite onM.

(vi) Define A := (D−1 − L)−1 and let the (i, j)th block of A be written Aij . We

shall first prove that all the diagonal blocks of A are positive definite. Let H := A−1

and let Hij be the (i, j)th block of H .

We claim A11 is positive definite. Define ∆ := {2, . . . , n} and Q := H [[∆]]. We

note that

H =

[
H11 K

K ′ Q

]
,

and hence by Theorem 2 of Fiedler and Markham [5], nullity of Q and nullity of A11

are equal. By (iii), Q is negative definite and so Q is nonsingular. Hence, A11 is

nonsingular. Now it follows that

In(Q) = In(A/A11),

where A/A11 is the Schur complement of A11 in A. In view of inertia additivity

formula, (ii) and (iii), we see that

In(A11) = In(A) − In(Q) = (ns− s, 0, s)− (ns− s, 0, 0) = (0, 0, s).

Thus, A11 is positive definite. By a similar argument, we conclude that all diagonal

blocks of A are positive definite.

For a nonzero vector x ∈ R
s, define

Gx := [x′Aijx].

We claim that the off-diagonal entries of Gx are nonzero. Let y = (y1, y2, . . . , yn)
′

be an element in {e}⊥. For each i ∈ [n], let pi := yix and p := (p1, p2, . . . , pn)′. As

n∑

i=1

pi =

( n∑

i=1

yi

)
x

and
n∑

i=1

yi = 0, it follows that Jp = 0 and hence, p ∈ M. By (v), A is negative definite

onM. Since p′Ap = y′Gxy, we now see that Gx is negative definite on {e}⊥. This
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implies Gx has at least n − 1 negative eigenvalues. As each diagonal block Aii is

positive definite, the diagonal entries of Gx are positive. So

In(Gx) = (n− 1, 0, 1).

Applying the interlacing theorem, we now see that all the off-diagonal entries of Gx

are nonzero. This proves our claim.

To this end, we have thus shown that if Aij is an off-diagonal block of A, then

either Aij is positive definite or negative definite. We now claim that Aij is positive

definite. Define f : (0,∞) → R
s×s by

f(α) := E′
i(D

−1 − αL)−1Ej .

Note that f(α) is the (i, j)th off-diagonal block of (D−1 − αL)−1. By a similar

argument as above, we see that f(α) is either positive definite or negative definite,

for any α ∈ (0,∞). We now note that

trace(Dij) = lim
α↓0

trace(f(α)).

As each off-diagonal block Dij is positive definite, trace(Dij) > 0. So trace(f(δ)) > 0

for some δ > 0. As f(α) is positive definite or negative definite for all α > 0, it follows

that trace(f(α)) 6= 0 for each α ∈ (0,∞). Thus, trace(f(α)) > 0 for each α > 0 and

hence f(α) is positive definite for all α > 0. Therefore each block of (D−1 − L)−1 is

positive definite. �

2.1. Example. To illustrate our result, we give the following example.

1 2

3

4

W1

W2

W3

Figure 1. Tree T .

E x am p l e 2.1. Consider the following tree T on four vertices, see Figure 1.

Define W1 =

[
8 6

6 5

]
, W2 =

[
1 1

1 5

]
, and W3 =

[
5 0

0 5

]
. Now, the distance matrix
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of T is

D =




0 0 8 6 9 7 13 6

0 0 6 5 7 10 6 10

8 6 0 0 1 1 5 0

6 5 0 0 1 5 0 5

9 7 1 1 0 0 6 1

7 10 1 5 0 0 1 10

13 6 5 0 6 1 0 0

6 10 0 5 1 10 0 0




.

Consider the graph G on four vertices (see Figure 2), where S1 =

[
2 0

0 2

]
,

S2 =

[
8 0

0 8

]
, S3 =

[
5 −2

−2 1

]
, and S4 =

[
5 −3

−3 5

]
. The Laplacian ma-

4 3

1

2

S1

S2

S4

S3

Figure 2. A connected graph G.

trix L(G) of G is:

L =




3

2
2 − 1

2
0 −1 −2 0 0

2 11

2
0 − 1

2
−2 −5 0 0

− 1

2
0 5

8
0 − 1

8
0 0 0

0 − 1

2
0 5

8
0 − 1

8
0 0

−1 −2 − 1

8
0 23

16

35

16
− 5

16
− 3

16

−2 −5 0 − 1

8

35

16

87

16
− 3

16
− 5

16

0 0 0 0 − 5

16
− 3

16

5

16

3

16

0 0 0 0 − 3

16
− 5

16

3

16

5

16




.
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Then the matrix (D−1 − L)−1 is:




3419893

612184

2467937

612184

3525525

612184

2430433

612184

3944573

612184

2285161

612184

4731635

612184

1962623

612184
2467937

612184

1957213

306092

2255293

612184

935945

153046

2218981

612184

1023631

153046

1853663

612184

2458795

306092

3525525

612184

2255293

612184

3037701

612184

1985813

612184

3651821

612184

2212445

612184

4430931

612184

1803363

612184
2430433

612184

935945

153046

1985813

612184

1566953

306092

2093885

612184

1966725

306092

1746783

612184

1159859

153046

3944573

612184

2218981

612184

3651821

612184

2093885

612184

3655573

612184

2328197

612184

4622251

612184

1831995

612184
2285161

612184

1023631

153046

2212445

612184

1966725

306092

2328197

612184

2026753

306092

1884375

612184

1242045

153046

4731635

612184

1853663

612184

4430931

612184

1746783

612184

4622251

612184

1884375

612184

3647621

612184

2294033

612184
1962623

612184

2458795

306092

1803363

612184

1159859

153046

1831995

612184

1242045

153046

2294033

612184

1968213

306092




We note that each block in (D−1 − L)−1 is positive definite, In((D−1 − L)−1) =

(6, 0, 2), and (D−1 − L)−1 is negative semidefinite onM.
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