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Abstract. We generalize the Monge property of real matrices for interval matrices. We
define two classes of interval matrices with the Monge property—in a strong and a weak
sense. We study the fundamental properties of both types. We show several different
characterizations of the strong Monge property. For the weak Monge property, we give a
polynomial description and several sufficient and necessary conditions. For both classes, we
study closure properties. We further propose a generalization of an algorithm by Deineko
and Filonenko which for a given matrix returns row and column permutations such that
the permuted matrix is Monge if the permutations exist.
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1. Introduction

In 1781, a French mathematician Gaspard Monge observed a fundamental, but

a very strong property while studying a variation of the transportation problem

(see [8]). It was shown in the past century that the presence of the Monge prop-

erty (named in honour to this great mathematician) simplifies many optimization

problems. The famous NP-complete travelling salesman problem becomes solvable

by a linear algorithm. Other optimization problems such as the assignment prob-

lem, the transportation problem or the lot-sizing problem can be solved significantly

faster using algorithms based on the Monge property. Since there is a geometrical

interpretation of the Monge property concerning distances, several applications in
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computational geometry are known. There are also further applications in mathe-

matical statistics, linguistics, bioinformatics, graph theory or dynamic programming.

Interval analysis deals with uncertainty and inaccuracy in data. In almost every

area of expertise people encounter a situation where they are limited by the precision

of their data or their measuring devices. The problem becomes more severe when we

use computers to solve abstract problems as a part of a mathematical proof. In these

problems, we cannot afford to neglect errors. In the interval analysis, we envelope

our data into intervals, then perform calculations on these intervals instead of the

data itself. The methods of interval analysis ensure that the result is included in

the resulting interval. In another problem typical for interval analysis, we receive an

interval of possible inputs and we want to find the range of all solutions.

This work is the first study of an interval generalization of the Monge property.

For interval matrices we generalize the property in two natural ways—in a strong

and in a weak sense. We show several characterizations of the interval matrices

with the strong Monge property. Few of them are inspired by characterizations for

real Monge matrices. We further state a polynomial characterization of matrices

in the weak sense and study necessary and sufficient conditions. We also study

closure properties of both classes of matrices. Finally, we present a permutation

algorithm, which decides for a given general interval matrix if there exist row and

column permutations such that the permuted matrix is Monge in the strong sense

and returns the permutations if the answer is positive.

2. Preliminaries

2.1. Interval analysis. Before we start with an introduction to Monge matrices,

we have to fix a notation and introduce basics of the interval analysis and interval

arithmetics. For further information on interval analysis see [1], [7], [5].

By R we denote the set of real numbers and by IR the set of closed intervals

over R.

Definition 2.1 (Interval matrix). An interval matrix A ∈ IR
m×n is

A = [A,A] = {A ∈ R
m×n : A 6 A 6 A}

where A,A are lower resp. upper bound matrices of A.

Similarly, we can define an interval vector as v = [v, v] = {v ∈ Rm : v 6 v 6 v}.

Another way of defining an interval matrix is by using a center AC = 1
2 (A + A)

and a radius A∆ = 1
2 (A − A). Then an interval matrix can be rewritten as A =

[AC − A∆, AC + A∆]. For two interval matrices M ,N ∈ IR
m×n we define the

intersection and union operations.
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Definition 2.2 (Interval matrix intersection). An interval matrix intersection

M ∩N is

(M ∩N)ij =

{

[l, u] if l 6 u,

∅ if l > u,

where l = max{mij , nij} and u = min{mij , nij}.

Definition 2.3 (Interval matrix union). For two interval matrices M ,N ∈

IR
m×n an interval matrix union isM ∪N = {X ∈ Rm×n : X ∈ M or X ∈ N}.

Note that ifM ∩N = ∅ then the interval matrix union is not an interval matrix.

We deal with this by enveloping the set into an interval.

Definition 2.4 (Envelope of the interval matrix union). LetM ∪N be an inter-

val matrix union of two interval matrices M ,N ∈ IR
m×n. An envelope of interval

matrix union is � (M ∪N) = {X ∈ Rm×n : min{M,N} 6 X 6 max{M,N}}.

Definition 2.5 (Corner matrices). For an interval matrix M ∈ IR
m×n, corner

matrices ↓M, ↑M are given by

(↑M)ij =

{

mij

mij

}

, (↓M)ij =

{

mij

mij

}

if i+ j is

{

even

odd

}

.

For a binary arithmetic operation ◦ ∈ {+,−, ·, /} defined on R, we can introduce

the corresponding interval operation as a ◦ b = {a ◦ b : a ∈ a, b ∈ b}.We can rewrite

the definition into explicit formulae:

⊲ a+ b = [a+ b, a+ b],

⊲ a− b = [a− b, a− b],

⊲ a · b = [min{a · b, a · b, a · b, a · b},max{a · b, a · b, a · b, a · b}],

⊲ a/b = [min{a/b, a/b, a/b, a/b},max{a/b, a/b, a/b, a/b}] if 0 /∈ b.

Let us note that for the interval division there is a known generalization where 0 ∈ b.

2.2. Real matrices with the Monge property. All the results from this sub-

section can be found in a survey by Burkard (see [2]).

Definition 2.6 (Monge matrix). Let M ∈ Rm×n. The matrix M is Monge if

for all i, j, k, l : 1 6 i < k 6 m, 1 6 j < l 6 n we have

mij +mkl 6 mil +mkj .

Since Hoffman rediscovered the Monge property in 1961, several equivalent charac-

terizations have been shown. We merge some of the characterizations into a theorem,

but first, we define the notion of submodular functions.
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Definition 2.7 (Submodular function). Let Λ = (I,∧,∨) be a distributive lat-

tice where I = {1, . . . ,m} × {1, . . . , n} and join (∧) and meet (∨) operations are

defined for x = (x1, x2), y = (y1, y2) as

⊲ (x1, x2) ∧ (y1, y2) = (min{x1, y1},min{x2, y2}),

⊲ (x1, x2) ∨ (y1, y2) = (max{x1, y1},max{x2, y2}).

Function f : I → R is said to be submodular on Λ if for all x, y ∈ I

f(x ∨ y) + f(x ∧ y) 6 f(x) + f(y).

Theorem 2.1. Let M ∈ Rm×n. Then the following statements are equivalent:

(1) M is a Monge matrix,

(2) mij +mkl 6 mil +mkj for all 1 6 i < k 6 m, 1 6 j < l 6 n,

(3) mij +mi+1,j+1 6 mi,j+1 +mi+1,j for all 1 6 i < m, 1 6 j < n,

(4) a function f : I → R defined by f(i, j) = mij is submodular on Λ, where

Λ = (I,∧,∨) is a distributive lattice.

We further present a list of operations under which Monge matrices are closed.

Theorem 2.2. Let M,N ∈ Rm×n be Monge. Then the following holds:

(1) M⊤ is Monge,

(2) αM is Monge for α > 0,

(3) M +N is Monge,

(4) for any u ∈ Rm, v ∈ Rn, the matrix C ∈ Rm×n defined by cij = mij + ui + vj

is Monge.

The second and the third result of Theorem 2.2 imply that the set of nonnegative

Monge matrices forms a convex polyhedral cone. This cone can be described by 4

types of 0-1 matrices corresponding to the extremal rays. Let Hi denote a 0-1 matrix

where the ith row contains all ones while the other entries are zeros and V j a 0-1

matrix with the jth column set to ones and the rest to zeros. Further, let Lrs be a 0-1

matrix where lrsij = 1 for i = r, . . . ,m and j = 1, . . . , s. Otherwise lrsij = 0. Similarly,

let Rpq be a 0-1 matrix with rpqij = 1 for i = 1, . . . , p and j = q, . . . , n, otherwise

rpqij = 0. Any Monge matrix can be represented by a nonnegative combination of

matrices Hi, V j , Lrs, and Rpq.

Theorem 2.3. Let M ∈ Rm×n be a Monge matrix. Then there are coefficients

κi, λj , µrs, and νpq such that

M =

m
∑

i=1

κiH
i +

n
∑

j=1

λjV
j +

m
∑

r=2

n−1
∑

s=1

µrsL
rs +

m−1
∑

p=1

n
∑

q=2

νpqR
pq.
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The matrices Hp with p = 1, . . . ,m, V q with q = 1, . . . , n, Lrs with r = 2, . . . ,m,

s = 1, . . . , n − 1 and Rpq with p = 1, . . . ,m − 1, q = 2, . . . , n generate the extreme

rays of the cone of nonnegative Monge matrices.

3. Interval matrices with the strong Monge property

In this section, we introduce interval matrices with the strong Monge property.

We present a list of 5 equivalent characterizations, most of them similar to those in

Theorem 2.1.

Definition 3.1 (Strong Monge property). An interval matrixM ∈ IR
m×n has

the strong Monge property if every M ∈ M is Monge. We denote by ISM the set of

interval matrices with the strong Monge property.

Before we state the equivalent characterizations, we need to define a generalization

of submodular functions.

Definition 3.2 (Interval submodular functions). Let Λ = (I,∧,∨) be a distribu-

tive lattice where I = {1, . . . ,m}×{1, . . . , n} with join (∧) and meet (∨) operations.

The operations are defined for x = (x1, x2), y = (y1, y2) as

⊲ (x1, x2) ∧ (y1, y2) = (min{x1, y1},min{x2, y2}),

⊲ (x1, x2) ∨ (y1, y2) = (max{x1, y1},max{x2, y2}).

A function f : I → IR is submodular on lattice Λ if f(x∨y)+ f(x∧y) 6 f(x)+ f(y)

for all x, y ∈ I.

Theorem 3.1 (Characterization of the strong Monge property). LetM ∈ IR
m×n

be an interval matrix. Then the following statements are equivalent:

(1) M ∈ ISM,

(2) mij +mkl 6 mil +mkj for all 1 6 i < k 6 m, 1 6 j < l 6 n,

(3) mij +mi+1,j+1 6 mi,j+1 +mi+1,j for all 1 6 i < m, 1 6 j < n,

(4) corner matrices ↓M and ↑M are Monge,

(5) a function f : I → IR defined by f(i, j) = mij is submodular on Λ, where

Λ = (I,∧,∨) is a distributive lattice.

P r o o f. (1) ↔ (2) ↔ (3): can be easily derived using Theorem 2.1 and Defini-

tion 3.1.

(3) ↔ (4): can be derived using Definition 3.1 and Definition 2.5.

(3) ↔ (5): LetM ∈ IR
m×n such that (3) holds. Let further x = (i, j+1) ∈ I and

y = (i + 1, j) ∈ I. Then

f(x ∧ y) = f((i, j + 1) ∧ (i+ 1, j)) = f((i, j)) = mij
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and

f(x ∨ y) = f((i, j + 1) ∨ (i+ 1, j)) = f((i + 1, j + 1)) = mi+1,j+1.

Therefore,

f(x ∨ y) + f(x ∧ y) = mi+1,j+1 +mij 6 mi,j+1 +mi+1,j = f(x) + f(y).

Function f is submodular on Λ, since the inequality holds for any i, j.

Let us now suppose that the function f is submodular on the lattice Λ. Then the

condition

f((i + 1, j) ∧ (i, j + 1)) + f((i + 1, j) ∨ (i, j + 1)) 6 f((i + 1, j)) + f((i, j + 1))

corresponds to

mij +mi+1,j+1 6 mi+1,j +mi,j+1

for every i, j, thusM ∈ ISM. �

Let us note that the result of Theorem 2.3 does not seem to be easily generalizable

to the interval case. Trying to find an interval decomposition by taking one possible

decomposition for each M ∈ M and making an interval envelope of all possible

coefficients κi, λj , µrs, νpq leads to an overestimation in general, as shown in the

example below.

E x am p l e 3.1. LetM ∈ ISM such that

M =

(

[0, 5] 5

[0, 8] 0

)

.

If the decomposition is to equalM then it has to be in the form

C(M) = [0, 3]

(

0 0

1 0

)

+ [0, 5]

(

1 0

1 0

)

+ 5

(

0 1

0 0

)

.

But for the matrix

M =

(

1 5

6 0

)

we see, that there is no possible decomposition ofM among the coefficients of C(M).

The described overestimating decomposition can be computed by a task of linear

programming, but since we do not need it further in the text, we omit the construc-

tion.
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4. Interval matrices with the weak Monge property

In this section, we introduce the interval matrices with the weak Monge prop-

erty. We offer a polynomial characterization and several necessary and sufficient

conditions.

Definition 4.1 (Weak Monge property). An interval matrix M ∈ IR
m×n has

the weak Monge property if there is a Monge matrix M ∈ M . We denote by IWM

the set of interval matrices with the weak Monge property.

We start off by showing that matrices with the weak Monge property are polyno-

mially recognizable by a reduction to a task of linear programming.

Theorem 4.1. LetM ∈ IR
m×n and let LP (M) be a task of linear programming

defined as

minimize 0

subject to mij +mi+1,j+1 −mi,j+1 −mi+1,j 6 0,(1)

mkl 6 mkl,(2)

−mkl 6 −mkl,(3)

where 1 6 i < m, 1 6 j < n,

1 6 k 6 m, 1 6 l 6 n.

Then the matrixM ∈ IWM if and only if LP (M) has a feasible solution.

P r o o f. A feasible solution of LM(M) corresponds to a matrix M . The Monge

property of the matrix is guaranteed by (1), and by (2) and (3) every entry mij 6

mij 6 mij is from mij . Thus every feasible solution of LP (M) is a Monge matrix

M ∈ M , therefore,M ∈ IWM. If the task of linear programming is not feasible,M

does not have the weak Monge property. �

Theorem 4.1 is important because we know that the recognition problem of ma-

trices with the weak Monge property is solvable in polynomial time [6]. For IWM,

we have not found any other polynomial characterization. Let us note that all of the

characterizations of real Monge matrices can be restated for IWM, although none of

them can be used without a further modification to construct an efficient polynomial

recognition algorithm.

4.1. Necessary conditions. Although we know the recognition problem of IWM

is polynomial, the only characterization we have found was by linear programming
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which is categorized as one of the hardest problems in the hierarchy of polynomi-

ally solvable problems (see [6]). Therefore, we investigated necessary and sufficient

conditions of IWM.

The first necessary condition employs so called residual matrices.

Definition 4.2. LetM ∈ IR
m×n be an interval matrix. Then an interval resid-

ual matrix MR ∈ IR
(m−1)×(n−1) is defined as

mR
ij = [mi+1,j +mi,j+1 −mij −mi+1,j+1,mi+1,j +mi,j+1 −mij −mi+1,j+1].

The residual matrices carry information about the tightness of inequalities from

the definition of the Monge property.

Proposition 4.1. Let M ∈ IWM and MR be its residual matrix. Then there

exists an MR ∈ MR such that MR is nonnegative.

P r o o f. Let M ∈ IWM and M ∈ M such that M is Monge. Because of the

Monge property of M , we have mR
ij = mi+1,j + mi,j+1 − mij − mi+1,j+1 > 0 for

all i, j. If we take the matrix (MR)ij = mR
ij , clearly M

R ∈ MR. �

Another necessary condition considers the presence of a special Monge matrix in

the corresponding interval matrix with the weak Monge property.

Proposition 4.2. LetM ∈ IWM
m×n. Then there exists anM ∈ M such thatM

is Monge and the number of entries mij = mij is at least max{m,n}.

P r o o f. Let M ∈ M be a Monge matrix. By Theorem 2.3 we can rewrite M as

M =

m
∑

i=1

κiH
i +

n
∑

j=1

λjV
j +

m
∑

r=2

n−1
∑

s=1

µrsL
rs +

m−1
∑

p=1

n
∑

q=2

νpqR
pq.

Let us takeM such that the number of entriesmij = mij inM is the highest possible

and still lower than max{m,n}. Let us suppose that m > n. It means that there is

a row k in M , where mkj 6= mkj for every column j. We take µ = min
j

{mkj −mkj}

and add µHi to M . The matrix M + µHi is also Monge, belongs to M , and the

number of upper bounds of intervals in M + µHi is higher than in M .

For n > m we employ the matrices of type V j and the rest of the argument is

similar. �

To show that the bound in Proposition 4.2 can be achieved, we give the following

example.
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E x am p l e 4.1. LetM ∈ IR
4×4,

M =









[3, 1000] [10, 120] [17, 20] [0, 24]

[2, 20] [7, 9] [0, 12] [17, 85]

[2, 5] [0, 6] [10, 14] [14, 100]

[0, 1] [3, 6] [5, 21] [7, 1000]









.

The matrix M ∈ M such that

M =









3 10 17 24

2 7 12 17

2 6 10 14

1 3 5 7









is Monge, thereforeM ∈ IWM. Moreover, the values on the diagonal from the lower

left corner to the upper right corner are upper bounds of the corresponding intervals.

It is easy to check, that for any Monge matrix N ∈ M , no other entry can be an

upper bound ofM , since it would violate at least one of neighbouring conditions of

the Monge property.

4.2. Sufficient conditions of matrices with the weak Monge property.

The first two sufficient conditions use the decomposition into extremal rays of the

convex cone (see Theorem 2.3).

Proposition 4.3. Let M ∈ IR
m×n. If

⋂

j

mij 6= ∅ for every row i or
⋂

i

mij 6= ∅

for every column j thenM ∈ IWM.

P r o o f. Let us suppose that
⋂

j

mij = [αi, αi] for every row i. Then a matrix

M = α1H
1 + α2H

2 + . . .+ αnH
n,

where αi ∈ [αi, αi] is the Monge matrix by Theorem 2.3. SinceM ∈ M , we conclude

thatM ∈ IWM. For the nonempty intersections of columns the argument is similar.

�

Proposition 4.4. Let M ∈ IR
m×n. If m∆

ij > |mC
ij | for all indices i, j, then

M ∈ IWM.

P r o o f. The condition m∆
ij > |mC

ij | is equivalent with 0 ∈ mij . Thus the Monge

matrix 0m×n ∈ M . �
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Another class of sufficient conditions for matrices with the weak Monge property is

based on the idea that, in a space of real matrices, we start withMC and use an easy

procedure to move in steps from MC until we reach the Monge matrix of a special

form. Depending on the direction and distance of each step, we can compute, how

far we have to move from MC in each interval entry to achieve the matrix. By this,

we can get a sufficient condition dependent on the width of intervals. To determine

the necessary width of intervals, we employ residual matrices.

Theorem 4.2. Let M ∈ IR
m×n and let MR ∈ R(m−1)×(n−1) be the residual

matrix ofMC meaning (MR)ij = mi+1,j +mi,j+1−mij −mi+1,j+1. If for all indices

i, j ofM we have that m∆
ij >

∣

∣

∣

m−1
∑

k=i

n−1
∑

l=j

mR
kl

∣

∣

∣, thenM ∈ IWM.

P r o o f. Let MC ∈ Rm×n and let MR ∈ R(m−1)×(n−1) be its residual matrix.

In general, the residual matrix MR will not be nonnegative. Our goal is to set the

entries of MR to zero by changing the entries of MC . We set the entries to zero one

by one using a specific elimination order. We see that by subtracting ε from mC
ij , the

value of mR
ij increases by ε. By this operation, entries mR

i−1,j−1, m
R
i−1,j and mR

i,j−1

are affected as well (see Figure 1).

mm,1 mm,n

mR
i,j−1

− ε mR
i,j + ε

mR
i−1,j−1

− ε mR
i−1,j + ε

m1,1 m1,n

. . .

. . .

.

.

.

.

.

.

mi,j − ε

j

i





















































































Figure 1. Subtracting ε from m
C
ij and its effect on the entries of M

R.

We start from the bottom-right corner of MR and add the value of mR
m−1,n−1 to

mC
m−1,n−1. This sets the residuum mR

m−1,n−1 to zero and propagates its value into

the three neighbouring entries (see Figure 2).

In the next step, we eliminate the residuum of the elementmR
m−1,n−2 and continue

in the decreasing order of columns until we arrive at the beginning of the row, then

proceed with the row above in the same manner (see Figure 3).
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. . .

. . .

β α

δ γ

+α

+α

+α+ γ

+α+ β

+α+ β + γ + δ

−α

















































Figure 2. The residual propagation in M
R.

. . .

. . .

.

.

.

.

.

.

. . .

. . .

M
C
=

















































Figure 3. The order of changing values in M
C to the zero entries of MR.

By each step we eliminate one residuum and, what is more important, no residuum

already set to zero is affected in the further process.

This elimination order not only yields the 0(m−1)×(n−1) residual matrix (therefore

the corresponding Monge matrix) but it is also easy to describe the propagation of

residual values in MR. Setting to zero the residuum mR
ij = α adds α to mR

i−1,j and

mR
i,j−1 and subtracts it from mR

i−1,j−1 (as shown in Figure 2). Now if the intervals

of M are large enough, we can move from the central matrix MC far enough to

eliminate the residua. It is now easy to compute the necessary condition for each

interval ofM by induction.

For the base step, from the way of propagation (illustrated by Figure 2) it is clear

that it has to hold that

⊲ m∆
m−1,n−1 > |mR

m−1,n−1|,

⊲ m∆
m−1,n−2 > |mR

m−1,n−1 +mR
m−1,n−2|,

⊲ m∆
m−2,n−1 > |mR

m−1,n−1 +mR
m−2,n−1|,

⊲ m∆
m−2,n−2 > |mR

m−2,n−1 + mR
m−1,n−2 + 2mR

m−1,n−1 − mR
m−1,n−1|, therefore,

m∆
m−2,n−2 > |mR

m−2,n−1 +mR
m−1,n−2 +mR

m−1,n−1|.

For the induction step, let us consider the residuum mR
ij . It has to hold that

m∆
ij > |mR

ij +mR
i+1,j +mR

i,j+1 −mR
i+1,j+1|.
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By induction, we know that the residua are equal to

m∆
ij >

∣

∣

∣

∣

mR
ij +

m−1
∑

k=i+1

n−1
∑

l=j

mR
kl +

m−1
∑

k=i

n−1
∑

l=j+1

mR
kl −

m−1
∑

k=i+1

n−1
∑

l=j+1

mR
kl

∣

∣

∣

∣

which is equal to the form stated in the theorem. �

Let us note that the condition we have just showed can be checked in O(mn) time

using dynamic programming.

The sufficient condition shown in the previous theorem is one of many modifica-

tions of the same condition depending on the order we choose to zero the values

in MR. The advantage of this one-diagonal order is that it is easy to compute the

width of intervals. We present one more condition from this class. The previous con-

dition works well when the sum
∣

∣

∣

m−1
∑

k=i

n−1
∑

l=j

mR
ij

∣

∣

∣ ∼ 0 or is at least small for every i, j.

If the errors are of the same sign, however, the sum has tendency to grow a lot. This

is because we propagate the error only in one direction.

We can choose a point in the matrix and propagate the error in four different

(diagonal) directions.

Theorem 4.3. Let M ∈ IR
m×n and let MR ∈ R(m−1)×(n−1) be the residual

matrix of MC . If there are indices i, j ofM such that

⊲ m∆
rs >

∣

∣

∣

i−1
∑

k=r

j−1
∑

l=s

mR
kl

∣

∣

∣
for every (r < i) ∧ (s < j),

⊲ m∆
rs >

∣

∣

∣

i−1
∑

k=r

s−1
∑

l=j

mR
kl

∣

∣

∣ for every (r < i) ∧ (s > j),

⊲ m∆
rs >

∣

∣

∣

r
∑

k=i

j−1
∑

l=s

mR
kl

∣

∣

∣ for every (r > i) ∧ (s < j),

⊲ m∆
rs >

∣

∣

∣

r
∑

k=i

s
∑

l=j

mR
kl

∣

∣

∣ for every (r > i) ∧ (s > j),

thenM ∈ IWM.

P r o o f. Let i, j be indices ofMC . Then we can takemR
i−1,j−1,m

R
i−1,j+1,m

R
i+1,j−1

andmR
i+1,j+1 as starting points for the residual elimination described in Theorem 4.2.

We can see in Figure 4 that the residua are not propagated between the blocks ofMR.

The inequalities follow from Theorem 4.2. �
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Figure 4. The residual propagation does not interfere between the blocks.

5. Closure properties of interval matrices with the Monge property

In this section we briefly introduce closure properties of both classes of interval

matrices as well as those interconnecting them.

5.1. Closure properties of matrices with the strong Monge property.

As mentioned in Preliminaries, the set of nonnegative real Monge matrices forms

a convex cone meaning the matrices are closed under linear combinations with non-

negative coefficients. The fact that matrices with the strong Monge property are

convex subsets of the set of real Monge matrices promises similar results for ISM.

Proposition 5.1. LetM ,N ∈ ISM and let α ∈ R
+
0 . Then also αM ∈ ISM and

M +N ∈ ISM.

P r o o f. Straightforward from Theorem 3.1 (3). �

When it comes to multiplication by interval α ∈ IR
+
0 , interval matrices with the

strong Monge property are closed only under certain restriction dependent on the

lower bound of α and its radius.

Theorem 5.1. Let M ∈ ISM
+
0 and let α ∈ IR

+
0 . Then αM ∈ ISM

+
0 if and

only if

α∆

αC
6 ϕ, where ϕ = min

i,j

mi,j+1 +mi+1,j −mij −mi+1,j+1

mi,j+1 +mi+1,j +mij +mi+1,j+1
.

P r o o f. For all indices i, j it has to hold that

αmij +αmi+1,j+1 6 αmi,j+1 +αmi+1,j .
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It holds for all α ∈ α that

αmij+αmi+1,j+1 6 α mij+α mi+1,j+1 6 α mi,j+1+α mi+1,j 6 αmi,j+1+αmi+1,j .

We achieve the tightest inequality for

αmij + αmi+1,j+1 6 αmi,j+1 + αmi+1,j .

Adjusting the inequality, we get

α 6 α
mi,j+1 +mi+1,j

mij +mi+1,j+1
.

Substituting α for αC + α∆, α for αC − α∆ and adjusting again the inequality, we

get the formula

(5.1)
α∆

αC
6

mi,j+1 +mi+1,j −mij −mi+1,j+1

mi,j+1 +mi+1,j +mij +mi+1,j+1
.

It is now clear that the inequality (5.1) holds for all i, j if and only if it holds for the

minimum over all indices. �

Finally, we state two observations. The first one is about the matrix transposition

and the second one about matrix products.

Proposition 5.2. For a matrixM ∈ ISM the transpositionM⊤ ∈ ISM.

P r o o f. Straightforward from the definition of ISM. �

E x am p l e 5.1. Let us consider the matrices

A =

(

5 5

0.1 0.1

)

, B =

(

5 0.1

6 0.1

)

.

The matrix A ⊙ B /∈ ISM for ⊙ representing the standard, the Hadamard and the

Kronecker (tensor) matrix product.

5.2. Closure properties of matrices with the weak Monge property. We

investigated closure properties of several operations on IWM. Most of the results

are easy to prove, therefore, we state them in one theorem.

Theorem 5.2. Let P ∈ IR
m×n,M ,N ∈ IWM

m×n, α ∈ R
+
0 , and α ∈ IR

+
0 . Then

the following holds:

(1) M +N ∈ IWM,

(2) M + P ∈ IWM if and only ifMR + PR > 0,

(3) �(M ∪ P ) ∈ IWM,
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(4) αM ∈ IWM,

(5) αM ∈ IWM.

P r o o f. All the results are easy to prove from the definition of IWM. �

5.3. Closure properties interconnecting both classes.

Theorem 5.3. LetM ∈ ISM
m×n, N ∈ IWM

m×n, α ∈ R
+
0 , and α ∈ IR

+
0 . Then

the following holds:

(1) M +N ∈ IWM,

(2) for all i, j it holds that mij ∩ nij 6= ∅ → M ∩N ∈ IWM,

(3) �(M ∪N) ∈ IWM.

P r o o f. All the results are easy to prove from the definition of IWM and ISM.

�

6. Permutation algorithm for Monge permutable matrices

In many optimization problems (e.g. the travelling salesman problem, the trans-

portation problem, . . .) the optimal solution of the problem is invariant to a row and

a column permutation of the cost matrix. It is therefore a good question to ask if

there is a pair of permutations such that the permuted matrix is Monge. We intro-

duce a generalization of the permutation algorithm by Deineko and Filonenko [4] for

real matrices. We note that there is another permutation algorithm by Cechlárová

and Szabó [3] for Monge matrices, however, their definition of Monge matrices is

weaker, thus the algorithm does not work for the real Monge matrices defined in this

paper. In the O(m2 + n2 +mn) time, where m,n are the dimensions of the matrix,

our algorithm decides if there are permutations of rows and columns such that the re-

sulting matrix is from ISM. The question for matrices with the weak Monge property

is still an open problem and does not seem to have a straightforward correspondence

with the algorithm given by Deineko and Filonenko.

6.1. Lemmata for the derivation of the algorithm. In this section, we prove

lemmata that are necessary for the derivation of the permutation algorithm. We

denote a matrixM permuted by a row permutation σ and a column permutation π

byM(σ, π).

Definition 6.1. An interval matrix M ∈ IR
m×n is Monge permutable if there

are permutations σ, π such thatM(σ, π) ∈ ISM.
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The first lemma shows that ISM is closed under an the operation of flipping the

matrix upside down and left to right.

Lemma 6.1. Let M ∈ ISM
m×n. Define σ(i) = m− i + 1 and π(j) = n− j + 1.

ThenM(σ, π) ∈ ISM.

P r o o f. For every pair of indices i, j we have that

mσ(i),π(j) +mσ(i+1),π(i+1) = mm−i+1,n−j+1 +mm−i,n−j .

From the Monge property we have

mm−i+1,n−j+1 +mm−i,n−j 6 mm−i,n−j+1 +mm−i+1,n−j ,

but the right-hand side of the inequality is equal to

mm−i,n−j+1 +mm−i+1,n−j = mσ(i),π(j+1) +mσ(i+1),π(j).

By Theorem 3.1 (2) we conclude thatM(σ, π) ∈ ISM. �

The following lemma provides a better understanding of what happens if the order

of columns is ambiguous, meaning that mij +mkl 6 mil +mkj and mil +mkj 6

mij +mkl. If this happens, the order of columns and rows does not really matter,

because all four interval entries are actually real values and so are all entries vertically

and horizontally in between them.

Lemma 6.2. LetM ∈ ISM and let the row indices i < k and the column indices

j < l. If

mij +mkl 6 mil +mkj and mil +mkj 6 mij +mkl

then for all rows o such that i 6 o < p 6 k we have

(1) moj,mpj ,mol,mpl ∈ R,

(2) moj +mpl = mol +mpj .

P r o o f. The chain of inequalities

mij +mkl 6 mil +mkj 6 mil +mkj 6 mij +mkl

turns into a chain of equalities, since the first and last members are the same. Taking

mij +mkl = mij +mkl, and subtracting mij and mkl, we have

−2 ·m∆
kl = mkl −mkl = mij −mij = 2 ·m∆

ij ,
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from which −m∆
kl = m∆

il . But this means thatmil,mkl ∈ R. Similarly,mil,mkj ∈ R.

This leads to mij +mkl = mil +mkj .

Let now rows o, p be in between rows i and k, i.e., i 6 o < p 6 k. SinceM ∈ ISM,

the chain of inequalities

mij +mol 6 moj +mil 6 moj +mil 6 mkl +moj

holds. We can rearrange the inequalites in the following way:

mij −mil 6 moj −mol 6 moj −mol 6 mkj −mkl

and because the first and the last expression equals,

moj −mol = moj −mol.

This leaves us with −2 ·m∆
oj = 2 ·m∆

ol and by a similar argument as above we have

that moj ,mol ∈ R and, consequently, mij +mol = moj +mil. Similarly, we arrive

at moj +mpl = mpj +mol. �

The permutation of rows is based upon a combination of conditions which have

to be satisfied for the matrix to be strongly Monge. The conditions are taken in the

form

mij −mil 6 mkj −mkl where i < k, j < l.

For two rows i, k we take into account the first b and the last B columns.

Lemma 6.3. Let M ∈ IR
m×n. If M ∈ ISM then for every pair of rows i and k

such that i < k we have

B ·
b

∑

j=1

mij − b ·
n
∑

l=n−B+1

mil 6 B ·
b

∑

j=1

mkj − b ·
n
∑

l=n−B+1

mkl,

where 1 6 b < n−B + 1 6 n.

P r o o f. For i < k, it holds for every j such that 1 6 j 6 b and every l such that

n−B + 1 6 l 6 n that

mij −mil 6 mkj −mkl.

By picking such an inequality for every pair (j, l), where j ∈ {1, . . . , b} and l ∈

{n − B + 1, . . . , n}, and adding all these inequalities together, we get the formula

above. �
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The following lemma gives an algorithm to compute the permutations of rows and

columns.

Lemma 6.4. Let u,v ∈ IR
n. Let σ be a permutation of {1, . . . , n} such that

whenever σ(i) < σ(j) then ui − vi 6 uj − vj .

Then in O(n2) time we can compute σ or answer that there is no such permutation.

P r o o f. We construct a directed graph G = ({1, . . . , n}, E), where (i, j) ∈ E if

ui − vi 6 uj − vj . If there is a pair of vertices i, j ∈ G without an edge between

them, it means that

ui − vi > uj − vj and uj − vj > ui − vi,

and by the definition of σ no mutual order of these indices yields the permutation;

so we stop. From now on, let us suppose that there is at least one edge between all

pairs of vertices in the graph G.

Now let c1, . . . , ck be strongly connected components of G such that t(c1) < . . . <

t(ck), where t is some topological ordering of strongly connected components of G.

Now define σ as follows. While σ is not defined for all indices i ∈ {1, . . . , n}, pick

between the indices with unspecified σ(i) the one for which the topological number of

the corresponding, strongly connected components containing the vertex i is minimal.

Set σ(i) as the smallest number from {1, . . . , n} not assigned yet.

To prove that the construction is correct, let i, j be indices such that σ(i) < σ(j).

Then either the vertices i, j are from the same component, or i is from a component

with a smaller topological number than the component containing j. If i and j are

from the same component of G, it means by the construction of G that there are

edges (i, j) and (j, i), therefore ui−vi 6 uj−vj . If i is in a component with a smaller

topological number than j, it means that there is an edge (i, j). But the edge (i, j)

corresponds to the inequality ui − vi 6 uj − vj .

There exists an algorithm for finding a topological ordering of strongly connected

components of a directed graph running in O(n+m) time, where n equals the number

of vertices andm equals the number of edges (see [9]). Since the number of edgesm is

in the worst case approximately m ≈ n2, the algorithm runs in O(n2) time. Defining

σ from the topological ordering t takes O(n) time, therefore the whole construction

takes O(n2) time. �

Finally, we prove a lemma about the first step of our algorithm. In this step,

a pair of rows is determined. The first permutation ̺ of the general algorithm is

based upon conditions between these two rows. We demand at least two columns to
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be strictly ordered, otherwise the permutation ̺ will have no effect (we want it to

prepermute the matrix). Two columns with a strict order are part of two different

so called ambiguity sets. According to the logical structure of the text, we state

the lemma in this subsection, however, the notion of ambiguity sets necessary in the

lemma becomes clear further in the text. We recommend the reader to go through

the derivation of the algorithm first.

Lemma 6.5. LetM ∈ IR
m×n. Then a problem to decide if there is a row r such

that there are two ambiguity sets of columns for rows 1 and r can be computed in

O(mn) time. If for every row r there is only one ambiguity set of columns, then the

matrix has the strong Monge property.

P r o o f. For every row k and for all neighbouring pairs of columns (i.e. j, j + 1

for 1 6 j 6 n− 1) we check if it holds that

(6.1) m1j −mkj < m1,j+1 −mk,j+1 or m1,j+1 −mk,j+1 < m1j −mkj .

Only one of these inequlities can hold at the same time because otherwise

m1j −mkj < m1,j+1 −mk,j+1 6 m1,j+1 −mk,j+1 < m1j −mkj 6 m1j −mkj ,

which leads to the contradiction m1j −mkj < m1j −mkj . If one of the inequalities

holds and the other is equality, then w.l.o.g. consider

m1j −mkj < m1,j+1 −mk,j+1 and m1,j+1 −mk,j+1 = m1j −mkj .

From these two inequalities we can derive that

m1j −mkj < m1,j+1 −mk,j+1 6 m1,j+1 −mk,j+1 = m1j −mkj

and therefore m1j −mkj < m1j −mkj , which is again a contradiction.

This means that if one inequality holds with the sign < the other has to hold

with >, therefore the order of the columns is strict and they cannot be switched.

A strict order of two columns means that these columns cannot be in one ambiguity

set, therefore we return the row k.

It might happen that for every pair j, j + 1 and for the row k neither of the

inequalities from (6.1) is strict. It means that

(6.2) m1j −mkj > m1,j+1 −mk,j+1 and m1,j+1 −mk,j+1 > m1j −mkj .

If both of the inequalities are strict for at least one pair j, j + 1, it means that no

order of columns j, j + 1 satisfies the Monge property and in that case we stop.
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If both of the inequalities hold with equality = for all pairs of columns j, j + 1 in

the row k, it means that

m1j −mkj = m1,j+1 −mk,j+1 6 m1,j+1 −mk,j+1 = m1j −mkj 6 m1j −mkj ,

thereforem1jmkj and alsomk,j+1m1,j+1 are real values and thereforem1j−mkj =

m1,j+1 − mk,j+1. If this happens for all rows k then the matrix is already Monge

because every condition holds with equality.

The last case which remains is when one of the inequalities from (6.2) is strict >

and the other one is equal = for at least one row r. Then the order is strict again,

because there is only one way to permute these two columns in order to satisfy the

Monge property. Therefore, we return the row r.

Applying this procedure to each of m− 1 rows, the number of conditions to check

is at most 2(n− 1) for each row. We conclude that the problem can be computed in

O(mn) time. �

We derive two permutation algorithms—one for a special case of matrices with

nondegenerate intervals and for a general case algorithm.

Definition 6.2. We say that a matrix A ∈ IR
m×n is an interval matrix with

nondegenerate intervals if a∆ij > 0 for all entries of A.

There are several reasons for distinguishing between the special and the general

case. First, the special case algorithm is faster (numerically, not asymptotically) than

the general one. Second, the special case is still general enough to cover many prob-

lems with interval data. Last but not least, it is more obvious why the permutation π

in step 5 is necessary in the general case algorithm.

6.2. Special case algorithm. Suppose we haveM ∈ Rm×n with nondegenerate

intervals. The algorithm chooses two random rows i, k and, according to the condi-

tions mij + mkl 6 mil + mkj , it chooses a permutation ̺ such that ̺(j) < ̺(l) if

mij −mkj 6 mil −mkl. Notice that the permutation ̺ is unique. Otherwise both

inequalities

mij +mkj 6 mil −mkl and mil +mkl 6 mij −mkj

hold and by Lemma 6.2 the intervals are degenerate (i.e., mij ,mil,mkj ,mkl ∈ R).

In the same manner we can now choose columns ̺(1) and ̺(n) and define the row

permutation σ such that σ(i) < σ(k) if mσ(i)̺(1) −mσ(i)̺(1) 6 mσ(k)̺(n) −mσ(k)̺(n).

By Lemma 6.2 the permutation σ is unique again.

Now if the permuted matrix M(σ, ̺) ∈ ISM, the algorithm returns (σ, ̺). If the

matrix does not have the strong Monge property, it means that there are four entries
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which do not satisfy the corresponding inequality. But since the permutations σ, ̺ are

unique, there is no other permutation ofM that satisfies all the necessary conditions.

Notice that for special case matrices there are actually two ways to permute the

initial matrixM . The first one is the pair (σ, ̺) and the other is given by Lemma 6.1.

Algorithm 1 (Special case permutation algorithm).

Input: M ∈ IR
mxn an interval matrix with nondegenerate intervals

Output: YES ifM is Monge permutable together with σ, ̺ whereM(σ, ̺)∈ISM,

NO otherwise

1 Determine permutation ̺ such that

̺(k) < ̺(l) implies that m1k −m2k 6 m1l −m2l.

If no such permutation exists, output NO.

2 Determine the permutation σ such that σ(i) < σ(k) implies that

mi̺(1) −mi̺(n) 6 mk̺(1) −mk̺(n).

3 Check ifM(σ, ̺) ∈ ISM. Output YES with σ, ̺ if it does and NO otherwise.

6.3. General case algorithm. For general interval matrices, the special case

algorithm might fail, because according to the rule given for the construction of σ

and ̺, the permutations might not be defined unambiguously. Therefore, we have

to employ a slightly modified algorithm, which performs one more permutation.

6.3.1. Derivation of the algorithm. Let us suppose that the matrix M ∈

IR
m×n is Monge permutable, i.e., there are permutations σ and π such that

M(σ, π) ∈ ISM. First, let us suppose that we already know the permutation σ

and we would like to derive the permutation π. We could find for every pair of

rows all possible permutations of columns such that Monge property is satisfied for

the selected pair, and after that choose one permutation that satisfies the Monge

property for all pairs of rows at the same time.

Since this approach is ineffective, we construct a permutation only for the pair

of the first and the last row. If the permutation cannot be constructed, the matrix

is not Monge permutable, which is a contradiction with the assumption. Therefore,

the permutation is either uniquely determined or the order of at least two columns

is ambiguous.

If the permutation is uniquely determined, it has to satisfy the Monge property

for the rest of row pairs, assuming the matrix is Monge permutable.
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If the permutation is ambiguous, it means that there are two columns j, l such

that

m1j −mmj 6 m1l −mml and m1l −mml 6 m1j −mmj .

According to Lemma 6.2, m1j ,mmj,m1l,mml ∈ R and m1j +mml = mmj +m1l,

and the conditions also hold if we substitute 1, j for any other pair of rows. Again,

the permutation satisfies the strong Monge property, otherwise the matrixM is not

Monge permutable.

The question that remains is how to determine the permutation σ. If we knew

what the first and the last column in the permutation π was, we could apply the

same idea as for permuting the columns. Therefore, we prepermute the columns by

the permutation ̺. We choose an almost random pair of rows i, k (we further show

how) and apply the same rule for permutation as in the special case algorithm, i.e.,

̺(j) < ̺(l) implies mij +mkl 6 mil +mkj .

Because the prepermutation is ambiguous in general, it does not give us the first

and the last column. It divides the columns into ambiguity sets. Two columns

are in one ambiguity set if their order cannot be unambiguously determined. Even

though the order of columns cannot be determined inside one ambiguity set, for two

columns from two different sets the order is strictly given. Therefore, the first and

last ambiguity sets contain the candidates for the first and last column.

Even though we cannot exactly determine the first and the last column, we can

use a combination of conditions for all columns from the first and last ambiguity set

and base the construction of the permutation σ upon this combination. Lemma 6.3

provides the condition, i.e., σ(i) < σ(k) implies

B ·
b

∑

j=1

mij − b ·
n
∑

l=n−B+1

mil 6 B ·
b

∑

j=1

mkj − b ·
n
∑

l=n−B+1

mkl.

Now the trick is that this process yields an equal permutation to the one based only

on the first and last column.

To see this let τ be the permutation of rows given by the first and the last column

in the matrixM(σ, π). We want to prove that σ is equal to τ .

To get contradiction, let us suppose that there are two rows i, k such that the

order under permutations τ(k) < τ(i) and σ(i) < σ(k) differs. This means that

mk1 +min 6 mi1 +min and

(6.3) B ·
b

∑

j=1

mij − b ·
n
∑

l=n−B+1

mil 6 B ·
b

∑

j=1

mkj − b ·
n
∑

l=n−B+1

mkl.
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There are two cases to consider. In the first case, the order of k and i is unambiguous

for the permutation τ . Then the inequality is strict, mk1 + min < mi1 + min. It

also has to hold for each column j, l from the first and the last ambiguity set of σ

that mkj +mil 6 mkl +mij , otherwise the matrix is not Monge permutable. But

combining all the conditions together in the same way as in Lemma 6.3, we achieve

a strict inequality

(6.4) B ·
b

∑

j=1

mkj − b ·
n
∑

l=n−B+1

mkl < B ·
b

∑

j=1

mij − b ·
n
∑

l=n−B+1

mil.

Now the right-hand side of (6.3) is less than or equal to the left-hand side of (6.4)

and the right-hand side of (6.4) is less than or equal to the left-hand side of (6.3),

which leads to the contradiction

B ·
b

∑

j=1

mij − b ·
n
∑

l=n−B+1

mil < B ·
b

∑

j=1

mij − b ·
n
∑

l=n−B+1

mil.

In the second case the order of rows i and k is ambiguous under τ but this means that

switching them does not violate any condition as was discussed before. Therefore,

even though the permutations τ and σ do not have to be identical, they are equal in

the sense that we can use both of them for constructing π.

Last topic to discuss is the construction of the prepermutation ̺. It is essential for

the construction of σ to have different candidates for both the first and last column,

otherwise the construction fails to determine the order of rows. We need to find

a pair of rows i, j such that the permutation divides the columns into at least two

ambiguity sets. Lemma 6.5 gives us a way to find these rows.

Algorithm 2. General case permutation algorithm

Input: M ∈ IR
mxn

Output: YES ifM is Monge permutable together with σ, π whereM(σ, π)∈ISM,

NO otherwise

1 Find a row r such that there are at least two column ambiguity sets for rows 1, r.

If every row has one ambiguity set with row 1 output YES with σ = id and π = id.

If there is a pair of columns j, j + 1 which cannot be permuted output NO.

2 Determine the permutation ̺ such that

̺(k) < ̺(l) implies that m1k −mjk 6 m1l −mjl.

If no such permutation exists, output NO.
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3 Determine b, B ∈ {1, . . . , n} such that b equals to the size of the first ambiguity

set of ̺ and B equals to the size of the last ambiguity set of ̺.

4 Determine the row permutation σ such that σ(i) < σ(k) implies that

B ·
b

∑

j=1

mij − b ·
n
∑

l=n−B+1

mil 6 B ·
b

∑

j=1

mkj − b ·
n
∑

l=n−B+1

mkl.

If no such permutation exists, output NO.

5 Determine the column permutation π such that

π(k) < π(l) implies that mσ(1),k −mσ(n),k 6 mσ(1),l −mσ(n),l.

If no such permutation exists, output NO.

6 Check ifM(σ, π) ∈ ISM. Output YES with σ, π if it does and NO otherwise.

6.4. Complexity of the algorithm. The correctness of both variants of the

algorithm follows from the derivations. It remains to determine the time complexity

of the algorithm.

Theorem 6.1. ForM ∈ IR
m×n, Algorithm 1 runs in O(m2 + n2 +mn) time.

P r o o f. By Lemma 6.4 the permutation ̺ can be constructed in O(n2) and σ in

O(m2) time. Using Theorem 3.1 (3), it can be checked in O(mn) time if the permuted

matrix is strongly Monge. Altogether, the time complexity is O(m2 +n2 +mn). �

Theorem 6.2. ForM ∈ IR
m×n, Algorithm 2 runs in O(m2 + n2 +mn) time.

P r o o f. The determination of row r takes O(mn) time according to Lemma 6.5.

Construction of both column permutations ̺, π takes O(n2) time and the construc-

tion of σ takes O(m2) time as can be seen from a slight modification of Lemma 6.4.

Values b and B can be derived from ̺ by checking mostly 2n conditions, therefore

in O(n) time. Finally, by Theorem 3.1 (3) the Monge recognition procedure takes

O(mn) time. Altogether, the time complexity of Algorithm 2 is O(m2 + n2 +mn).

�
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7. Conclusion

We introduced two classes of interval Monge matrices—ISM and IWM. For ISM,

following mostly results of real Monge matrices, we generalized several characteriza-

tions. For IWM we offered a polynomial characterization and several necessary and

sufficient conditions. In Theorem 4.3 we indicated a larger class of conditions that

might be interesting to further investigate.

We presented lists of closure properties under operations on ISM and IWM and

under operations combining both classes of matrices.

We introduced a generalization of Deineko and Filonenko permutation algorithm

for interval matrices in two variants; for matrices with nondegenerate intervals and

interval matrices in general.
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