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Abstract. Through tropical normal idempotent matrices, we introduce isocanted alcoved
polytopes, computing their f -vectors and checking the validity of the following five conjec-
tures: Bárány, unimodality, 3d, flag and cubical lower bound (CLBC). Isocanted alcoved
polytopes are centrally symmetric, almost simple cubical polytopes. They are zonotopes.
We show that, for each dimension, there is a unique combinatorial type. In dimension d,
an isocanted alcoved polytope has 2d+1 − 2 vertices, its face lattice is the lattice of proper
subsets of [d + 1] and its diameter is d + 1. They are realizations of d-elementary cubical
polytopes. The f -vector of a d-dimensional isocanted alcoved polytope attains its maximum
at the integer ⌊d/3⌋.

Keywords: cubical polytope; isocanted; alcoved; centrally symmetric; almost simple;
zonotope; f -vector; cubical g-vector; unimodal; flag; face lattice; log-concave sequence;
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1. Introduction

This paper deals with f -vectors of isocanted alcoved polytopes. A polytope is the

convex hull of a finite set of points in Rd. A polytope is a box if its facets are only of

one sort: xi = const, i ∈ [d]. A polytope is alcoved if its facets are only of two sorts:

xi = const and xi − xj = const, i, j ∈ [d], i 6= j. Every alcoved polytope can be

viewed as the perturbation of a box. In a box we distinguish two opposite vertices

and the perturbation consists on canting (i.e. beveling, meaning producing a flat

face upon something) some (perhaps all) of the (d− 2)-faces of the box not meeting

the distinguished vertices. When the perturbation happens for all such (d− 2)-faces
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and with the same positive magnitude, we obtain as a result an isocanted alcoved

polytope. The notion makes sense only for d > 2.

The f -vector of a d-polytope P is the tuple (f0, f1, . . . , fd−1), where fj is the

number of j-dimensional faces in P , for j = 0, 1, 2, . . . , d− 1. The f -vector can be

extended with fd = 1. It is well known that the f -vector of a d-box is

(1.1) Bd,j = 2d−j

(

d

j

)

, j = 0, 1, . . . , d.

The quest for f -vectors is unrelenting. As Ziegler writes in [40] “on some fundamental

problems embarrassingly little progress was made; one notable such problem concerns

the shapes of f -vectors” and “new polytopes with interesting f -vectors should be

produced” and also “it seems that overall, we are short of examples.”

The main result in this paper is that the f -vector of an isocanted d-alcoved poly-

tope is given by

(1.2) Id,j = (2d+1−j − 2)

(

d+ 1

j

)

, j = 0, 1, . . . , d− 1, Id,d = 1.

The numbers Id,j are even, for j 6 d− 1, because isocanted alcoved d-polytopes are

centrally symmetric. We verify several conjectures for f -vectors, namely, unimodal-

ity, Bárány, Kalai 3d and flag conjectures as well as CLCB. Further properties are

proved, showing that isocanted alcoved polytopes are d-elementary cubical, almost

simple and zonotopes.

The paper is organized as follows. In Section 3 we give the definition and then,

in Theorem 3.4, we prove a crucial characterization: isocanted alcoved polytopes are

those alcoved polytopes having a unique vertex for each proper subset of [d + 1].

Concrete examples are given in Example 3.5. It follows from Theorem 3.4 that the

face lattice of an isocanted alcoved d-polytope is the lattice of proper subsets of

[d+ 1]. It is proved that isocanted alcoved polytopes are cubical and are zonotopes.

In Section 4 we explain in detail the cases of dimensions 3 and 4, providing figures

which help the reader visualize the many properties of these polytopes. We compute

two invariants of 4-isocanted alcoved polytopes: fatness and f03. In Section 5 we

prove that the five mentioned conjectures hold true for isocanted alcoved polytopes.

Log-concavity provides a short proof of the unimodality of Id,j, for fixed d > 2. We

also prove that the maximum of Id,j is attained at the integer ⌊d/3⌋. We show that

the diameter is d+ 1.

This paper encompasses tropical matrices and classical polytopes, in the sense

that tropical matrices are the means to describe certain polytopes. We use several

sorts of special matrices, operated with tropical addition ⊕ = max and tropical
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multiplication ⊙ = +, such as: normal idempotent (with respect to ⊙), visualized

normal idempotent matrices, symmetric normal idempotent matrices and, among

these, box matrices, cube matrices and isocanted matrices.

Tropical linear algebra and tropical algebraic geometry are fascinating, new, fast

growing areas of mathematics with new and important results. For our purposes we

recommend [8], [9], [10], [15], [24], [25], [26], [27], [33] among many others. Alcoved

polytopes have been first studied in [23], [37], then in [11], [13]. Cubical polytopes

have been addressed in [1], [2], [5], [6], [20]. General references for polytopes are [3],

[4], [16], [22], [29], [30], [39], [40]. Normal idempotent matrices have been used in

[13], [38]. Idempotent matrices, also called Kleene stars, have been used in [11], [31],

[36] in connection to polytopes.

2. Background and notations

Well-known definitions and facts are presented here. The set {1, 2, . . . , d + 1} is

denoted [d + 1] and
(

[d+1]
j

)

denotes the family of subsets of [d + 1] of cardinality j.

The origin in Rd is denoted 0. Maximum and minimum are taken componentwise

in Rd. A polyhedron in Rd is the intersection of a finite number of halfspaces. It may

be unbounded. A bounded polyhedron is called a polytope and every polytope is the

convex hull of a finite set of points. A d-polyhedron is a polyhedron of dimension d.

A d-polyhedron P is alcoved if its facets are only of two types: xi = const and

xi − xj = const, i, j ∈ [d], i 6= j. A double index notation is useful here because, in

this way, we can gather the coefficients in a matrix over R ∪ {±∞}: indeed, write

(2.1) ai,j 6 xi − xj 6 −aj,i

and similarly,

(2.2) ai,d+1 6 xi 6 −ad+1,i.

Then, setting ai,j = ±∞ if one facet xi − xj = const is not specified, and letting

(by convention) ai,i = 0 for all i ∈ [d + 1], we get a square matrix A = [ai,j ] ∈

Md+1(R ∪ {±∞}) from P . We write P = p(A) to express the former relationship

between the polyhedron P and the matrix A. In addition to ai,i = 0, i ∈ [d+1], the

entries of the matrix A satisfy −∞ 6 ai,j 6 −aj,i 6 ∞ for all i, j ∈ [d+1]. Different

matrices A may give rise to the same polyhedron.

Definition 2.1 (Alcoved polytope (AP)). A d-polytope P ⊂ Rd is alcoved if

there exist constants ai,j ∈ R such that x ∈ P if and only if ai,d+1 6 xi 6 −ad+1,i

for all i ∈ [d], and ai,j 6 xi − xj 6 −aj,i for all i, j ∈ [d + 1]. Letting A = [ai,j ] ∈

Md+1(R), we write P = p(A).
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Important particular cases provide special matrices as follows:

(1) 0 ∈ p(A) if and only if A is normal (N) (meaning ai,i = 0, ai,j 6 0 for all i, j),

see [10], [38];

(2) If 0 ∈ p(A), then A describes p(A) optimally (or tightly) if and only if A

is normal idempotent (NI) (meaning that in addition to normality we have

A ⊙ A = A, which requires that ai,j + ajk 6 aik for all i, j, k)
1, see [11], [31],

[36];

(3) For each alcoved polytope P containing 0 there exist a unique NI matrix A such

that P = p(A), see Lemma 2.6 in [11] and [31], [36].

Combinatorial properties of polytopes are, by nature, translation invariant. Every

translate of an alcoved polytope is alcoved. For each general alcoved polytope P ,

infinitely many translates P ′ of P exist such that 0 ∈ P ′. We can choose any

such P ′ to study P , and we know that P ′ = p(A) for a unique NI matrix A. Often,

we choose P ′ in two special locations with respect to 0, each location corresponding

to a subclass of NI matrices:

(1) 0 = maxp(A) if and only ifA is visualized normal idempotent (VNI) (in addition

to NI, the entries of A satisfy ad+1,i = 0 for all i), see [10], [11], [13];

(2) p(A) = −p(A) if and only if A is symmetric normal idempotent (SNI) (in

addition to NI, the entries of A satisfy ai,j = aj,i for all i, j), see [13], [19].

From [13], we know that translation of an alcoved polyhedron p(A) corresponds to

conjugation of its matrix A by a diagonal matrix (with null last diagonal entry).

Our aim is, after defining isocanted alcoved polytopes, to compute the f -vector of

those. But, what is already known about vertices of an alcoved polytope p(A) in Rd?

First, the number of vertices of p(A) is bounded above by
(

2d
d

)

and this bound is

sharp (see [15], [33]). Which points are vertices of p(A)? In order to answer this

question we introduce (a) the auxiliary matrix A0 and (b) the notion of tropical

linear subspace (by linear, we mean affine linear).

For A = [ai,j ], the matrix A0 = [αi,j ] is defined by αi,j := ai,j − ad+1,j = ai,j ⊙

(−ad+1,j).
2 The columns of A0 are scalar multiples (with respect to ⊙) of the

columns of A. The fact that diag(A) is zero implies that row(d+ 1, A0) is zero (and

conversely), so the columns of A0 belong to the hyperplane {x ∈ Rd+1 : xd+1 = 0}

which is identified with Rd. 3 Besides, if A is NI, then A = A0 if and only if A is VNI.

1 The family of normal idempotent matrices is a subclass of the family of Kleene star
matrices.

2Notice that A0 might be not normal.
3 This way of going from R

d+1 to Rd, viewed as a hyperplane, is analogous to going from
projective to affine space, by intersecting with the hyperplane xd+1 = 1, in classical
geometry.
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Inequalities (2.2) are transformed into

(2.3) αi,d+1 6 xi 6 αi,i ∀ i ∈ [d],

which yield the following facts:

(2.4) min p(A) = col(d+ 1, A0), maxp(A) = diag(A0).

Besides, p(A) is the family of all tropical affine combinations of columns of A0 (see

Theorem 2.1 [11], Proposition 12 [36])4:

(2.5) p(A) = {x ∈ R
d+1 : xd+1 = 0, x = λ1 ⊙ col(1, A0)⊕ . . .⊕

λd+1 ⊙ col(d+ 1, A0), λj ∈ R, 0 = λ1 ⊕ . . .⊕ λd+1}.

Thus p(A) is a proper subset of the unique linear subspace determined by the columns

of A0. In particular, the columns of A0 are some of the vertices of p(A). They are

called the generators of p(A). The rest of vertices of p(A) are tropical linear combi-

nations of the generators, and are thus called generated vertices of p(A). In order to

explain this, we must first define tropical linear subspaces. A tropical linear subspace

is the tropicalization of a linear subspace of Kd, where K := C{{t}} is the field of

Puiseux series. If L ⊆ Kd is a linear subspace and I(L) ⊆ K[x±1
1 , x±1

2 , . . . , x±1
d ] is

the ideal of all Laurent polynomials vanishing on L, consider q ∈ I(L), q =
∑

s∈S

asx
s,

with x = (x1, x2, . . . , xd) variables, s = (s1, s2, . . . , sd) ∈ S exponents, S ⊂ Nd

a finite set, as ∈ K and x
s = xs1

1 xs2
2 . . . xsd

d . Then, consider the tropicalization of q

(2.6) Trop(q) :=
⊕

s∈S

−v(as)⊙ x1s1 ⊙ x2s2 ⊙ . . .⊙ xdsd

= max
s∈S

−v(as) + x1s1 + x2s2 + . . .+ xdsd,

where tropical powers are transformed into products, v : K \{0} → Q is the standard

valuation (i.e. the order of vanishing of a series). The corner locus of Trop(q) is,

by definition, the collection of points x ∈ Rd, where the maximum in Trop(q)(x)

is attained at least twice.5 Finally, Trop(L) is, by definition, the closure of the

intersection of corner loci for all q ∈ I(L). Since the corner locus of Trop(q) is

piecewise linear, then tropical linear subspaces are polyhedral complexes.6

4Here tropical geometry does not mimic classical geometry since affine combinations do
not produce the whole tropical linear subspace but only a bounded subset of it.

5 The translation to tropical mathematics of the expression “equal to zero” or “zero set”
is “the maximum is attained at least twice.”

6Unlike classical geometry, it is not true that in d-dimensional space, the intersection of
a generic family of (d − k) tropical linear hyperplanes is a tropical linear subspace of
dimension k.
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Notice that a unique tropical linear subspace is determined by each subset of

generators (i.e. of columns of A0). A convenient notation is LA(W ) for each W ∈
(

[d+1]
j

)

with 1 6 j 6 d. We will write L(W ) when A is understood. L(W ) is a (j−1)-

dimensional tropical linear subspace and, being piecewise linear, the subspace L(W )

has a finite number of vertices (however, an upper bound on how many is not known

in all cases, see [33]). Returning to the question of which points are vertices of p(A),

the answer is that the vertices of p(A) are all the vertices of all subspaces L(W ) for

W ∈
(

[d+1]
j

)

. The case j = 1 gives the d+ 1 generators of p(A).

The easiest alcoved polytopes are boxes and cubes, determined by equations xi =

const. We fix a convenient matrix notation for boxes with special matrices VNI

and SNI (see Items (1) and (2) on page 4). Recall that translation of an alcoved

polyhedron p(A) is achieved by conjugation of matrix A.

Notation 2.2 (Box matrices). Given real numbers li > 0, i ∈ [d], consider

(1) BVNI(d+ 1; l1, l2, . . . , ld) = [bi,j ] ∈ Md+1(R) with

bi,j =

{

−li, d+ 1 6= i 6= j,

0, otherwise.

This matrix is VNI (easily checked) and called the VNI box matrix with edge-

lengths lj. In particular, we have the VNI cube matrix QVNI(d + 1; l) :=

BVNI(d+ 1; l, . . . , l).

(2) The conjugate matrixD⊙BVNI(d+1; l1, l2, . . . , ld)⊙D−1 is SNI (easily checked),

where D = diag(l1/2, l2/2, . . . , ld/2, 0). It is denoted B
SNI(d+1; l1, l2, . . . , ld) =

[ci,j ] and we have

ci,j =























− 1
2 li, j = d+ 1,

− 1
2 lj, i = d+ 1,

0, i = j,

1
2 (−li − lj), otherwise.

Similarly we have the cube matrix QSNI(d+ 1; l).

(3) A box matrix is any diagonal conjugate of the above, i.e. D′ ⊙B⊙D′−1
, where

D′ = diag(d′1, d
′
2, . . . , d

′
d, 0) with d′j ∈ R and B = BVNI(d + 1; l1, l2, . . . , ld). It

is NI (easily checked).

Definition 2.3 (from de la Puente [13]). Any non-positive real matrix E ∈

Md+1(R) with null diagonal, last row and column is called perturbation matrix. In

symbols, E = [ei,j ] with ei,i = ed+1,i = ei,d+1 = 0 and ei,j 6 0 for all i, j.
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In [13] it is proved that for any NI matrix A ∈ Md+1(R) (not necessarily VNI or

SNI), there exists a unique decomposition A = B − E, where B is a NI box matrix

and E is a perturbation matrix. The polytope p(B) is called the bounding box of

the alcoved polytope p(A). It is also proved that E is invariant under conjugation

by diagonal matrices with zero last diagonal entry.

3. Definition, characterization and f-vector of IAPs

Definition 3.1 (Isocanted alcoved polytope (IAP)). Let A ∈ Md+1(R) be a NI

matrix with decomposition A = B−E. The alcoved polytope p(A) is isocanted if E

is a constant perturbation matrix, i.e. there exists a > 0 such that ei,j = −a for all

i, j ∈ [d], i 6= j. The number a is called cant parameter of p(A). We write E = [−a],

by abuse of notation.

R em a r k 3.2. Every box in Rd is centrally symmetric and, using translation, we

can place its center of symmetry at the origin of Rd. An IAP is a perturbed box with

constant (whence symmetric) matrix E. Then every IAP is centrally symmetric, by

Item (2) on page 4.

Notation 3.3 (Special matrices for visualized IAPs and symmetric IAPs, with

cubic bounding boxes). Given real numbers a, l, consider the constant perturbation

matrix E = [−a] ∈ Md+1(R) as above and the matrices (as in Notation 2.2)

(1) IVNI(d+ 1; l, a) := QVNI(d+ 1; l)− E,

(2) ISNI(d+ 1; l, a) := QSNI(d+ 1; l)− E.

It is an easy computation to check that for these matrices to be NI, it is necessary

and sufficient that 0 < a < l.7

The following is the crucial step of the paper. Its proof contains the only tropical

computations in what follows.

Theorem 3.4 (Characterization of IAPs). An alcoved d-polytope P = p(A) is

isocanted if and only if for each 1 6 j 6 d and each W ∈
(

[d+1]
j

)

, the tropical linear

subspace LA(W ) has a unique vertex.

P r o o f. Without loss of generality, we can assume that the bounding box of P is

a cube (of edge-length l > 0) since an affine bijection does not affect the result. We

7 The limit case a = l provides a polytope of dimension less than d. The limit case a = 0
provides the d-cube. Matrices IVNI(d+1; l1, l2, . . . , ld, a) and ISNI(d+1; l1, l2, . . . , ld, a)
may be similarly defined, for 0 < a < min

j
lj , but we will not use them.
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can also assume that P is located in d-space, so 0 = maxP , because a translation

does not affect the result. Then P = p(C) with C = QVNI(d + 1; l) − E for some

positive l, as in Notation 2.2 and Definition 2.3. For W ⊂ [d + 1] let C(W ) denote

the (d+ 1)× j sized matrix whose columns are indexed by W and taken from C.

(⇒) Assume P is IAP. Then E = [−a] is constant and then C = IVNI(d+1; l, a) =

[ci,j ], as in Item (1) of Notation 3.3. In symbols,

ci,j =











−l, i 6= j = d+ 1,

0, i = j or i = d+ 1,

−l+ a, otherwise.

with 0 < a < l.

Note that the tropical rank of C is d+1 (meaning that the maximum in the tropical

permanent8 of C is attained only once.9) In particular, rktr C(W ) = j for each

proper subset W ∈
(

[d+1]
j

)

.

For j = 1, L(W ) reduces to a point (a generator) and uniqueness is trivial. Con-

sider a point x ∈ Rd+1 with xd+1 = 0, and let C(W,x) be the matrix C(W ) extended

with column x. It is well-known (see [27], [33], [34]) that x ∈ L(W ) if and only if

rktr C(W,x) 6 j (meaning that the maximum in each order (j + 1) tropical minor10

is attained at least twice). Besides, x is a vertex in L(W ) if and only if the maximum

in each order (j + 1) tropical minor of C(W,x) is attained (j + 1) times. Indeed,

the vertices of L(W ) are obtained by computing the corner locus of L(W ), then the

corner locus of the corner locus, repeatedly. Each iteration reduces the dimension

of the computed set, because points where the maxima are attained one more time

than previously, are computed.

For each 2 6 j 6 d and each index family 1 6 i1 < i2 < . . . < ij 6 d + 1, let

mi1,i2,...,ij (or mi1,i2,...,ij (x)) denote the order j minor of C(W ) (or C(W,x)) using

rows i1, i2, . . . , ij . Two cases arise.

(1) If d + 1 /∈ W , then it can be seen that mi1,i2,...,ij = h(−l + a), where

h = |{i1, i2, . . . , ij} \ (W ∪ {d + 1})|. In particular, mi1,i2,...,ij = 0 when

{i1, i2, . . . , ij} ⊆ W ∪ {d+ 1}.

(2) If d+ 1 ∈ W , then mi1,i2,...,ij = h1(−l) + h2(−l + a), where

h1 =

{

1, ij 6= d+ 1,

0, otherwise,

8 The tropical permanent is the maximum of a collection of terms (the definition mimics
the classical one). Tropical permanent and tropical determinant mean the same, in this
paper. Tropical Laplace expansions are one way to expand tropical determinants. For
tropical permanent and tropical rank issues, see [10], [14], [17].

9We have pertr C = 0, attained only at the identity permutation.
10 By tropical minor we mean the tropical permanent (or determinant) of a square subma-
trix. It is the maximum of a collection of terms.
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and h2 = |{i1, i2, . . . , ij−1} \W |. In particular, mi1,i2,...,ij = 0 when

{i1, i2, . . . , ij} ⊆ W.

The order (j + 1) minors in C(W,x), expanded by the last column by the tropical

Laplace rule, are

(3.1) mi1,i2,...,ij+1 (x) = max
k∈[j+1]

{xik +mi1,...,ik−1,ik+1,...,ij+1}

with 1 6 i1 < i2 < . . . < ij+1 6 d + 1, and the requirement that the maximum

is attained (j + 1) times simply means that all the terms inside the maximum are

equal, i.e.

(3.2) xik +mi1,...,ik−1,ik+1,...,ij+1 = xik′
+mi1,...,ik′

−1,ik′+1,...,ij+1 ∀ k, k′ ∈ [j + 1].

(1) If d + 1 /∈ W , then xk = −l + a = ckj for all k /∈ W ∪ {d + 1} (because

rktr C(W,x) 6 j tells us that x is a tropical affine combination of the columns

in C(W )), and equalities (3.2) imply xk = 0 for all k ∈ W ∪ {d+ 1}.

(2) If d+ 1 ∈ W , then xk = xk′ for all k, k′ /∈ W (because rktr C(W,x) 6 j tells us

that x is a tropical affine combination of the columns in C(W )), and equalities

(3.2) imply xk = −a for all d+ 1 6= k ∈ W , xk = −l for all k /∈ W , xd+1 = 0.

(⇐) We have P = p(C), where C = QVNI(d + 1; l)− E is a NI matrix. Assume

that for each 1 6 j 6 d and each W ∈
(

[d+1]
j

)

, the tropical linear subspace L(W )

has a unique vertex denoted x∗
W . We write x

∗ whenever W is understood. We have

x∗
d+1 = 0.

Since P is centrally symmetric, by Remark 3.2, the matrix E is symmetric. We

want to prove that E is constant. Fix w ∈ [d] and take W = {w, d + 1}. Use that

for each order 3 minor of the matrix C(W,x∗) (where x∗ depends on w) all terms in

the maximum are equal. Considering those minors involving three different indices

i, w, d+ 1, we get

(3.3) x∗
i +mw,d+1 = x∗

w +mi,d+1 = x∗
d+1 +

{

mi,w if i < w

mw,i otherwise
= 0− l,

whence

(3.4) x∗
i + 0 = x∗

w − l − ei,w = −l,

and so ew,i = ei,w = x∗
w. Letting i ∈ [d] vary in (3.4), we get that E = [x∗

w] is

constant. �
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E x am p l e 3.5. Let d = 5. If j = 5 and W = [5], then the tropical Laplace

expansion by the last column yields pertr C(W,x) = max{x1, x2, x3, x4, x5, 0}. This

maximum is attained by all terms if and only if xk = 0, all k ∈ [5], so the unique

vertex of L(W ) is the origin.

If j = 3 and W = [3], then

C(W,x) =



















0 −l + a −l + a x1

−l+ a 0 −l + a x2

−l+ a −l + a 0 x3

−l+ a −l + a −l + a x4

−l+ a −l + a −l + a x5

0 0 0 0



















.

Since x is a tropical affine combination of the columns of C(W ), it follows that

x4 = x5 = −l+ a. Since the maximum

(3.5) m1234(x) = max{x1 +m234, x2 +m134, x3 +m124, x4 +m123}

= max{x1 − l + a, x2 − l + a, x3 − l + a, x4}

is attained by all terms, we get

(3.6) x1 − l + a = x2 − l+ a = x3 − l + a = x4 = −l+ a,

whence x1 = x2 = x3 = 0. The unique vertex of L(W ) is [0, 0, 0,−l+ a,−l+ a]⊤.

If j = 3 and W = {1, 2, d+ 1}, then

C(W,x) =



















0 −l+ a −l x1

−l+ a 0 −l x2

−l+ a −l+ a −l x3

−l+ a −l+ a −l x4

−l+ a −l+ a −l x5

0 0 0 0



















.

Since x is a tropical affine combination of the columns of C(W ), it follows that

x3 = x4 = x5. Since the maximum

(3.7) m1236(x) = max{x1 +m236, x2 +m136, x3 +m126,m123}

= max{x1 − l + a, x2 − l + a, x3,−l}

is attained by all terms, we get

(3.8) x1 − l + a = x2 − l+ a = x3 = −l,

whence x1 = x2 = −a and x3 = x4 = x5 = −l. The unique vertex of L(W ) is

[−a,−a− l,−l,−l]⊤.
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R em a r k 3.6. We have x∗
W =

⊕

j∈W

j whenever d+ 1 /∈ W .

Corollary 3.7 (Bijection on set of vertices of IAP). Given any isocanted alcoved

d-polytope P , the vertices of P are in bijection with the proper subsets W ⊂ [d+1].

P r o o f. As a set, a tropical line is a finite union of classical segments and

halflines.11 As a set, a tropical segment12 is a finite union of classical segments.

The tropical line strictly contains the tropical segment determined by two given

points, and the difference set is a finite union of halflines; see [15], [12], [27]. For

an alcoved polytope P , this implies that the skeleton13 of P is contained in the 1-

dimensional complex
⋃

W∈([d+1]
2 )

L(W ). For each W with |W | = 2, the set L(W ) \P is

a finite union of halflines. Every generated vertex of P is also a vertex of the complex
⋃

W∈([d+1]
2 )

L(W ), and every edge of P is contained in an edge of
⋃

W∈([d+1]
2 )

L(W ). The

containment is strict exactly for those edges of P emanating from generators.

If P is IAP and i, j are two generators (with i, j ∈ [d+ 1], i < j), the tropical line

determined by them has a unique vertex, which will be denoted ij. If i, j, k ∈ [d+1]

with i < j < k, the tropical plane determined by them has a unique vertex, which

will be denoted ijk. It can be checked that ijk is the unique vertex of the tropical

line determined by ij and k. Recursively, vertices of P are labeled in this fashion.

The stated bijection follows. �

Notation 3.8. The label of the vertex corresponding to W ⊂ [d + 1] is W (un-

derlined). The cardinality |W | is called length of W .

Notation 3.9 (Parent and child). Assume P is an isocanted alcoved d-polytope.

Two vertices in P are joined by an edge in P if and only if they are labeled W and

W ′ ⊂ [d + 1] with ∅ 6= W ⊂ W ′ and |W | + 1 = |W ′|. We say that W is a parent

of W ′ and W ′ is a child of W . A 2-face of P is determined by four vertices with

labels jW , jkW , jrW , jkrW , with W ⊂ [d+1]\ {j, k, r} for j, k, r ∈ [d+1] pairwise

different.14

Theorem 3.10 (f -vector for IAP). Id,j = (2d+1−j − 2)
(

d+1
j

)

, 0 6 j 6 d− 1.

11 A balance condition at each point of each tropical algebraic variety is satisfied, but we
do not use it in this paper.

12 A tropical segment is the family of all tropical affine combinations of two points.
13 The skeleton is the 1-dimensional subcomplex of the border complex ∂P . It is a graph,
whose diameter is computed in Corollary 5.11.

14 jW is an abbreviation for {j} ∪W .
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P r o o f. First,

Id,0 =

∣

∣

∣

∣

d
⋃

j=1

(

[d+ 1]

j

)
∣

∣

∣

∣

= 2d+1 − 2

is the number of proper subsets of [d+ 1].

Second, the number of facets is Id,d−1 = (d+1)d by (2.1) and (2.2). Another proof

is this: as we mentioned on page 1, an alcoved polytope is obtained from a box, where

we may cant only the (d− 2)-faces not meeting two distinguished opposite vertices;

thus, we may cant half of the (d − 2)-faces of the box. In an IAP we do cant every

cantable (d− 2)-face, therefore Id,d−1 = Bd,d−1 +Bd,d−2/2 = (d+ 1)d.

For 1 6 j 6 d, the number of vertices of length j is
(

d+1
j

)

, by Theorem 3.4.

Assume 2 6 j 6 d. A vertex of length j has j parents, by Notation 3.9. The total

number of edges is

d
∑

j=2

(

d+ 1

j

)

j = (d+ 1)

d
∑

j=2

(

d

j − 1

)

= (d+ 1)

d−1
∑

k=1

(

d

k

)

= (d+ 1)(2d − 2) = Id,1

(where we have used the equalities
(

d+1
j

)

j = (d+ 1)
(

d
j−1

)

and 2d =
d
∑

j=0

(

d
j

)

).

Assume 3 6 j 6 d. A vertex of length j has
(

j
2

)

grandparents (i.e. parent of

parent). The total number of 2-faces is

d
∑

j=3

(

d+ 1

j

)(

j

2

)

=

(

d+ 1

2

) d
∑

j=3

(

d− 1

j − 2

)

=

(

d+ 1

2

) d−2
∑

k=1

(

d− 1

k

)

=

(

d+ 1

2

)

(2d−1 − 2) = Id,2

(where we have used the equality
(

d+1
j

)(

j
2

)

=
(

d+1
2

)(

d−1
j−2

)

).

Similarly, the total number of r-faces is

d
∑

j=r+1

(

d+ 1

j

)(

j

r

)

=

(

d+ 1

r

) d
∑

j=r+1

(

d+ 1− r

j − r

)

=

(

d+ 1

r

) d−r
∑

k=1

(

d+ 1− r

k

)

=

(

d+ 1

r

)

(2d+1−r − 2) = Id,r

(where we have used the equality
(

d+1
j

)(

j
r

)

=
(

d+1
r

)(

d+1−r
j−r

)

). �
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R em a r k 3.11. A d-IAP is a canted box where all cantable (d − 2)-faces are

canted. On the contrary, alcoved polytopes exist where some cantable (d− 2)-faces

of the bounding box remain uncanted. Among alcoved polytopes, IAPs are maximal

in facets because in an IAP we cant every possible cantable (d− 2)-face. Notice that

IAPs are neither simplicial nor simple and far from being neighborly.

R em a r k 3.12. Notice the coincidence of Id,j with the triangular sequence OEIS

A259569 (collecting the number of j-dimensional faces on the polytope that is the

convex hull of all permutations of the list (0, 1, . . . , 1, 2), where there are d− 1 ones).

Also notice the coincidence of Id,j with the absolute values of the triangular sequence

OEIS A138106 (collecting the coefficients of the Taylor expansion around the origin

of the function of two variables p(x, t) = e(x−2)t − 2e(x−1)t. Functions of similar

appearance are called Morse potentials); see [32].

The study of cubical polytopes began in the late 1990’s in [5], [6]. Zonohedra were

first considered by the crystallographer Fedorov, by the end of the XIX century. In

the rest of this section, we prove that IAPs are cubical polytopes and zonohedra.

A d-cuboid is a polytope combinatorially equivalent to a d-cube. A d-cuboid is

denoted Cd. A polytope is cubical if every face in it is a cuboid (equivalently, if

every facet in it is a cuboid). A d-polytope is almost simple if the valence of each

vertex is d or d+ 1. A d-polytope P is liftable (to a (d + 1)-cuboid) if its boundary

complex ∂P is combinatorially equivalent to a subcomplex of the complex ∂Cd+1.

Take any vertex V in a cuboid Cd+1 and consider the subcomplex Fd
V of ∂C

d+1

determined by the facets of Cd+1 meeting V . Consider the subcomplex Cd
V of F

d
V de-

termined by the outer faces of Fd
V (the underlying set of C

d
V is ∂F

d
V ). A polytope P is

d-elementary if the complex ∂P is combinatorially equivalent to the subcomplex Cd
V .

We call Fd
V (cuboid) cask at V .

It is clear that d-elementary is more specific than liftable. Saying that P is

d-elementary means that P is (combinatorially equivalent to) the pasting of d + 1

d-cuboids all having a vertex V in common. More generally, k-elementariness de-

scribes the property of P being combinatorially equivalent to the pasting of k + 1

d-cuboids, all sharing a (d− k)-face. In particular, a d-cuboid is 0-elementary. A k-

elementary d-polytope is obtained from a (k − 1)-elementary polytope by pasting

(combinatorially) a d-cuboid to it. A k-elementary d-polytope is denoted Cd
k .

The main theorem in [5] states that if d > 4 and P is a cubical d-polytope, then P

is k-elementary, for some k with 0 6 k 6 d. It is also proved that both Cd
d−1 and

Cd
d have 2

d+1 − 2 vertices, while Cd
k has fewer than 2d+1 − 2 vertices for other values

of k. Corollary 1 in [6] states that for d > 4, a d-polytope is liftable if and only if it

is cubical, almost simple and has at most 2d+1 vertices.
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Corollary 3.13. For each d > 2,

(1) the face lattice of a d-IAP is the lattice of proper subsets of [d+ 1],

(2) on the set of vertices of a d-IAP, the mappingW to [d+ 1] \W is an involution,

(3) there exists a unique combinatorial type of d-IAP,

(4) every IAP is cubical and almost simple.

P r o o f. (1) This is a direct consequence of Corollary 3.7.

(2) This is due to the lattice order-reversing isomorphism W 7→ [d+ 1] \W .

(3) This is immediate from Item (1).

(4) Let P be an IAP and B be the bounding box of P (defined on page 2). The

(d − 2)-faces meeting the two distinguished vertices of B are not cantable and so,

those two points are vertices of both P and B, and they have the same valence in P

and B (the valence is d in B). In P one of these vertices is the generator d+ 1 and

the other one has label 12 . . . d. All generators (or d-generated vertices) of P have the

same valence. Generators do not have parents and vertices of length d do not have

children. Now, for 2 6 j 6 d− 1, the valence of a vertex of P of length j is the sum

of the number of parents and number of children, namely, j+(d+1− j) = d+1. �

For d = 2, an IAP is a hexagon (with slopes 0, 1, ∞) and every vertex in it has

valence 2. For d = 3, an IAP is combinatorially equivalent to a rhombic dodecahedron

whose f -vector is (14, 24, 12).

Notation 3.14. Since the combinatorial type is unique, we can fix a notation for

a d-IAP: it is denoted Id in what follows.

Corollary 3.15. Id is d-elementary for d > 2.

P r o o f. For d > 4, k-elementariness follows from the main theorem in [5], and

f0(Cd
d−1) = f0(Cd

d) = f0(Id) tells us that k = d − 1 or d. The generator d+ 1 (also

the vertex 12 . . . d) plays the role of vertex V in the definition above on page 3, so

k = d follows.

2-elementariness is easy for d = 2: I2 is a hexagon, and it is combinatorially

equivalent to C2
V , which is the border complex of a cube cask F2

V at a vertex V of

the cube. For d = 3, extended explanations are given in Section 4. �

The f -vector of a cask Fd
V clearly is

(3.9) Cd,j = (2d−j − 1)

(

d

j

)

, j = 0, 1, . . . , d− 2.

Since Id is d-elementary, (3.9) and (1.2) satisfy the relation

(3.10) Id,j = 2Cd,j + Id−1,j−1,
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which has the practical application that, in order to understand ∂Id, it is enough

that we look a two cube casks and one belt joining them. See Section 4 for details

in dimensions 3 and 4.

Recall that a zonotope is a (Minkowski) sum of segments. A known characteri-

zation of zonotope is that it is a polytope all whose 2-faces are centrally symmetric

(see [18]), and this is satisfied by IAPs. A direct proof is given below.

Corollary 3.16. Every IAP is a zonotope.

P r o o f. Id is obtained from a d-box B = B(l1, l2, . . . , ld) ⊂ Rd with maxB at

the origin, edge-lengths lj > 0 and cant parameter a with 0 < a < min
j

lj, and

Id = B+ [0, avd+1] holds true, where (v1, v2, . . . , vd) is the standard basis in R
d and

vd+1 = v1 + v2 + . . .+ vd. �

4. Cases d = 3 and d = 4

In this section we describe IAPs in small dimensions for better understanding

of results proved in the previous section. In addition, for d = 4 we compute two

well-known invariants (fatness and f03).

Fix d > 2. Two opposite vertices in Id are distinguished: N := maxId called the

North Pole, and S := min Id called the South Pole of Id.15 The label of N is 12 . . . d,

and the label of S is d+ 1 (S is a generator). The cask Fd
N ⊂ ∂Id introduced on

page 3 (or Fd
S) is called North Polar Cask (or South Polar Cask) of I

d. Vertices

included in the North (or South) Polar Cask are exactly those omitting (or including)

digit d + 1 in their label. The Equatorial Belt is, by definition, the subcomplex of

∂Id determined by all faces of Id not meeting the poles. The Equatorial Belt is

the complex of all facets of Id containing edges in the direction of vector vd+1 =

(1, 1, . . . , 1)⊤. These are the edges joining verticesW and Wd+ 1 for proper subsets

W ⊂ [d]. The complex ∂Id is the union of the Polar Casks and the Equatorial Belt.

A Polar Cask is homeomorphic to a closed (d − 1)-disk. The Equatorial Belt is

homeomorphic to a closed (d−1)-cylinder, i.e. Sd−2× [−1, 1] (the Cartesian product

of a (d− 2)-sphere and a closed interval).

Case d = 3: we have N = 123 and the North Cask is homeomorphic to

a 2-disk with one interior point labeled 123, points in the circumference labeled

1, 12, 2, 23, 3, 13 and inner edges joining 12, 23, 13 to 123 (see Figure 4). The South

Pole is S = 4 and the South Cask is homeomorphic to a 2-disk with one interior

point labeled 4, points in the circumference labeled 14, 124, 24, 234, 34, 134 and inner

15 This idea, which goes back to Kepler, has been developed for alcoved polytopes in [13].
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edges joining 14, 24, 34 to 4 (see Figure 4). The Equatorial Belt is homeomorphic

to a cylindrical surface (see Figure 4). Identification of borders of polar casks with

border components of the cylinder is easily done by using vertex labels. The f -vector

of a 2-polar cask is the sum of the f -vector of the circumference complex (6, 6) and of

the internal subdivision (1, 3), yielding (7, 9), which agrees with (C3,0, C3,1) in (3.9).

Case d = 4: the North Cask is homeomorphic to a solid 3-sphere with one interior

point labeled N = 1234, points on the surface labeled i, ij and ijk, with i, j, k ∈ [4],

pairwise different. Edges join parent and child (see Notation 3.9). Combinatori-

ally, the cask is equivalent to a solid rhombic dodecahedron with an interior point

labeled 1234 and six quadrangular inner 2-faces given by ij, ijk, ijr, 1234, with

{i, j, k, r} = [4] (see Figure 4).

The South Cask is homeomorphic to a solid 3-sphere with one interior point labeled

S = 5, points on the surface labeled i5, ij5 and ijk5, with i, j, k ∈ [4], pairwise differ-

ent. Edges are determined by Notation 3.9. Combinatorially, the cask is equivalent

to a solid rhombic dodecahedron with an interior point labeled 5 and six quadrangu-

lar inner 2-faces given by i5, ij5, ik5, ijk5, with i, j, k ∈ [4], pairwise different (see

Figure 4). The f -vector of a rhombic dodecahedron is (14, 24, 12) and the internal

subdivision adds (1, 4, 6), so the sum (15, 28, 18) is the f -vector of a 3-polar cask,

which agrees with (C4,0, C4,1, C4,2) in (3.9). The Equatorial Belt is homeomorphic

to a 3-cylinder S2 × [−1, 1]. Identification of borders of polar casks with border

components of cylinder is easily done by using vertex labels.

Researchers are deeply interested in 4-polytopes, due to the peculiar properties

they show (from the classification of the regular ones obtained by Schläfli in the

XIX century, to the Richter-Gebert’s Universality Theorem of 1996, which roughly

says that the realization space of a 4-polytope can be “arbitrarily wild or ugly”,

see [18]). Fatness is a convenient function to study the family F4 ⊂ N4 of f -vectors

of 4-polytopes. The set F4 is not well understood. The fatness of a 4-polytope P is

defined as F (P) = (f1 + f2 − 20)/(f0 + f3 − 10). It is known that F (P) ∈ [ 52 , 3) for

all simplicial and all simple P . It is also known that F (P) 6 5 for all 4-zonotopes P

(see [40]). According to Ziegler, “the existence/construction of 4-polytopes of high

fatness” (greater than or equal to 9) “is a key problem.”

f -vectors have been generalized in a number of ways. Generalizations considered

in this paper are: to count vertex-facet incidences (denoted f03 below), to count

flags (see Corollary 5.9) and the cubical g-vector (see Proposition 5.10).

R em a r k 4.1. We have I4 = (30, 70, 60, 20) and

(1) fatness of I4 is (f1 + f2 − 20)/(f0 + f3 − 10) = 11
4 ,

(2) in I4 we have f03 = 160 (since there are I4,3 = (d + 1)d = 20 3-cubes (with 8

vertices each) and no other 3-faces).
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So fatness of IAPs will not surprise Ziegler!

Key to colors: blue dots are generators, yellow dots are vertices of length 2, ma-

genta dots are vertices of length 3, green dots are vertices of length 4.

23

13

12

2

3

1

123

Figure 1. North Polar Cask for d = 3.
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34
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124

234

134
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Figure 2. South Polar Cask for d = 3.
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Figure 3. Ecuatorial Belt for d = 3.
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Figure 4. North Polar Cask for d = 4.
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Figure 5. South Polar Cask for d = 4.

5. Five conjectures proved for IAPs

Consider the set M of lower triangular infinite matrices with both entries and

indices in Z>0. Examples of matrices in M are the 2-power matrix, denoted T ,

defined by

Td,k =

{

2d−k, 0 6 k 6 d,

0, otherwise,
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and the Pascal matrix, denoted P , defined by

Pd,k =

{
(

d
k

)

, 0 6 k 6 d,

0, otherwise.

With the Hadamard or entry-wise product, multiply the former matrices, obtaining

B := T ◦ P = P ◦ T ∈ M and notice that the d-th row of B shows the f -vector

of a d-box (padded with zeros), for d ∈ Z>0, see (1.1). We call B the f -vector box

matrix. Next, consider the matrix H ∈ M defined by

(5.1) Hd,k =



















(2d−k − 1)
(

d+1
k

)

, 0 6 k 6 d− 1,

1

2
, k = d,

0, otherwise.

For fixed d > 2, we study the growth16 of the sequence Hd,k with 0 6 k < k+1 6

d− 1.

Proposition 5.1. For each d > 0 we have Hd,d−1 6 Hd,0 with equality only for

d = 0, 1, 2.

P r o o f. The inequality (d + 1)d/2 6 2d − 1 is easily proved by induction on d

(degree 2 polynomials grow slower than 2-powers.) �

Recall that a sequence ak is log-concave if a
2
k+1 > akak+2 for all k, see [7], [35].

Proposition 5.2. For d > 2, the sequence {Hd,k : 0 6 k 6 d− 1} is log-concave.

P r o o f. For fixed d, the sequence Td,k − 1 = 2d−k − 1 is log-concave, because

(Td,k+1 − 1)2 − (Td,k − 1)(Td,k+2 − 1) = 2d−k−2 > 2 > 0 for 0 6 k 6 d − 3. It is

easy to check that any row of Pascal’s triangle is a log-concave sequence. Since the

termwise product of two log-concave sequences (with the same number of terms) is

log-concave, the result follows for Hd,k. �

Notice Id,k = 2Hd,k for 0 6 k6d.

Corollary 5.3 (Unimodality holds for isocanted). For each d > 2, the sequence

{Id,k : 0 6 k 6 d− 1} is unimodal.

16 Hd,k is an expression involving 2-powers and binomial coefficients. Precisely, Hd,k =
(Td,k − 1)Pd+1,k is the product of two factors. For sufficiently small k, the first factor

dominates (meaning, is larger than the other factor), as in the cases Hd,0 = 2
d − 1,

Hd,1 = (2
d−1 − 1)(d + 1) and Hd,2 = (2

d−2 − 1)(d + 1)d/2. However, for sufficiently
large k, the second factor dominates, as in the cases Hd,d−3 = 7(d+1)d(d−1)(d−2)/24,
Hd,d−2 = (d+ 1)d(d− 1)/2 and Hd,d−1 = (d+ 1)d/2.
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P r o o f. It is easy to show that every log-concave sequence is unimodal (but not

conversely). The sequence Hd,k is unimodal and so is its double. �

Proposition 5.4. For fixed d > 2, the maximum in the sequence Id,k is attained

at the integer ⌊d/3⌋.

P r o o f. Cases d = 2, 3 and 4 are checked directly (the f -vectors are (6, 6),

(14, 24, 12) and (30, 70, 60, 20)). Assume d > 5 and 0 6 k 6 d − 2. Define the

quotient

(5.2) Qd,k+1 :=
Id,k+1

Id,k
=

(2d−k−1 − 1)(d− k + 1)

(2d−k − 1)(k + 1)

and the terms

(5.3) Ld,k+1 := 2d−k−1(d− 3k − 1), Rd,k+1 := d− 2k.

We have Id,k+1 > Id,k if and only if Qd,k+1 > 1 if and only if Ld,k+1 > Rd,k+1,

because we have cleared the positive denominator in (5.2) and grouped terms. The

exponent d−k−1 appearing in Ld,k+1 is at least 1. The sign of the factor (d−3k−1)

in Ld,k+1 is not constant. We have d/3 6 (2d− 5)/3 since d > 5. We prove:

(1) if k 6 (d− 2)/4, then Ld,k+1 > Rd,k+1,

(2) if (d− 2)/4 6 k 6 (d− 2)/3, then Ld,k+1 > Rd,k+1,

(3) if d/3 6 k 6 (2d− 5)/3, then Ld,k+1 6 Rd,k+1,

(4) if (2d− 5)/3 6 k, then Ld,k+1 6 Rd,k+1,

and the result follows. Indeed,

(1) the factor in Ld,k+1 is positive and so Ld,k+1 > 2(d− 3k − 1) > Rd,k+1,

(2) the factor in Ld,k+1 is at least 1, the exponent d − k − 1 in Ld,k+1 is at least

(d+ 2)/3 and (d+ 2)/2 > Rd,k+1, so we have Ld,k+1 > 2(d+2)/3(d − 3k − 1) >

2(d+2)/3 > (d+ 2)/2 > Rd,k+1,

(3) the factor in Ld,k+1 is no more than −1, the exponent d− k − 1 in Ld,k+1 is at

least (d+ 2)/3 and Rd,k+1 > (−d+ 10)/3, so we get Rd,k+1 > (−d+ 10)/3 >

−2(d+2)/3 > 2(d+2)/3(d− 3k − 1) > Ld,k+1,

(4) the factor in Ld,k+1 is non-positive and so Rd,k+1 > d− 3k − 1 > Ld,k+1.

It follows that the change in the monotonicity of the sequence Id,k occurs in the

interval Z ∩ [(d− 2)/3, d/3]. For fixed d > 2, we have found the maximum in Id,k

attained at

k =
⌊d

3

⌋

=























d

3
, d ≡ 0 mod 3,

d− 1

3
, d ≡ 1 mod 3,

d− 2

3
, d ≡ 2 mod 3.

�
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Corollary 5.5 (Bárány conjecture holds for isocanted). If d > 2 and 0 6 k <

k + 1 6 d− 1, then Id,k > min{Id,0, Id,d−1} = Id,d−1 = (d+ 1)d.

P r o o f. Use unimodality and Proposition 5.1. �

The 3d conjecture and the flag conjecture were posed by Kalai in 1989, for centrally

symmetric polytopes.

Corollary 5.6 (3d conjecture holds for isocanted). For d > 2 it holds
d
∑

k=0

Id,k =

3d+1 − 2d+2 + 2 and this is larger than 3d.

P r o o f. The binomial theorem (x + y)d =
d
∑

j=0

xjyd−j
(

d
j

)

with x = 1 yields 2d =
d
∑

j=0

(

d
j

)

and 3d =
d
∑

j=0

2d−j
(

d
j

)

. Then

(5.4) 3d+1 − 2× 2d+1 =

d+1
∑

j=0

2d+1−j

(

d+ 1

j

)

− 2

d+1
∑

j=0

(

d+ 1

j

)

=
d+1
∑

j=0

(2d+1−j − 2)

(

d+ 1

j

)

=
d−1
∑

j=0

Id,j + two summands.

Summand for j = d is zero and for j = d + 1 is −1, whence using Id,d = 1, we

get the claimed equality. Proof of the inequality: We have 23 = 8 = 32 − 1 and

2d−2 < 3d−2. Multiply termwise and get 2d+1 6 3d−2(32 − 1) = 3d − 3d−2 < 3d + 1,

whence 2(2d+1 − 1) < 2× 3d = 3d+1 − 3d. �

R em a r k 5.7. Recall that Stirling number of the second kind is the number of

ways to partition [d] into k non-empty subsets, and it is denoted S(d, k). We have

3d+1−2d+2+2 = 2S(d+2, 3)+1 (see Wikipedia and OEIS A101052, OEIS A028243

and OEIS A000392 in [32]).

R em a r k 5.8. Recall that a Hanner polytope is obtained from closed intervals

by using two operations any finite number of times: Cartesian product and polar.

They were studied by Hanner in 1956. Is Id a Hanner polytope? Conversely, is some

Hanner polytope an IAP? Since Hanner polytopes satisfy the 3d conjecture and they

attain the minimal conjectured value (see [28]), then the answer is NO in both cases.

Recall that a complete flag in a polytope P is a maximal chain of faces of P

with increasing dimensions. Next, we count complete flags (and call them flags, for

short). The number of flags in a d-box is 2dd! because there are 2d vertices and,

at each one, there are d! flags. The flag conjecture yields that boxes minimize flags

among centrally symmetric polytopes, see [21], [28], [30].
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Corollary 5.9 (Flag conjecture holds for isocanted). The number of flags in Id

is (d+ 1)(d− 1)!(2d+1 − 4) and it is larger than 2dd! for d > 2.

P r o o f. In Id there are 2(d + 1) vertices of valence d, and the remaining

2(2d − d− 2) vertices have valence d + 1. Indeed, the vertices of length 1 or d

have valence d. A vertex of length 2 6 t 6 d − 1 has valence d + 1, because

it has t parents and d + 1 − t children. Reasoning as in boxes, we find d! flags

beginning at a vertex of valence d. Using Item (1) in Corollary 3.13, we find

(d + 1)(d − 1)! flags beginning at a vertex V of valence d + 1, because Id is

cubical and there are d + 1 (d − 1)-cuboids meeting at V . Thus, adding up,

2(d+ 1)× d! + 2(2d − d− 2)× (d+ 1)(d− 1)! = (d+ 1)(d− 1)!(2d+1 − 4) is the total

number of flags. Further, we have (2d−1 − 1)(d + 1) > 2d−2d for d > 2, whence the

claimed inequality. �

The cubical lower bound conjecture (CLBC) was posed by Jockusch in 1993 and

rephrased, in terms of the cubical g-vector gc, by Adin et al. in 2019 as follows: Is

gcd,2 > 0? See [2], [20].

Proposition 5.10 (CLBC holds for isocanted). gcd,2 > 0 holds true for Id, for

d > 2.

P r o o f. We have computed the sequence gcd,2 for IAPs, obtaining 6, 20, 50, 112,

238, . . .; see OEIS A052515 in [32]. �

Recall that the distance between two vertices of a polytope is the minimum number

of edges in a path joining them. The diameter of a polytope is the greatest distance

between two vertices of the polytope.

Corollary 5.11 (Diameter of isocanted). The diameter of Id is d+ 1.

P r o o f. Consider different proper subsets W,W ′ ⊂ [d+ 1] and assume

|W ∩W ′| = i, |W | = i+ w, |W ′| = i+ w′,

with i, w, w′ > 0 and i + w + w′ 6 d + 1. To go from vertex W to vertex W ′ one

must drop (one at a time) w digits in W \ W ′ and one must gain (one at a time)

w′ digits in W ′ \W , whence d(W,W ′) = w + w′. In the particular case that W ′ is

complementary to W , we get the greatest distance d(W,W ′) = d+ 1. �

In future, we would like to compute the f -vector of a general alcoved polytope.

A c k n ow l e d gm e n t s . We thank the referee for careful revision.
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