Czechoslovak Mathematical Journal

Daowei Lu; Yan Ning; Dingguo Wang
The bicrossed products of H_{4} and H_{8}

Czechoslovak Mathematical Journal, Vol. 70 (2020), No. 4, 959-977

Persistent URL: http://dml.cz/dmlcz/148405

Terms of use:

© Institute of Mathematics AS CR, 2020

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

THE BICROSSED PRODUCTS OF H_{4} AND H_{8}

Daowei Lu, Yan Ning, Dingguo Wang, Qufu

Received February 25, 2019. Published online March 30, 2020.

Abstract. Let H_{4} and H_{8} be the Sweedler's and Kac-Paljutkin Hopf algebras, respectively. We prove that any Hopf algebra which factorizes through H_{8} and H_{4} (equivalently, any bicrossed product between the Hopf algebras H_{8} and H_{4}) must be isomorphic to one of the following four Hopf algebras: $H_{8} \otimes H_{4}, H_{32,1}, H_{32,2}, H_{32,3}$. The set of all matched pairs ($H_{8}, H_{4}, \triangleright, \triangleleft$) is explicitly described, and then the associated bicrossed product is given by generators and relations.

Keywords: Kac-Paljutkin Hopf algebra; Sweedler's Hopf algebra; bicrossed product; factorization problem

MSC 2020: 16T10, 16T05, 16S40

1. Introduction

The factorization problem stemmed from the group theory and was first considered in [11] by Maillet. This problem aims at the description and classification of all groups G which factor through two given groups N and H, i.e. $G=N H$, and $N \cap H=\{1\}$. In [7], the group X is called the bicrossed product of N and G. However, although the statement of the problem seems very simple and natural, no major progress has been made so far since we still have not commanded exhaustive methods to handle it. For example, even the description and classification of groups which factor through two finite cyclic groups is still an open problem.

An important step in dealing with the factorization problem for groups was the bicrossed product construction introduced in the paper by Zappa, see [21], later on, Takeuchi discovered the same construction in the paper [16], where the terminology bicrossed product was brought up for the first time. The main ingredients in this

The research has been supported by the NSF of China (No.11871301, 11901240,11471186)
and the NSF of Shandong Province (No. ZR2018PA006, ZR2017PA001).
construction are the so-called matched pairs of groups. Subsequently, Majid in [12] generalized this notion to the context of Hopf algebras, and considered a more computational approach of the problem. The present paper is a contribution to the factorization problem for Hopf algebras.

In papers [3], [4] the authors proposed a strategy for classifying the bicrossed products of finite groups and Hopf algebras following Majids construction. The method proposed in [3] was followed in [5] to classify bicrossed products of two Sweedler's Hopf algebras, in [9], [10] to compute the automorphism of Drinfeld doubles of a purely nonabelian finite group and quasitriangular structure of the doubles of a finite group, respectively; then in [1] to classify bicrossed products of two Taft algebras, and finally in [2] to classify bicrossed products of Taft algebras and group algebras, where the group is a finite cyclic group.

In the 1960's, Kac and Paljutkin in [8] discovered a non-commutative, noncocommutative semisimple Hopf algebra H_{8} which is 8-dimensional. Later, in [13] Masouka showed that there is only one (up to isomorphisms) semisimple Hopf algebra of dimension 8, and presented it under the perspective of biproducts and bicrossed products. Ore extension is an important tool to study Hopf algebras, see [14], [17], [18], [19], [20], recently Pansera in [15] constructed H_{8} from the point of view of Ore extension in the classification of the inner faithful Hopf actions of H_{8} on the quantum plane.

As we all know, the 4-dimensional Sweedler's Hopf algebra H_{4} is the simplest noncommutative, non-cocommutative semisimple Hopf algebra. In this paper, we will describe all the bicrossed products between H_{8} and H_{4}, and prove that any Hopf algebra which factorizes through H_{8} and H_{4} must be isomorphic to one of the four Hopf algebras $H_{8} \otimes H_{4}, H_{32,1}, H_{32,2}, H_{32,3}$ given explicitly in Theorem 5.1.

This paper is organized as follows. In Section 1, we recall the basic definitions and facts needed in our computations. In Section 2, we determine when H_{4} becomes a left H_{8}-module coalgebra, and in Section 3, we determine when H_{8} becomes a right H_{4}-module coalgebra. In Section 4, we find the suitable mutual actions between H_{4} and H_{8} such that they could make up matched pairs. And the bicrossed products are also given.

Throughout this paper, k will be an arbitrary algebraically closed field of characteristic zero. Unless otherwise specified, all algebras, coalgebras, bialgebras, Hopf algebras, tensor products and homomorphisms are over k.

2. Preliminaries

In this section, we will recall some basic definitions and facts.
Recall that Sweedler's 4-dimensional Hopf algebra, H_{4}, is generated by two elements G and X subject to the relations

$$
G^{2}=1, \quad X^{2}=0, \quad X G=-G X
$$

The coalgebra structure and the antipode are given by

$$
\begin{gathered}
\Delta(G)=G \otimes G, \quad \varepsilon(G)=1, \quad S(G)=G \\
\Delta(X)=X \otimes G+1 \otimes X, \quad \varepsilon(X)=0, \quad S(X)=G X
\end{gathered}
$$

It is well known that the set of group-like elements $G\left(H_{4}\right)$ and the set of primitive elements $P_{g, h}\left(H_{4}\right)$ are given as

$$
\begin{gathered}
G\left(H_{4}\right)=\{1, G\}, \quad P_{1,1}\left(H_{4}\right)=P_{G, G}\left(H_{4}\right)=\{0\} \\
P_{G, 1}\left(H_{4}\right)=k(G-1) \oplus k X, \quad P_{1, G}\left(H_{4}\right)=k(G-1) \oplus k G X
\end{gathered}
$$

The Hopf algebra H_{8} is generated by three elements g, h and z subject to the relations

$$
\begin{gathered}
g^{2}=1, \quad h^{2}=1, \quad g h=h g \\
z^{2}=\frac{1}{2}(1+g+h-g h), \quad g z=z h, \quad h z=z g .
\end{gathered}
$$

The coalgebra structure and antipode are given by

$$
\begin{array}{lll}
\Delta(g)=g \otimes g, & \varepsilon(g)=1, & S(g)=g \\
\Delta(h)=h \otimes h, & \varepsilon(h)=1, & S(h)=h \\
\Delta(z)=J(z \otimes z), & \varepsilon(z)=1, & S(z)=z
\end{array}
$$

where $J=\frac{1}{2}(1 \otimes 1+g \otimes 1+1 \otimes h-g \otimes h)$. Obviously H_{8} is 8 -dimensional with the basis $\left\{g^{i} h^{j} z^{k}: 0 \leqslant i, j, k \leqslant 1, i, j, k \in \mathbb{N}\right\}$. It is easy to verify that the element z is invertible with $z^{4}=1$.

A matched pair of Hopf algebras is a quadruple $(A, H, \triangleright, \triangleleft)$, where A and H are Hopf algebras, $\triangleright: H \otimes A \rightarrow A$ and $\triangleleft: H \otimes A \rightarrow H$ are coalgebra maps such that A is a left H-module coalgebra, H is a right A-module coalgebra and the following compatible conditions hold:

$$
\begin{align*}
& h \triangleright 1_{A}=\varepsilon(h) 1_{A}, \quad 1_{H} \triangleleft a=\varepsilon(a) 1_{H}, \tag{2.1}\\
& h \triangleright(a b)=\left(h_{1} \triangleright a_{1}\right)\left(\left(h_{2} \triangleleft a_{2}\right) \triangleright b\right), \tag{2.2}\\
& (g h) \triangleleft a=\left(g \triangleleft\left(h_{1} \triangleright a_{1}\right)\right)\left(h_{2} \triangleleft a_{2}\right), \tag{2.3}\\
& h_{1} \triangleleft a_{1} \otimes h_{2} \triangleright a_{2}=h_{2} \triangleleft a_{2} \otimes h_{1} \triangleright a_{1}, \tag{2.4}
\end{align*}
$$

for all $a, b \in A, g, h \in H$.

3. The left H_{8}-module coalgebra structures on H_{4}

In this section we will find all the actions $\triangleright: H_{8} \otimes H_{4} \rightarrow H_{4}$ such that as a vector space, H_{4} is made into a left H_{8}-module coalgebra satisfying $x \triangleright 1=\varepsilon(x) 1$ for all $x \in H_{8}$.

First of all, $g \triangleright 1=h \triangleright 1=z \triangleright 1=1$. Then $g \triangleright G \in G\left(H_{4}\right)$. We have $g \triangleright G \neq 1$ for otherwise $G=g^{2} \triangleright G=1$. Therefore $g \triangleright G=G$. Similarly $h \triangleright G=G$. Since

$$
\begin{aligned}
\Delta(z \triangleright G) & =\frac{1}{2}[z \triangleright G \otimes z \triangleright G+g z \triangleright G \otimes z \triangleright G+z \triangleright G \otimes h z \triangleright G-g z \triangleright G \otimes h z \triangleright G] \\
& =\frac{1}{2}[z \triangleright G \otimes z \triangleright G+z h \triangleright G \otimes z \triangleright G+z \triangleright G \otimes z g \triangleright G-z h \triangleright G \otimes z g \triangleright G] \\
& =z \triangleright G \otimes z \triangleright G,
\end{aligned}
$$

hence $z \triangleright G \in G\left(H_{4}\right)$. We have $z \triangleright G \neq 1$ for otherwise

$$
1=z \triangleright(z \triangleright G)=z^{2} \triangleright G=\frac{1}{2}(1+g+h-g h) \triangleright G=G .
$$

Therefore $z \triangleright G=G$.
By computation we have $g \triangleright X \in P_{G, 1}\left(H_{4}\right)$, thus $g \triangleright X=\alpha_{1}(G-1)+\beta_{1} X$ for any $\alpha_{1}, \beta_{1} \in k$. Since the action of g is compatible with $g^{2}=1$, we have

$$
X=g^{2} \triangleright X=g \triangleright(g \triangleright X)=\left(1+\beta_{1}\right) \alpha_{1}(G-1)+\beta_{1}^{2} X
$$

Thus $\left(1+\beta_{1}\right) \alpha_{1}=0$ and $\beta_{1}^{2}=1$. Therefore

$$
\begin{equation*}
g \triangleright X=\alpha_{1}(G-1)-X \quad \text { or } \quad g \triangleright X=X \tag{3.1}
\end{equation*}
$$

Similarly for any $\alpha_{2} \in k$

$$
\begin{equation*}
h \triangleright X=\alpha_{2}(G-1)-X \quad \text { or } \quad h \triangleright X=X . \tag{3.2}
\end{equation*}
$$

Because the actions of g and h on X should be compatible with $g h=h g$, we need to check the actions given in (3.1) and (3.2). For example if $g \triangleright X=\alpha_{1}(G-1)-X$, $h \triangleright X=\alpha_{2}(G-1)-X$,

$$
\begin{aligned}
& g h \triangleright X=g \triangleright\left(\alpha_{2}(G-1)-X\right)=\alpha_{2}(G-1)-\alpha_{1}(G-1)+X, \\
& h g \triangleright X=h \triangleright\left(\alpha_{1}(G-1)-X\right)=\alpha_{1}(G-1)-\alpha_{2}(G-1)+X .
\end{aligned}
$$

Then $g h=h g$ forces $\alpha_{1}=\alpha_{2}$. The other three cases can also be checked easily. Now we give the actions of g, h on G, X in the following tables:

\triangleright^{1}	1	G	X
1	1	G	X
g	1	G	X
h	1	G	X
$g h$	1	G	X

\triangleright^{3}	1	G	X
1	1	G	X
g	1	G	$\alpha(G-1)-X$
h	1	G	X
$g h$	1	G	$\alpha(G-1)-X$

\triangleright^{2}	1	G	X					
1	1	G	X					
g	1	G	X					
h	1	G	$\alpha(G-1)-X$					
$g h$	1	G	$\alpha(G-1)-X$		\triangleright^{4}	1	G	X
:---:	:---:	:---:	:---:					
1	1	G	X					
g	1	G	$\alpha(G-1)-X$					
h	1	G	$\alpha(G-1)-X$					
$g h$	1	G	X					

For the action $z \triangleright X$, we have

$$
\begin{aligned}
\Delta(z \triangleright X)= & \frac{1}{2}[z \triangleright X \otimes G+1 \otimes z \triangleright X+g z \triangleright X \otimes G+1 \otimes z \triangleright X+z \triangleright X \otimes G \\
& \quad+1 \otimes h z \triangleright X-g z \triangleright X \otimes G-1 \otimes h z \triangleright X] \\
= & z \triangleright X \otimes G+1 \otimes z \triangleright X,
\end{aligned}
$$

hence $z \triangleright X \in P_{G, 1}\left(H_{4}\right)$, and $z \triangleright X=\beta(G-1)+\gamma X$ for $\beta, \gamma \in k$. On one hand,

$$
z^{2} \triangleright X=z \triangleright(\beta(G-1)+\gamma X)=\beta(1+\gamma)(G-1)+\gamma^{2} X
$$

On the other hand,

$$
z^{2} \triangleright X=\frac{1}{2}(1+g+h-g h) \triangleright X .
$$

Therefore the element $z \triangleright X$ is determined by the actions of g, h on X, and we will consider every case.

For the action \triangleright^{1}, we obtain $\beta(1+\gamma)(G-1)+\gamma^{2} X=X$. Then

$$
z \triangleright X=X, \quad \text { or } \quad z \triangleright X=\beta(G-1)-X .
$$

It is straightforward to see that both the actions are compatible with the relation

$$
\begin{equation*}
g z=z h, \quad h z=z g . \tag{3.3}
\end{equation*}
$$

For the action \triangleright^{2}, we have

$$
z \triangleright X=X, \quad \text { or } \quad z \triangleright X=\beta(G-1)-X
$$

However, both the actions are not compatible with the relation (3.3). Similarly the action \triangleright^{3} does not hold either.

For the action \triangleright^{4}, we have

$$
\alpha(G-1)-X=\beta(1+\gamma)(G-1)+\gamma^{2} X .
$$

Thus $\gamma=\mathrm{i}, \alpha=(1+\mathrm{i}) \beta$ or $\gamma=-\mathrm{i}, \alpha=(1-\mathrm{i}) \beta$. Since

$$
g z \triangleright X=\mathrm{i}[\beta(G-1) \pm X]=z h \triangleright X,
$$

the action \triangleright^{4} is well defined. So till now we have four actions, which are redenoted by \triangleright^{1} and \triangleright^{2}, as follows:

\triangleright^{1}	1	G	X
1	1	G	X
g	1	G	X
h	1	G	X
z	1	G	X

\triangleright^{2}	1	G	X
1	1	G	X
g	1	G	X
h	1	G	X
z	1	G	$\alpha(G-1)-X$

\triangleright^{3}	1	G	X
1	1	G	X
g	1	G	$\alpha(G-1)-X$
h	1	G	$\alpha(G-1)-X$
z	1	G	$\frac{\alpha}{1+\mathrm{i}}(G-1)+\mathrm{i} X$

\triangleright^{4}	1	G	X
1	1	G	X
g	1	G	$\alpha(G-1)-X$
h	1	G	$\alpha(G-1)-X$
z	1	G	$\frac{\alpha}{1-\mathrm{i}}(G-1)-\mathrm{i} X$

Similarly we have the action of g, h and z on $G X$ as follows:

\triangleright^{a}	$G X$
1	$G X$
g	$G X$
h	$G X$
z	$G X$

\triangleright^{b}	$G X$
1	$G X$
g	$G X$
h	$G X$
z	$\beta(G-1)-G X$

\triangleright^{c}	$G X$
1	$G X$
g	$\beta(G-1)-G X$
h	$\beta(G-1)-G X$
z	$\frac{\alpha}{1+\mathrm{i}}(G-1)+\mathrm{i} X$

\triangleright^{d}	$G X$
1	$G X$
g	$\beta(G-1)-G X$
h	$\beta(G-1)-G X$
z	$\frac{\beta}{1-\mathrm{i}}(G-1)-\mathrm{i} G X$

Proposition 3.1. There are 16 kinds of actions of H_{8} on H_{4} defined as above.

4. The right H_{4}-module coalgebra structures on H_{8}

In this section we will find all actions $\triangleleft: H_{8} \otimes H_{4} \rightarrow H_{8}$ such that as a vector space, H_{8} is made into a right H_{4}-module coalgebra satisfying $1 \triangleleft x=\varepsilon(x) 1$ for all $x \in H_{4}$.

Lemma 4.1.

(1) $G\left(H_{8}\right)=\{1, g, h, g h\}$.
(2) $P_{g^{i} h^{j}, g^{m} h^{n}}\left(H_{8}\right)=\alpha_{i j m n}\left(g^{i} h^{j}-g^{m} h^{n}\right)$ for $0 \leqslant i, j, m, n \leqslant 1$ and $\alpha_{i j m n} \in k$.

Proof. (1) Suppose that $x=\sum_{i, j=0}^{1} f_{i j} g^{i} h^{j}+\sum_{i, j=0}^{1} e_{i j} g^{i} h^{j} z$ is a group-like element of H_{8}. Then by $\Delta(x)=x \otimes x$, we have

$$
\begin{aligned}
\sum_{i, j, m, n=0}^{1} f_{i j} f_{m n} g^{i} h^{j} \otimes g^{m} h^{n} & +\sum_{i, j, m, n=0}^{1} e_{i j} f_{m n} g^{i} h^{j} z \otimes g^{m} h^{n} \\
& +\sum_{i, j, m, n=0}^{1} e_{m n} f_{i j} g^{i} h^{j} \otimes g^{m} h^{n} z+\sum_{i, j, m, n=0}^{1} e_{i j} e_{m n} g^{i} h^{j} z \otimes g^{m} h^{n} z \\
& =\sum_{i, j=0}^{1} f_{i j} g^{i} h^{j} \otimes g^{i} h^{j}+\sum_{i, j=0}^{1} e_{i j}\left(g^{i} h^{j} \otimes g^{i} h^{j}\right) J(z \otimes z)
\end{aligned}
$$

By comparison, we obtain that

$$
\sum_{i, j, m, n=0}^{1} e_{i j} f_{m, n} g^{i} h^{j} z \otimes g^{m} h^{n}=0, \quad \sum_{i, j, m, n=0}^{1} e_{m, n} f_{i j} g^{i} h^{j} \otimes g^{m} h^{n} z=0
$$

Hence for all $0 \leqslant i, j, m, n \leqslant 1, e_{i j} f_{m, n}=0$, and

$$
f_{00}^{2}=f_{00}, \quad f_{10}^{2}=f_{10}, \quad f_{01}^{2}=f_{01}, \quad f_{11}^{2}=f_{11},
$$

$$
f_{00} f_{01}=0, \quad f_{00} f_{10}=0, \quad f_{00} f_{11}=0, \quad f_{10} f_{01}=0, \quad f_{01} f_{11}=0, \quad f_{10} f_{11}=0
$$

From the above relations, we can see that $f_{i j}=0$ or $f_{i j}=1$, and if $f_{i j}=1$ for some pair i, j, the rest must be 0 .

If $f_{i j}=0$ for $0 \leqslant i, j \leqslant 1$, since z is invertible, we have

$$
\sum_{i, j, m, n=0}^{1} e_{i j} e_{m n} g^{i} h^{j} \otimes g^{m} h^{n}=\sum_{i, j=0}^{1} e_{i j}\left(g^{i} h^{j} \otimes g^{i} h^{j}\right) J
$$

By comparison of the coefficients, we get the relations

$$
\begin{array}{llll}
e_{00}=2 e_{00}^{2}, & e_{00}=2 e_{00} e_{10}, & e_{00}=2 e_{00} e_{01}, & e_{00}=-2 e_{10} e_{01}, \\
e_{10}=2 e_{10}^{2}, & e_{10}=2 e_{00} e_{10}, & e_{10}=2 e_{10} e_{11}, & e_{10}=-2 e_{00} e_{11} \\
e_{01}=2 e_{01}^{2}, & e_{01}=2 e_{01} e_{11}, & e_{01}=2 e_{01} e_{00}, & e_{01}=-2 e_{11} e_{00} \\
e_{11}=2 e_{11}^{2}, & e_{11}=2 e_{11} e_{01}, & e_{11}=2 e_{11} e_{10}, & e_{11}=-2 e_{10} e_{01}
\end{array}
$$

We claim that $e_{00}=0$ for otherwise $e_{10}=e_{00}=e_{01}=\frac{1}{2}$, which contradicts $e_{00}=$ $-2 e_{10} e_{01}$. In the same manner, we obtain that $e_{01}=e_{10}=e_{11}=0$.
(2) Suppose that $x=\sum_{i, j=0}^{1} f_{i j} g^{i} h^{j}+\sum_{i, j=0}^{1} e_{i j} g^{i} h^{j} z$ is a $\left(g^{s} h^{t}, g^{m} h^{n}\right)$-primitive element of H_{8}. We have

$$
\begin{aligned}
& \sum_{i, j=0}^{1} f_{i j} g^{i} h^{j} \otimes g^{s} h^{t}+\sum_{i, j=0}^{1} f_{i j} g^{m} h^{n} \otimes g^{i} h^{j}+\sum_{i, j=0}^{1} e_{i j} g^{i} h^{j} z \otimes g^{s} h^{t} \\
& \quad+\sum_{i, j=0}^{1} e_{i j} g^{m} h^{n} \otimes g^{i} h^{j} z=\sum_{i, j=0}^{1} f_{i j} g^{i} h^{j} \otimes g^{i} h^{j}+\sum_{i, j=0}^{1} e_{i j}\left(g^{i} h^{j} \otimes g^{i} h^{j}\right) J(z \otimes z)
\end{aligned}
$$

By comparison of the coefficients, $e_{i j}=0(0 \leqslant i, j \leqslant 1)$, and $f_{i j}=0$ except $f_{s t}, f_{m n}$ with $f_{s t}=-f_{m n}$. Therefore $x=f_{s t}\left(g^{s} h^{t}-g^{m} h^{n}\right)$. The proof is completed.

Now we will analyze the actions of G on the basis ($1, g, h, g h, z, g z, h z, g h z)$. It is obvious that elements $g \triangleleft G, h \triangleleft G$ and $g h \triangleleft G$ are all group-like elements of H_{8}. First, $g \triangleleft G \neq 1$ for otherwise $1=g \triangleleft G^{2}=g$. Also $h \triangleleft G \neq 1, g h \triangleleft G \neq 1$. Now we will list all possible cases:
(a) If $g \triangleleft G=g$, then $h \triangleleft G \neq g$ for otherwise $h=h \triangleleft G^{2}=g \triangleleft G=g$. On the one hand assume that $h \triangleleft G=h$, since $(g h \triangleleft G) \triangleleft G=g h$, we obtain $g h \triangleleft G=g h$. On the other hand, if $h \triangleleft G=g h$, then $g h \triangleleft G=h \triangleleft G^{2}=h$.
(b) If $g \triangleleft G=h$, then $h \triangleleft G=g$ and $g h \triangleleft G=g h$.
(c) If $g \triangleleft G=g h$, then $g h \triangleleft G=g$ and $h \triangleleft G=h$.

Assume that

$$
z \triangleleft G=\sum_{i, j=0}^{1} f_{i j} g^{i} h^{j}+\sum_{i, j=0}^{1} e_{i j} g^{i} h^{j} z
$$

for $f_{i j}, e_{i j} \in k, 0 \leqslant i, j \leqslant 1$. Then we have

$$
z=\sum_{i, j=0}^{1}\left(f_{i j} g^{i} h^{j} \triangleleft G\right)+\sum_{i, j=0}^{1}\left(e_{i j} g^{i} h^{j} z \triangleleft G\right) .
$$

Clearly $f_{i j}=0(0 \leqslant i, j \leqslant 1)$, and z could be linearly represented by $z \triangleleft G, g z \triangleleft G$, $h z \triangleleft G, g h z \triangleleft G$ which are linearly independent. So are $g z, h z, g h z$. Therefore there exists an invertible matrix $A=\left(a_{i j}\right)=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)$ of order 4 such that

$$
(z \triangleleft G, g z \triangleleft G, h z \triangleleft G, g h z \triangleleft G)=(z, g z, h z, g h z) A .
$$

Since $G^{2}=1$, we get $A^{2}=E$. For $z \triangleleft G=a_{11} z+a_{21} g z+a_{31} h z+a_{41} g h z$, on the one hand

$$
\begin{aligned}
\Delta(& z \triangleleft G)= \\
\quad & a_{11} J(z \otimes z)+a_{21}(g \otimes g) J(z \otimes z)+a_{31}(h \otimes h) J(z \otimes z) \\
& \quad+a_{41}(g h \otimes g h) J(z \otimes z) \\
= & \frac{1}{2} a_{11}(z \otimes z+g z \otimes z+z \otimes h z-g z \otimes h z) \\
& +\frac{1}{2} a_{21}(g z \otimes g z+z \otimes g z+g z \otimes g h z-z \otimes g h z) \\
& +\frac{1}{2} a_{31}(h z \otimes h z+g h z \otimes h z+h z \otimes z-g h z \otimes z) \\
& +\frac{1}{2} a_{41}(g h z \otimes g h z+h z \otimes g h z+g h z \otimes g z-h z \otimes g z) \\
= & {[(z, g z, h z, g h z) \otimes(z, g z, h z, g h z)] } \\
& \quad \times \frac{1}{2}\left(a_{11}, a_{21}, a_{11},-a_{21}, a_{11}, a_{21},-a_{11}, a_{21}, a_{31},-a_{41}, a_{31}, a_{41},-a_{31}, a_{41}, a_{31}, a_{41}\right)^{\top} .
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
\Delta(z \triangleleft G)= & \frac{1}{2}(z \triangleleft G \otimes z \triangleleft G+g z \triangleleft G \otimes z \triangleleft G+z \triangleleft G \otimes h z \triangleleft G-g z \triangleleft G \otimes h z \triangleleft G) \\
= & {[(z, g z, h z, g h z) \otimes(z, g z, h z, g h z)] } \\
& \times \frac{1}{2}\left[\alpha_{1} \otimes \alpha_{1}+\alpha_{2} \otimes \alpha_{1}+\alpha_{1} \otimes \alpha_{3}-\alpha_{2} \otimes \alpha_{3}\right] .
\end{aligned}
$$

Hence we have the relation

$$
\begin{align*}
& \left(a_{11}, a_{21}, a_{11},-a_{21}, a_{11}, a_{21},-a_{11}, a_{21}, a_{31},-a_{41}, a_{31}, a_{41},-a_{31}, a_{41}, a_{31}, a_{41}\right)^{\top} \tag{4.1}\\
& \quad=\alpha_{1} \otimes \alpha_{1}+\alpha_{2} \otimes \alpha_{1}+\alpha_{1} \otimes \alpha_{3}-\alpha_{2} \otimes \alpha_{3}
\end{align*}
$$

Similarly for $g z \triangleleft G, h z \triangleleft G, g h z \triangleleft G$, we have the relations
(4.2) $\quad\left(a_{12}, a_{22}, a_{12},-a_{22}, a_{12}, a_{22},-a_{12}, a_{22}, a_{32},-a_{42}, a_{32}, a_{42},-a_{32}, a_{42}, a_{32}, a_{42}\right)^{\top}$

$$
=\alpha_{2} \otimes \alpha_{2}+\alpha_{1} \otimes \alpha_{2}+\alpha_{2} \otimes \alpha_{4}-\alpha_{1} \otimes \alpha_{4}
$$

(4.3) $\quad\left(a_{13}, a_{23}, a_{13},-a_{23}, a_{13}, a_{23},-a_{13}, a_{23}, a_{33},-a_{43}, a_{33}, a_{43},-a_{33}, a_{43}, a_{33}, a_{43}\right)^{\top}$

$$
=\alpha_{3} \otimes \alpha_{3}+\alpha_{4} \otimes \alpha_{3}+\alpha_{3} \otimes \alpha_{1}-\alpha_{4} \otimes \alpha_{1}
$$

$$
\begin{align*}
& \left(a_{14}, a_{24}, a_{14},-a_{24}, a_{14}, a_{24},-a_{14}, a_{24}, a_{34},-a_{44}, a_{34}, a_{44},-a_{34}, a_{44}, a_{34}, a_{44}\right)^{\top} \tag{4.4}\\
& \quad=\alpha_{4} \otimes \alpha_{4}+\alpha_{3} \otimes \alpha_{4}+\alpha_{4} \otimes \alpha_{2}-\alpha_{3} \otimes \alpha_{2}
\end{align*}
$$

Lemma 4.2. In order to make H_{8} be a right H_{4} module coalgebra, the matrix A associated to the actions of G on the basis $(z, g z, h z, g h z)$ must satisfy the conditions $A^{2}=E$ and the identities (4.1)-(4.4).

Example 4.3.

(1) Let $A=E$, then clearly A must satisfy the relations (4.1)-(4.4).
(2) Let A be the matrix

$$
\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

That is, $z \triangleleft G=g h z, g z \triangleleft G=h z, h z \triangleleft G=g z, g h z \triangleleft G=z$. By a long and tedious verification, $A^{2}=E$ and satisfies the relations (4.1)-(4.4).

Next we will consider the actions of X on the basis of H_{8}. Since

$$
\begin{aligned}
\Delta(g \triangleleft X) & =g \triangleleft X \otimes g \triangleleft G+g \otimes g \triangleleft X, \\
\Delta(h \triangleleft X) & =h \triangleleft X \otimes h \triangleleft G+h \otimes h \triangleleft X, \\
\Delta(g h \triangleleft X) & =g h \triangleleft X \otimes g h \triangleleft G+g h \otimes g h \triangleleft X,
\end{aligned}
$$

we need to consider all the cases for the actions of G on $g, h, g h$.
(a) When $g \triangleleft G=g, h \triangleleft G=h, g h \triangleleft G=g h$, then $g \triangleleft X=h \triangleleft X=g h \triangleleft X=0$.
(b) When $g \triangleleft G=g, h \triangleleft G=g h, g h \triangleleft G=h$, then $g \triangleleft X=0$, and

$$
h \triangleleft X=\alpha(h-g h), \quad g h \triangleleft X=\beta(h-g h) .
$$

Moreover, $G X=-X G, X^{2}=0$ implies $\alpha=\beta$.
(c) When $g \triangleleft G=h, h \triangleleft G=g, g h \triangleleft G=g h$, then $g h \triangleleft X=0$, and

$$
g \triangleleft X=\alpha(g-h), \quad h \triangleleft X=\alpha(g-h) .
$$

(d) When $g \triangleleft G=g h, h \triangleleft G=h, g h \triangleleft G=g$, then $h \triangleleft X=0$, and

$$
g \triangleleft X=\alpha(g-g h), \quad g h \triangleleft X=\alpha(g-g h) .
$$

Suppose that $z \triangleleft X=\sum_{i, j=0}^{1} f_{i j} g^{i} h^{j}+\sum_{i, j=0}^{1} e_{i j} g^{i} h^{j} z$.

$$
\begin{aligned}
& \sum_{i, j, m, n=0}^{1} f_{i j} f_{m n} g^{i} h^{j} \otimes g^{m} h^{n}+\sum_{i, j, m, n=0}^{1} e_{i j} f_{m n} g^{i} h^{j} z \otimes g^{m} h^{n} \\
&+\sum_{i, j, m, n=0}^{1} e_{m n} f_{i j} g^{i} h^{j} \otimes g^{m} h^{n} z+\sum_{i, j, m, n=0}^{1} e_{i j} e_{m n} g^{i} h^{j} z \otimes g^{m} h^{n} z \\
&=\frac{1}{2}[z \triangleleft X \otimes z \triangleleft G+g z \triangleleft X \otimes z \triangleleft G+z \triangleleft X \otimes h z \triangleleft G-g z \triangleleft X \otimes h z \triangleleft G \\
&\quad+z \otimes z \triangleleft X+g z \otimes z \triangleleft X+z \otimes h z \triangleleft X-g z \otimes h z \triangleleft X] .
\end{aligned}
$$

Because the items like $g^{i} h^{j} \otimes g^{m} h^{n}$ will not appear on the right hand side, $f_{i j}=0$ for all $0 \leqslant i, j \leqslant 1$. Thus $z \triangleleft X$ is a linear combination of $z, g z, h z, g h z$; so are $g z \triangleleft X$, $h z \triangleleft X, g h z \triangleleft X$. Therefore there exists a matrix $B=\left(\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right)$ of order 4 such that

$$
(z \triangleleft X, g z \triangleleft X, h z \triangleleft X, g h z \triangleleft X)=(z, g z, h z, g h z) B .
$$

The relations $G X=-X G, X^{2}=0$ imply $A B=-B A, B^{2}=0$, respectively.
Now we will consider $\Delta(z \triangleleft X), \Delta(g z \triangleleft X), \Delta(h z \triangleleft X)$ and $\Delta(g h z \triangleleft X)$. On the one hand,

$$
\begin{aligned}
& \Delta(z \triangleleftX)= \\
& \quad b_{11} J(z \otimes z)+b_{21}(g \otimes g) J(z \otimes z)+b_{31}(h \otimes h) J(z \otimes z) \\
&+b_{41}(g h \otimes g h) J(z \otimes z) \\
&= \frac{1}{2} b_{11}(z \otimes z+g z \otimes z+z \otimes h z-g z \otimes h z) \\
&+\frac{1}{2} b_{21}(g z \otimes g z+z \otimes g z+g z \otimes g h z-z \otimes g h z) \\
&+\frac{1}{2} b_{31}(h z \otimes h z+g h z \otimes h z+h z \otimes z-g h z \otimes z) \\
&+\frac{1}{2} b_{41}(g h z \otimes g h z+h z \otimes g h z+g h z \otimes g z-h z \otimes g z) \\
&= {[(z, g z, h z, g h z) \otimes(z, g z, h z, g h z)] } \\
& \times \frac{1}{2}\left(b_{11}, b_{21}, b_{11},-b_{21}, b_{11}, b_{21},-b_{11}, b_{21}, b_{31},-b_{41}, b_{31}, b_{41},-b_{31}, b_{41}, b_{31}, b_{41}\right)^{\top} .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\Delta(z \triangleleft X)= & \frac{1}{2}[z \triangleleft X \otimes z \triangleleft G+g z \triangleleft X \otimes z \triangleleft G+z \triangleleft X \otimes h z \triangleleft G-g z \triangleleft X \otimes h z \triangleleft G \\
& +z \otimes z \triangleleft X+g z \otimes z \triangleleft X+z \otimes h z \triangleleft X-g z \otimes h z \triangleleft X] \\
= & {[(z, g z, h z, g h z) \otimes(z, g z, h z, g h z)] } \\
& \times \frac{1}{2}\left[\beta_{1} \otimes \alpha_{1}+\beta_{2} \otimes \alpha_{1}+\beta_{1} \otimes \alpha_{3}-\beta_{2} \otimes \alpha_{3}+e_{1} \otimes \beta_{1}+e_{2} \otimes \beta_{1}\right. \\
\quad & \left.+e_{1} \otimes \beta_{3}-e_{2} \otimes \beta_{3}\right] .
\end{aligned}
$$

Therefore

$$
\begin{align*}
\left(b_{11}, b_{21}, b_{11},\right. & \left.-b_{21}, b_{11}, b_{21},-b_{11}, b_{21}, b_{31},-b_{41}, b_{31}, b_{41},-b_{31}, b_{41}, b_{31}, b_{41}\right)^{\top} \tag{4.5}\\
= & \beta_{1} \otimes \alpha_{1}+\beta_{2} \otimes \alpha_{1}+\beta_{1} \otimes \alpha_{3}-\beta_{2} \otimes \alpha_{3}+e_{1} \otimes \beta_{1}+e_{2} \otimes \beta_{1} \\
& +e_{1} \otimes \beta_{3}-e_{2} \otimes \beta_{3}, \\
\left(b_{12}, b_{22}, b_{12},\right. & \left.-b_{22}, b_{12}, b_{22},-b_{12}, b_{22}, b_{32},-b_{42}, b_{32}, b_{42},-b_{32}, b_{42}, b_{32}, b_{42}\right)^{\top} \tag{4.6}\\
= & \beta_{2} \otimes \alpha_{2}+\beta_{1} \otimes \alpha_{2}+\beta_{2} \otimes \alpha_{4}-\beta_{1} \otimes \alpha_{4}+e_{2} \otimes \beta_{2}+e_{1} \otimes \beta_{2} \\
& +e_{2} \otimes \beta_{4}-e_{1} \otimes \beta_{4},
\end{align*}
$$

$$
\begin{align*}
\left(b_{13}, b_{23}, b_{13},\right. & \left.-b_{23}, b_{13}, b_{23},-b_{13}, b_{23}, b_{33},-b_{43}, b_{33}, b_{43},-b_{33}, b_{43}, b_{33}, b_{43}\right)^{\top} \tag{4.7}\\
= & \beta_{3} \otimes \alpha_{3}+\beta_{4} \otimes \alpha_{3}+\beta_{3} \otimes \alpha_{1}-\beta_{4} \otimes \alpha_{1}+e_{3} \otimes \beta_{3}+e_{4} \otimes \beta_{3} \\
& +e_{3} \otimes \beta_{1}-e_{4} \otimes \beta_{1}, \\
\left(b_{14}, b_{24}, b_{14},\right. & \left.-b_{24}, b_{14}, b_{24},-b_{14}, b_{24}, b_{34},-b_{44}, b_{34}, b_{44},-b_{34}, b_{44}, b_{34}, b_{44}\right)^{\top} \tag{4.8}\\
= & \beta_{4} \otimes \alpha_{4}+\beta_{3} \otimes \alpha_{4}+\beta_{4} \otimes \alpha_{2}-\beta_{3} \otimes \alpha_{2}+e_{4} \otimes \beta_{4}+e_{3} \otimes \beta_{4} \\
& \quad+e_{4} \otimes \beta_{2}-e_{3} \otimes \beta_{2} .
\end{align*}
$$

Lemma 4.4. In order to make H_{8} be a right H_{4} module coalgebra, the matrix B associated to the actions of X on the basis $(z, g z, h z, g h z)$ must satisfy the conditions $B^{2}=0$ and the identities (4.5)-(4.8).

5. The matched pairs between H_{8} and H_{4}

In this section, we will find the suitable actions which make H_{8} and H_{4} matched pairs. We first check the relation (2.4) for the pairs $(g, X),(h, X),(g h, X)$, which should satisfy the identities

$$
\begin{aligned}
g \triangleleft X \otimes G+g \otimes g \triangleright X & =g \triangleleft X \otimes 1+g \triangleleft G \otimes g \triangleright X, \\
h \triangleleft X \otimes G+h \otimes h \triangleright X & =h \triangleleft X \otimes 1+h \triangleleft G \otimes h \triangleright X, \\
g h \triangleleft X \otimes G+g h \otimes g h \triangleright X & =g h \triangleleft X \otimes 1+g h \triangleleft G \otimes g h \triangleright X .
\end{aligned}
$$

When only $g \triangleleft G=g, h \triangleleft G=h, g h \triangleleft G=g h$, the above identities hold. At this moment, $g \triangleleft X=h \triangleleft X=g h \triangleleft X=0$.

$$
\begin{aligned}
1=z \triangleright G^{2}= & \frac{1}{2}[(z \triangleright G)((z \triangleleft G) \triangleright G)+(g z \triangleright G)((z \triangleleft G) \triangleright G)+(z \triangleright G)((h z \triangleleft G) \triangleright G) \\
& -(g z \triangleright G)((h z \triangleleft G) \triangleright G)] \\
= & G((z \triangleleft G) \triangleright G)=a_{11}+a_{21}+a_{31}+a_{41} .
\end{aligned}
$$

For the pairs $\left(g^{i} h^{j}, G\right),\left(g^{i} h^{j} z, G\right)$ the relation (2.4) is trivial.
On the one hand

$$
z^{2} \triangleleft G=\frac{1}{2}(1+g+h-g h) \triangleleft G=z^{2}
$$

On the other hand by relation (2.3)

$$
\begin{aligned}
z^{2} \triangleleft G= & \frac{1}{2}[(z \triangleleft(z \triangleright G))(z \triangleleft G)+(z \triangleleft(g z \triangleright G))(z \triangleleft G)+(z \triangleleft(z \triangleright G))(h z \triangleleft G) \\
& -(z \triangleleft(g z \triangleright G))(h z \triangleleft G)] \\
= & (z \triangleleft G)(z \triangleleft G)=\left(a_{11} z+a_{21} g z+a_{31} h z+a_{41} g h z\right)^{2} .
\end{aligned}
$$

By the comparison of coefficients, we have

$$
\left\{\begin{array}{l}
a_{11}^{2}+2 a_{21} a_{31}+a_{41}^{2}=1, \tag{5.1}\\
\left(a_{11}+a_{41}\right)\left(a_{21}+a_{31}\right)=0, \\
a_{21}^{2}+2 a_{11} a_{41}+a_{31}^{2}=0 .
\end{array}\right.
$$

$$
g z \triangleleft G=(g \triangleleft G)(z \triangleleft G)=a_{11} g z+a_{21} z+a_{31} g h z+a_{41} h z=(z \triangleleft G) h=z h \triangleleft G,
$$

which is compatible with $g z=z h$. Thus

$$
a_{11} g z+a_{21} z+a_{31} g h z+a_{41} h z=a_{12} z+a_{22} g z+a_{32} h z+a_{42} g h z .
$$

Similarly, we have
(a) $h z \triangleleft G=z g \triangleleft G, a_{11} h z+a_{21} g h z+a_{31} z+a_{41} g z=a_{13} z+a_{23} g z+a_{33} h z+a_{43} g h z$.
(b) $g h z \triangleleft G=z g h \triangleleft G, a_{11} g h z+a_{21} h z+a_{31} g z+a_{41} z=a_{14} z+a_{24} g z+a_{34} h z+a_{44} g h z$.

So we get

$$
\begin{array}{ll}
a_{11}=a_{22}=a_{33}=a_{44}, & a_{21}=a_{12}=a_{43}=a_{34} \\
a_{31}=a_{42}=a_{13}=a_{24}, & a_{41}=a_{32}=a_{23}=a_{14}
\end{array}
$$

Therefore the matrix A has the form

$$
\left(\begin{array}{llll}
a & b & c & d \\
b & a & d & c \\
c & d & a & b \\
d & c & b & a
\end{array}\right),
$$

where $a, b, c, d \in k$. Since $A^{2}=E$, plus the relation (5.1), we have the set of equations

$$
\left\{\begin{array}{l}
a+b+c+d=1, \\
a^{2}+b^{2}+c^{2}+d^{2}=1, \\
a c+b d=0, \\
a b+c d=0, \\
a d+b c=0, \\
a^{2}+2 b c+d^{2}=1, \\
(a+d)(b+c)=0, \\
b^{2}+2 a d+c^{2}=0
\end{array}\right.
$$

We obtain four solutions for the above set of equations:
(1) $a=\frac{1}{2}, b=\frac{1}{2}, c=\frac{1}{2}, d=-\frac{1}{2}$,
(2) $a=-\frac{1}{2}, b=\frac{1}{2}, c=\frac{1}{2}, d=\frac{1}{2}$,
(3) $a=1, b=c=d=0$,
(4) $a=b=c=0, d=1$.

Now we will verify the actions $g^{i} h^{j} \triangleright G X$ and $g^{i} h^{j} z \triangleright G X$. For the action \triangleright^{1}

$$
\begin{gathered}
g \triangleright G X=(g \triangleright G)((g \triangleleft G) \triangleright X)=G X, \\
g \triangleright X G=(g \triangleright X)((g \triangleleft G) \triangleright G)+(g \triangleright 1)((g \triangleleft X) \triangleright G)=X G,
\end{gathered}
$$

which is compatible with the relation $X G=-G X$. Similarly $h \triangleright G X=g h \triangleright$ $G X=G X$.

$$
\begin{aligned}
z \triangleright G X= & \frac{1}{2}[(z \triangleright G)((z \triangleleft G) \triangleright X)+(g z \triangleright G)((z \triangleleft G) \triangleright X)+(z \triangleright G)((h z \triangleleft G) \triangleright X) \\
& \quad-(g z \triangleright G)((h z \triangleleft G) \triangleright X)] \\
= & \frac{1}{2} G[(z \triangleleft G) \triangleright X+(z \triangleleft G) \triangleright X+(h z \triangleleft G) \triangleright X-(h z \triangleleft G) \triangleright X] \\
= & G((z \triangleleft G) \triangleright X)=\left(a_{11}+a_{21}+a_{31}+a_{41}\right) G X=G X,
\end{aligned}
$$

and

$$
\begin{aligned}
z \triangleright X G= & \frac{1}{2}[(z \triangleright X)((z \triangleleft G) \triangleright G)+((z \triangleleft X) \triangleright G)+(g z \triangleright X)((z \triangleleft G) \triangleright G) \\
& +((z \triangleleft X) \triangleright G)+(z \triangleright X)((h z \triangleleft G) \triangleright G)+((h z \triangleleft X) \triangleright G) \\
& \quad-(g z \triangleright X)((h z \triangleleft G) \triangleright G)-((h z \triangleleft X) \triangleright G)] \\
= & X((z \triangleleft G) \triangleright G)+(z \triangleleft X) \triangleright G \\
= & \left(a_{11}+a_{21}+a_{31}+a_{41}\right) X G+\left(b_{11}+b_{21}+b_{31}+b_{41}\right) G \\
= & X G+\left(b_{11}+b_{21}+b_{31}+b_{41}\right) G .
\end{aligned}
$$

Hence we obtain $b_{11}+b_{21}+b_{31}+b_{41}=0$. That is, $z \triangleright G X=G X$.

$$
\begin{aligned}
& g^{i} h^{j} \triangleright X^{2}=\left(g^{i} h^{j} \triangleright X\right)\left(\left(g^{i} h^{j} \triangleleft G\right) \triangleright X\right)+\left(g^{i} h^{j} \triangleright 1\right)\left(\left(g^{i} h^{j} \triangleleft X\right) \triangleright X\right)=X^{2}=0, \\
& z \triangleright X^{2}=\frac{1}{2}[(z \triangleright X)((z \triangleleft G) \triangleright X)+((z \triangleleft X) \triangleright X)+(g z \triangleright X)((z \triangleleft G) \triangleright X) \\
& +((z \triangleleft X) \triangleright X)+(z \triangleright X)((h z \triangleleft G) \triangleright X)+((h z \triangleleft X) \triangleright X) \\
& -(g z \triangleright X)((h z \triangleleft G) \triangleright X)-((h z \triangleleft X) \triangleright X)] \\
& =\frac{1}{2}[X((z \triangleleft G) \triangleright X)+(z \triangleleft X) \triangleright X+X((z \triangleleft G) \triangleright X)+(z \triangleleft X) \triangleright X \\
& +X((h z \triangleleft G) \triangleright X)+((h z \triangleleft X) \triangleright X)-X((h z \triangleleft G) \triangleright X) \\
& -((h z \triangleleft X) \triangleright X)] \\
& =X((z \triangleleft G) \triangleright X)+(z \triangleleft X) \triangleright X=\left(b_{11}+b_{21}+b_{31}+b_{41}\right) X=0,
\end{aligned}
$$

which naturally holds.

$$
\begin{aligned}
& \text { Since } \begin{aligned}
z^{2} \triangleleft X= & \frac{1}{2}(1+g+h-g h) \triangleleft X=0, \\
z^{2} \triangleleft X= & (z \triangleleft X)(z \triangleleft G)+z(z \triangleleft X) \\
= & \left(b_{11} z+b_{21} g z+b_{31} h z+b_{41} g h z\right)(a z+b g z+c h z+d g h z) \\
& +z\left(b_{11} z+b_{21} g z+b_{31} h z+b_{41} g h z\right)=0 .
\end{aligned}
\end{aligned}
$$

When the solution of matrix A is (1), by the comparison of coefficients we have

$$
\begin{gather*}
\left\{\begin{array}{l}
2 b_{11}+b_{21}+b_{31}=0, \\
b_{11}=b_{41} .
\end{array}\right. \tag{5.2}\\
g z \triangleleft X=(g \triangleleft X)(z \triangleleft G)+g(z \triangleleft X)=g(z \triangleleft X)=(z \triangleleft X) h=z h \triangleleft X, \\
b_{12} z+b_{22} g z+b_{32} h z+b_{42} g h z=b_{11} g z+b_{21} z+b_{31} g h z+b_{41} h z .
\end{gather*}
$$

Similarly it is straightforward to verify that $h z \triangleleft X=z g \triangleleft X, g h z \triangleleft X=z g h \triangleleft X$, and we obtain the relations

$$
\begin{aligned}
& b_{13} z+b_{23} g z+b_{33} h z+b_{43} g h z=b_{11} h z+b_{21} g h z+b_{31} z+b_{41} g z, \\
& b_{14} z+b_{24} g z+b_{34} h z+b_{44} g h z=b_{11} g h z+b_{21} h z+b_{31} g z+b_{41} z .
\end{aligned}
$$

Hence we have

$$
\begin{array}{ll}
b_{11}=b_{22}=b_{33}=b_{44}, & b_{21}=b_{12}=b_{43}=b_{34} \\
b_{31}=b_{42}=b_{13}=b_{24}, & b_{41}=b_{14}=b_{23}=b_{32} .
\end{array}
$$

So the matrix B has the form

$$
\left(\begin{array}{llll}
p & q & r & s \\
q & p & s & r \\
r & s & p & q \\
s & r & q & p
\end{array}\right),
$$

where $p, q, r, s \in k$. Since $B^{2}=0$, plus the relation (5.3), we have the set of equations

$$
\left\{\begin{array}{l}
2 p+q+r=0 \tag{5.3}\\
p=s \\
p^{2}+q^{2}+r^{2}+s^{2}=0 \\
p q+r s=0 \\
p s+q r=0
\end{array}\right.
$$

Then $p=q=r=s=0$, that is, $B=0$.
Now when the pair (z, X) satisfies the relation (2.4), we have

$$
z \otimes X=z \triangleleft G \otimes X
$$

The above identity implies $z \triangleleft G=z$, which is a contradiction to our assumption.

By the same analysis, the second solution of A does not hold either. When $A=E$, it is easy to see that $B=0$, and the relation (2.4) holds for the pair (z, X). The Hopf algebras $\left(H_{8}, H_{4}\right)$ form a matched pair under the matrix $A=E, B=0$.

For the fourth solution of A, it is easy to see that $B=0$. However, since $z \triangleleft G=$ $g h z$, the relation (2.4) is not valid for the pair (z, X).

For action $\triangleright^{2}, g \triangleright G X=h \triangleright G X=g h \triangleright G X=G X$.

$$
\begin{aligned}
z \triangleright G X & =G((z \triangleleft G) \triangleright X)=\left(a_{11}+a_{21}+a_{31}+a_{41}\right) G(z \triangleright X)=\alpha(1-G)-G X, \\
z \triangleright X G & =(z \triangleright X)((z \triangleleft G) \triangleright G)+(z \triangleleft X) \triangleright G \\
& =\alpha(1-G)-X G+\left(b_{11}+b_{21}+b_{31}+b_{41}\right) G,
\end{aligned}
$$

therefore $b_{11}+b_{21}+b_{31}+b_{41}=0$.

$$
\begin{aligned}
z \triangleright X^{2} & =(z \triangleright X)((z \triangleleft G) \triangleright X)+((z \triangleleft X) \triangleright X)=(z \triangleright X)(z \triangleright X)+(z \triangleleft X) \triangleright X \\
& =(z \triangleright X)^{2}+\left(b_{11}+b_{21}+b_{31}+b_{41}\right) z \triangleright X=(z \triangleright X)^{2}=2 \alpha^{2}(1-G)+2 \alpha X .
\end{aligned}
$$

Since $X^{2}=0$, we have $\alpha=0$. That is, $z \triangleright X=-X$.
Whatever solutions of A, we can get $B=0$, and by the relation (2.3), when $A=E$, H_{8} and H_{4} make a matched pair.

For the action \triangleright^{3},

$$
\begin{aligned}
& g \triangleright G X=(g \triangleright G)((g \triangleleft G) \triangleright X)=G(\alpha(G-1)-X)=\alpha(1-G)-G X, \\
& g \triangleright X G=(g \triangleright X)((g \triangleleft G) \triangleright G)+(g \triangleright 1)((g \triangleleft X) \triangleright G)=\alpha(1-G)-X G .
\end{aligned}
$$

Then $\alpha(1-G)-G X=-\alpha(1-G)-G X$, which implies that $\alpha=0$ and

$$
g \triangleright X=-X, \quad h \triangleright X=-X, \quad z \triangleright X=\mathrm{i} X, \quad g \triangleright G X=-G X .
$$

Similarly we can get $h \triangleright G X=-G X$.

$$
\begin{aligned}
z \triangleright G X= & G((z \triangleleft G) \triangleright X)=G(a z \triangleright X+b g z \triangleright X+c h z \triangleright X+d g h z \triangleright X) \\
= & G(a \mathrm{i} X-b \mathrm{i} X-c \mathrm{i} X+d \mathrm{i} X)=(a-b-c+d) \mathrm{i} G X, \\
z \triangleright X G= & \frac{1}{2}[(z \triangleright X)((z \triangleleft G) \triangleright G)+((z \triangleleft X) \triangleright G)-(z \triangleright X)((z \triangleleft G) \triangleright G)) \\
& +((z \triangleleft X) \triangleright G+(z \triangleright X)((h z \triangleleft G) \triangleright G)+((h z \triangleleft X) \triangleright G) \\
& \quad+(z \triangleright X)((h z \triangleleft G) \triangleright G)-((h z \triangleleft X) \triangleright G)] \\
= & (z \triangleleft X) \triangleright G+(z \triangleright X)((h z \triangleleft G) \triangleright G) \\
= & \left(b_{11}+b_{21}+b_{31}+b_{41}\right) G+(a+b+c+d) \mathrm{i} X G .
\end{aligned}
$$

Therefore $b_{11}+b_{21}+b_{31}+b_{41}=0$, and $a+b+c+d=a-b-c+d$, which implies $b+c=0$. Hence we have $a=1, b=c=d=0$, or $a=b=c=0, d=1$. This is easy to check that $z \triangleright X^{2}=(z \triangleright X)((h z \triangleleft G) \triangleright X)=0$.

$$
z^{2} \triangleleft X=z(z \triangleleft X)+\mathrm{i}(z \triangleleft X)(h z \triangleleft G)=0 .
$$

When $a=1, b=c=d=0$,

$$
z\left(b_{11} z+b_{21} g z+b_{31} h z+b_{41} g h z\right)+\mathrm{i}\left(b_{11} z+b_{21} g z+b_{31} h z+b_{41} g h z\right) h z=0
$$

which implies $b_{11}+b_{41}=0, b_{21}+b_{31}=0$. By the relation (2.3)

$$
\begin{aligned}
g(z \triangleleft X) & =g z \triangleleft X=z h \triangleleft X=-(z \triangleleft X) h, \\
h(z \triangleleft X) & =h z \triangleleft X=z g \triangleleft X=-(z \triangleleft X) g, \\
g h(z \triangleleft X) & =g h z \triangleleft X=z g h \triangleleft X=(z \triangleleft X) g h,
\end{aligned}
$$

we obtain that $B=0$. However, the pair (z, X) does not satisfy the relation (2.4).
When $a=b=c=0, d=1$, we also get $B=0$, and it is routine to verify that all the pairs satisfy the relation (2.4). Therefore H_{8} and H_{4} make a matched pair under the matrix A.

For the action \triangleright^{4}, by a similar computation, we have

$$
\begin{gathered}
g \triangleright X=h \triangleright X=-X, \quad z \triangleright X=-\mathrm{i} X, \\
g \triangleright G X=h \triangleright G X=-G X, \quad z \triangleright G X=-\mathrm{i} X, \\
a=b=c=0, \quad d=1 .
\end{gathered}
$$

In summary, by direct computations we have the main result.
Theorem 5.1. A Hopf algebra E factories through H_{8} and H_{4} if and only if
(1) $E \cong H_{8} \otimes H_{4}$.
(2) $E \cong H_{32,1}$ subject to the relations:

$$
\begin{gathered}
g^{2}=h^{2}=G^{2}=1, \quad g h=h g, \quad g z=z h, \quad h z=z g \\
z^{2}=\frac{1}{2}(1+g+h-g h), \quad X^{2}=0, \quad G X=-X G, \\
g G=G g, \quad h G=G h, \quad z G=G z, \quad g X=X g, \quad h X=X h, \quad z X=-X z
\end{gathered}
$$

(3) $E \cong H_{32,2}$ subject to the relations:

$$
\begin{gathered}
g^{2}=h^{2}=G^{2}=1, \quad g h=h g, \quad g z=z h, \quad h z=z g, \\
z^{2}=\frac{1}{2}(1+g+h-g h), \quad X^{2}=0, \quad G X=-X G, \\
g G=G g, \quad h G=G h, \quad g z G=G h z, \quad g X=-X g, \quad h X=-X h, \quad z X=\mathrm{i} X g z .
\end{gathered}
$$

(4) $E \cong H_{32,3}$ subjecting to the relations:

$$
\begin{gathered}
g^{2}=h^{2}=G^{2}=1, \quad g h=h g, \quad g z=z h, \quad h z=z g, \\
z^{2}=\frac{1}{2}(1+g+h-g h), \quad X^{2}=0, \quad G X=-X G, \\
g G=G g, \quad h G=G h, \quad g z G=G h z, \quad g X=-X g, \quad h X=-X h, \quad z X=-\mathrm{i} X g z .
\end{gathered}
$$

Acknowledgments. The authors are grateful to the anonymous referee for the thorough review, comments, and suggestions concerning this work.

References

[1] A. L. Agore: Classifying bicrossed products of two Taft algebras. J. Pure Appl. Algebra 222 (2018), 914-930.
zbl MR doi
[2] A. L. Agore: Hopf algebras which factorize through the Taft algebra $T_{m^{2}}(q)$ and the group Hopf algebra $K\left[C_{n}\right]$. SIGMA, Symmetry, Integrability Geom. Methods Appl. 14 (2018), Article ID 027.

Zbl MR doi
[3] A. L. Agore, C. G. Bontea, G. Militaru: Classifying bicrossed products of Hopf algebras. Algebr. Represent. Theory 17 (2014), 227-264.
[4] A. L. Agore, A. Chirvăsitu, B. Ion, G. Militaru: Bicrossed products for finite groups. Algebr. Represent. Theory 12 (2009), 481-488.
zbl MR doi
[5] C. G. Bontea: Classifying bicrossed products of two Sweedler's Hopf algebras. Czech. Math. J. 64 (2014), 419-431.

Zbl MR doi
[6] Q. Chen, D.-G. Wang: Constructing quasitriangular Hopf algebras. Commun. Algebra 43 (2015), 1698-1722.
zbl MR doi
[7] C. Kassel: Quantum Group. Graduate Texts in Mathematics 155, Springer, New York, 1995.
[8] G.I. Kats, V. G. Palyutkin: Finite ring groups. Trans. Mosc. Math. Soc. 15 (1966), 251-294; translation from Tr. Mosk. Mat. O.-va 15 (1966), 224-261.
zbl MR doi

㩆 M. Keilberg: Automorphisms of the doubles of purely non-abelian finite groups. Algebr. Represent. Theory 18 (2015), 1267-1297.
zbl MR doi
[10] M. Keilberg: Quasitriangular structures of the double of a finite group. Commun. Algebra 46 (2018), 5146-5178.
zbl MR doi
[11] E. Maillet: Sur les groupes échangeables et les groupes décomposables. Bull. Soc. Math. Fr. 28 (1900), 7-16. (In French.)
[12] S. Majid: Physics for algebraists: non-commutative and non-cocommutative Hopf algebras by a bicrossproduct construction. J. Algebra 130 (1990), 17-64.
zbl MR doi
[13] A. Masuoka: Semisimple Hopf algebras of dimension 6, 8. Isr. J. Math. 92 (1995), 361-373.
zbl MR doi
[14] A. N. Panov: Ore extensions of Hopf algebras. Math. Notes 74 (2003), 401-410; translation from Mat. Zametki 74 (2003), 425-434.
zbl MR doi
[15] D. Pansera: A class of semisimple Hopf algebras acting on quantum polynomial algebras. Rings, Modules and Codes. Contemporary Mathematics 727, American Mathematical Society, Providence, 2019, pp. 303-316.
[16] M. Takeuchi: Matched pairs of groups and bismash products of Hopf algebras. Commun. Algebra 9 (1981), 841-882.
zbl MR doi
[17] D.-G. Wang, J. J. Zhang, G. Zhuang: Hopf algebras of GK-dimension two with vanishing Ext-group. J. Algebra 388 (2013), 219-247.
[18] D.-G. Wang, J. J. Zhang, G. Zhuang: Connected Hopf algebras of Gelfand-Kirillov dimension four. Trans. Am. Math. Soc. 367 (2015), 5597-5632.
zbl MR doi
[19] D.-G. Wang, J. J. Zhang, G. Zhuang: Primitive cohomology of Hopf algebras. J. Algebra 464 (2016), 36-96.
zbl MR doi
[20] Y. Xu, H.-L. Huang, D.-G. Wang: Realization of PBW-deformations of type A_{n} quantum groups via multiple Ore extensions. J. Pure Appl. Algebra 223 (2019), 1531-1547. Zbl MR doi
[21] G. Zappa: Sulla costruzione dei gruppi prodotto di due dati sottogruppi permutabili tra loro. Atti 2. Congr. Un. Mat. Ital., Bologna 1940 (1942), 119-125. (In Italian.)

Zbl MR
Authors' addresses: D a o we i L u, School of Mathematical Sciences, Qufu Normal University, No. 57 Jingxuan West Road, Qufu 273165, Shandong, P. R. China and Department of Mathematics, Jining University, No. 1 Xingtan Road, Qufu 273155, Shandong, P. R. China, e-mail: Iudaowei620@126.com, Yan Ning, Department of Mathematics, Jining University, No. 1 Xingtan Road, Qufu 273155, Shandong, P.R. China, e-mail: ningkegood@126.com, Dingguo Wang (corresponding author), School of Mathematical Sciences, Qufu Normal University, No. 57 Jingxuan West Road, Qufu 273165, Shandong, P. R. China, e-mail: dgwang@qfnu.edu.cn.

