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Abstract. Let R be a commutative ring with nonzero identity, let I(R) be the set of all
ideals of R and δ : I(R) → I(R) an expansion of ideals of R defined by I 7→ δ(I). We
introduce the concept of (δ, 2)-primary ideals in commutative rings. A proper ideal I of R
is called a (δ, 2)-primary ideal if whenever a, b ∈ R and ab ∈ I , then a2 ∈ I or b2 ∈ δ(I).
Our purpose is to extend the concept of 2-ideals to (δ, 2)-primary ideals of commutative
rings. Then we investigate the basic properties of (δ, 2)-primary ideals and also discuss the
relations among (δ, 2)-primary, δ-primary and 2-prime ideals.
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1. Introduction

In this paper, all rings are supposed to be commutative with nonzero identity. Let

I be a proper ideal of a ring R and let I(R) denote the set of all ideals of R. The

radical of I is defined by {a ∈ R : an ∈ I for some n ∈ N}, denoted by
√
I. Let

J be an ideal of R. Then the ideal (I : J) consists of r ∈ R with rJ ⊆ I, that is,

(I : J) = {r ∈ R : rJ ⊆ I}. In particular, (I : x) = {r ∈ R : rx ∈ I}. For any
undefined notation or terminology, see [3], [7] or [10]. In [6], the authors introduced

2-prime ideals and gave the basic properties and some applications of the concept

on valuation rings. A proper ideal I of R is called 2-prime if whenever a, b ∈ R and

ab ∈ I then either a2 ∈ I or b2 ∈ I. Then in [11], the authors introduced a new class

of ideals which is between the 2-prime ideals and quasi primary ideals. A proper

ideal I of R is called strongly quasi primary if whenever a, b ∈ R and ab ∈ I then

either a2 ∈ I or bn ∈ I for some n ∈ N.

Zhao in [12] introduced the concept of expansions of ideals and extended many

results of prime and primary ideals to the new concept. He called a δ-primary ideal I
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of R if ab ∈ I and a /∈ I for some a, b ∈ R imply b ∈ δ(I). From [12], a function δ

from I(R) to I(R) is an ideal expansion if it has the following properties: I ⊆ δ(I)

and if I ⊆ J for some ideals I, J ofR, then δ(I) ⊆ δ(J). For example, δ0 is the identity

function, where δ0(I) = I for all ideals I of R, and δ1 is defined by δ1(I) =
√
I. For

other examples, consider the functions δ+ and δ∗ of I(R) defined with δ+(I) = I+J ,

where J ∈ I(R) and δ∗(I) = (I : P ), where P ∈ I(R) for all I ∈ I(R), respectively

(see [4]). Recently, δ-semiprimary ideals were studied in [5].

In this paper, we introduce the concept of (δ, 2)-primary ideals of R which is an

expansion of 2-prime ideals. We call a proper ideal I of R a (δ, 2)-primary if a, b ∈ R

and ab ∈ I, then a2 ∈ I or b2 ∈ δ(I). Then we give many results of the new structure.

Among these results with related this concept: In Section 2, we set up the relations

among 2-prime ideals, primary ideals, δ-primary ideals and (δ, 2)-primary ideals in

Proposition 1. Then it is shown that (see Theorem 1) a proper ideal I of R is (δ, 2)-

primary if and only if KL ⊆ I for any ideals K and L of R implies that either K2 ⊆ I

or L2 ⊆ δ(I). By Corollary 1, we obtain that if 2 ! is a unit in R, then I is a (δ, 2)-

primary ideal of R if and only if KL ⊆ I for any ideals K and L of R implies K2 ⊆ I

or L2 ⊆ δ(I). Proposition 3 gives that if I is a (δ, 2)-primary ideal of R and x ∈ R−I

is an idempotent element, then (I : x) is a (δ, 2)-primary ideal of R. In Theorem 2,

we compare irreducible ideals with (δ, 2)-primary ideals. Theorem 4 shows that if I

is a (δ, 2)-primary ideal of R and
√

δ(I) ⊆ δ(
√
I), then

√
I is a δ-primary ideal of R.

Then in Theorem 5, we have that every proper principal ideal is a (δ, 2)-primary ideal

of R if and only if every proper ideal is a (δ, 2)-primary ideal of R. In Theorem 7, we

have that if R is a von Neumann regular ring (or Boolean ring), then every (δ, 2)-

primary ideal and δ-primary ideal of R coincide. Let R be a valuation ring with the

quotient field K. Then a proper ideal I of R is a (δ, 2)-primary ideal of R if and only

if for every a, b ∈ K with ab ∈ I and a2 /∈ I, then b2 ∈ δ(I) (see Theorem 8). In

Section 3, we give many examples which show that the converses of some relations

are not satisfied in general.

2. Properties of (δ, 2)-primary ideals

Throughout this paper, R denotes a commutative ring with nonzero identity and δ

is an expansion function of I(R).

Definition 1. A proper ideal I of R is called a (δ, 2)-primary ideal if whenever

x, y ∈ R and xy ∈ I imply x2 ∈ I or y2 ∈ δ(I).

Note that every prime, δ-primary, 2-prime ideal is a (δ, 2)-primary ideal. Actually,

we obtain the following diagram which gives the relations between (δ, 2)-primary

ideal and other classical ideals in the lattice of ideals L(R):
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2-prime ideal

(δ, 2)-primary ideal

δ-primary ideal

prime ideal

=⇒

=
⇒=⇒

=
⇒

Figure 1. Relations between (δ, 2)-primary ideals and other classical ideals

However, the converses of these relations are not satisfied in general, (see Exam-

ple 4, Example 5 and Example 6). Since the following relations can be obtained by

the definitions easily, we give our first result without proof.

Proposition 1. Let I be a proper ideal of a commutative ring R. Then the

following statements hold:

(1) I is a (δ0, 2)-primary ideal if and only if I is a 2-prime ideal.

(2) I is a (δ1, 2)-primary ideal if and only if I is a strongly quasi primary ideal.

(3) Let δ(I) be a prime ideal and δ(I)2 ⊆ I. Then I is a (δ, 2)-primary ideal if and

only if I is a 2-prime ideal.

(4) If I is a primary ideal, then I is a (δ1, 2)-primary ideal.

(5) If I is a 2-prime ideal, then I is a (δ, 2)-primary ideal for every δ.

(6) If I is a δ-primary ideal, then I is a (δ, 2)-primary ideal for every δ.

(7) Let δ be an expansion function of I(R) with δ(δ(I)) = δ(I) for a proper ideal I

of R. Then δ(I) is a 2-prime ideal of R if and only if δ(I) is a (δ, 2)-primary

ideal of R.

The converses of (4), (5) and (6) do not hold in general, (see Example 2, Example 4,

Example 5 and Example 6, respectively.)

Proposition 2. Let I be a proper ideal of R and let δ, γ be two expansion

functions of I(R) with δ(I) ⊆ γ(I). If I is a (δ, 2)-primary ideal of R, then I is

a (γ, 2)-primary ideal of R.

P r o o f. It is clear. �

The ideal generated by nth power of elements of a proper ideal I of R (i.e., {an :
a ∈ I}) is denoted by In for a natural number n, see [1]. Recall that In ⊆ In ⊆ I.

If n ! is a unit of R, we obtain In = In by [1], Theorem 5.

Theorem 1. Let δ be an expansion function of I(R) and I be a proper ideal

of R. Then the following statements are equivalent:

(1) I is a (δ, 2)-primary ideal of R.
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(2) For every x ∈ R, (x) ⊆ (I : x) or (I : x)2 ⊆ δ(I).

(3) KL ⊆ I for any ideals K and L of R implies K2 ⊆ I or L2 ⊆ δ(I).

(4) For every x ∈ R, x2 ∈ I or (I : x)2 ⊆ δ(I).

P r o o f. (1) ⇒ (2): Assume that I is a (δ, 2)-primary ideal of R. If x2 ∈ I for

any x ∈ R, then (x) ⊆ (I : x). Suppose that x2 /∈ I. Let y ∈ (I : x). Hence, we have

xy ∈ I and x2 /∈ I. Consequently, y2 ∈ δ(I) and so we get (I : x)2 ⊆ δ(I).

(2) ⇒ (3): Assume that KL ⊆ I and K2 * I for some ideals K and L of R. Then

there is an element k ∈ K with k2 ∈ K2−I. Thus k /∈ (I : k). By (2), (I : k)2 ⊆ δ(I).

Then we have kl ∈ KL ⊆ I for every l ∈ L. Then l ∈ (I : k), that is, l2 ∈ (I : k)2.

We obtain L2 ⊆ δ(I) by our hypothesis.

(3) ⇒ (4): Let x2 /∈ I. Take y ∈ (I : x). Then xy ∈ I. Put K = (x) and L = (y)

in (3). Since K2 * I, we get y2 ∈ L2 ⊆ δ(I) by assumption. Thus (I : x)2 ⊆ δ(I).

(4) ⇒ (1): Let xy ∈ I and x2 /∈ I for some x, y ∈ R. Then y ∈ (I : x). We get

y2 ∈ (I : x)2. By our assumption it is clear that y
2 ∈ δ(I). �

We give the following results obtained by the previous theorem.

Corollary 1. Let δ be an expansion function of I(R), I a proper ideal of R

and 2 ! a unit in R. Then the following statements are equivalent:

(1) I is a (δ, 2)-primary ideal of R.

(2) (x) ⊆ (I : x) or (I : x)2 ⊆ δ(I) for every x ∈ R.

(3) KL ⊆ I for any ideals K and L of R implies K2 ⊆ I or L2 ⊆ δ(I).

(4) x2 ∈ I or (I : x)2 ⊆ δ(I) for every x ∈ R.

Proposition 3. Let δ be an expansion function of I(R) and I a proper ideal

of R. If I is a (δ, 2)-primary ideal of R and x ∈ R− I is an idempotent element, then

(I : x) is a (δ, 2)-primary ideal of R.

P r o o f. Let ab ∈ (I : x) and a2 /∈ (I : x) = (I : x2) for some a, b ∈ R. Then we

have abx ∈ I and a2x2 /∈ I. By our assumption, b2 ∈ δ(I) ⊆ δ(I : x). Thus the proof

is over. �

Theorem 2. Let δ be an expansion function of I(R), I a proper ideal of R

and (I : x) = (I : x2) for each x ∈ R − I. If I is an irreducible ideal, then I is

a (δ, 2)-primary ideal.

P r o o f. Assume on the contrary that I is not a (δ, 2)-primary ideal. Then there

exist a, b ∈ R with ab ∈ I and neither a2 ∈ I nor b2 ∈ δ(I). Then a, b /∈ I as a2 /∈ I

and b2 /∈ δ(I). Consider (I + Ra) ∩ (I + Rb). Clearly, I ⊆ (I + Ra) ∩ (I + Rb).

Let r ∈ (I + Ra) ∩ (I + Rb). Then there are x1, x2 ∈ I and r1, r2 ∈ R with
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r = x1 + r1a = x2 + r2b. As x2b + r2b
2 = x1b + r1ab ∈ I, we get r2b

2 ∈ I and so

we have r2 ∈ (I : b2). By the assumption, we obtain r2 ∈ (I : b), that is, r2b ∈ I.

Therefore, r = x2+r2b ∈ I, which contradicts our assumption that I is an irreducible

ideal. Thus I is a (δ, 2)-primary ideal. �

Proposition 4. If I is a (δ, 2)-primary ideal of R and δ is an expansion function

of R with
√

δ(I) ⊆ δ(
√
I), then

√
I is a δ-primary ideal of R. In particular, if I is

(δ1, 2)-primary, then
√
I is a δ1-primary ideal of R.

P r o o f. Let a, b ∈ R with ab ∈
√
I and a /∈

√
I. Then anbn ∈ I for some positive

integer n. Since a2n /∈ I and I is assumed to be a (δ, 2)-ideal, we have b2n ∈ δ(I). It

means b ∈
√

δ(I) ⊆ δ(
√
I), and we are done. �

Recall that a proper ideal I of a commutative ringR is called semiprime if whenever

Jn ⊂ I for some ideal J of R and some positive integer n, then J ⊂ I. This means

that
√
I = I. A prime ideal is always semiprime, but the converse part is not true.

For example, an ideal (n) of Z is semiprime if and only if n is squarefree (for more

information, see [8]). Then we get the following result when I is a semiprime ideal.

Proposition 5. Let δ be an expansion function of I(R) and I a semiprime ideal

of R. Then

(1) I is a 2-prime ideal of R if and only if I is prime.

(2) Let δ(I) be a semiprime ideal. Then I is a (δ, 2)-primary ideal if and only if I

is δ-primary.

Recall from [12] that an ideal expansion δ of I(R) is said to be intersection pre-

serving if it satisfies δ(I1 ∩ I2 ∩ . . . ∩ In) = δ(I1) ∩ δ(I2) ∩ . . . ∩ δ(In) for any ideals

I1, I2, . . . , In of R.

Proposition 6. Let δ be an intersection preserving expansion function of I(R).

If I1, I2, . . . , In are (δ, 2)-primary ideals of R with δ(Ii) = P for all i ∈ {1, 2, . . . , n},
then

n
⋂

i=1

Ii is a (δ, 2)-primary ideal of R.

P r o o f. Let xy ∈
n
⋂

i=1

Ii and x2 /∈
n
⋂

i=1

Ii for some x, y ∈ R. Then x2 /∈ Ik for

some 1 6 k 6 n. Thus y2 ∈ δ(Ik) = P by our assumption. Thus y2 ∈ δ
( n
⋂

i=1

Ii

)

as

δ
( n
⋂

i=1

Ii

)

=
n
⋂

i=1

δ(Ii) = P. �

However, the intersection of two (δ, 2)-primary ideals need not be (δ, 2)-primary

ideal (see Example 3).
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Proposition 7. Let {Ii: i ∈ Λ} be a directed collection of (δ, 2)-primary ideals
of R. Then

⋃

i∈Λ

Ii is a (δ, 2)-primary ideal of R.

P r o o f. Let ab ∈ ⋃

i∈Λ

Ii with a2 /∈ ⋃

i∈Λ

Ii. Since ab ∈ Ij for some j ∈ Λ and

a2 /∈ Ij , it implies that b
2 ∈ δ(Ij) ⊆ δ

(

⋃

i∈Λ

Ii

)

, we are done. �

Let R and S be commutative rings with 1 6= 0 and let δ, γ be two expansion

functions of I(R) and I(S), respectively. Then a ring homomorphism f : R → S

is called a δγ-homomorphism if δ(f−1(I)) = f−1(γ(I)) for all ideals I of S. Let γ1

a radical operation on ideals of S and δ1 a radical operation on ideals of R. A homo-

morphism from R to S is an example of δ1γ1-homomorphism. Additionally, if f is

a δγ-epimorphism and I is an ideal of R containing ker(f), then γ(f(I)) = f(δ(I)),

see [4].

Theorem 3. Let f : R → S be a δγ-homomorphism, where δ and γ are expansion

functions of I(R) and I(S), respectively. Then the following statements hold:
(1) If J is a (γ, 2)-primary ideal of S, then f−1(J) is a (δ, 2)-primary ideal of R.

(2) Let f be an epimorphism and I a proper ideal of R with ker(f) ⊆ I. Then I is

(δ, 2)-primary ideal of R if and only if f(I) is a (γ, 2)-primary ideal of S.

P r o o f. (1) Let xy ∈ f−1(J) for some x, y ∈ R. Then f(xy) = f(x)f(y) ∈ J ,

which implies (f(x))2 ∈ J or (f(y))2 ∈ γ(J). Then f(x2) ∈ J or f(y2) ∈ γ(J). Thus

we have x2 ∈ f−1(J) or y2 ∈ f−1(γ(J)) = δ(f−1(J)) since f is a δγ-homomorphism.

Thus f−1(J) is a (δ, 2)-primary ideal of R.

(2) Let xy ∈ f(I) for some x, y ∈ S. Then there are two elements a, b ∈ I such

that x = f(a) and y = f(b). Then f(a)f(b) = f(ab) ∈ f(I) and since ker(f) ⊆ I,

we conclude ab ∈ I. We get a2 ∈ I or b2 ∈ δ(I). Thus f(a2) = x2 ∈ f(I) or

f(b2) = y2 ∈ f(δ(I)) = δ(f(I)). Thus f(I) is a (γ, 2)-primary ideal of S. �

Remark 1. Let δ be an expansion function of I(R) and I a proper ideal of R.

Then the function δq : R/I → R/I, defined by δq(J/I) = δ(J)/I for all ideals I ⊆ J,

becomes an expansion function of R/I, see [4]. Consider the natural homomorphism

π : R → R/J . Then for ideals I of R with ker(π) ⊆ I, we have δq(π(I)) = π(δ(I)).

Corollary 2. Let δ be an expansion function of I(R), and let I and J be ideals

of R with I ⊆ J . Then the following statements hold:

(1) J is a (δ, 2)-primary ideal of R if and only if J/I is a (δq, 2)-primary ideal of R/I.

(2) If I is a (δ, 2)-primary ideal of R and R′ is a subring with R′ * I, then I ∩ R′

is a (δ, 2)-primary ideal of R′.

P r o o f. (1) and (2) are clear. �
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Let δ be an expansion function of ideals of a polynomial ring R[X ] where X is an

indeterminate. Then observe that the function as in Remark 1, δq : R[X ]/(X) →
R[X ]/(X) defined by δq(J/(X)) = δ(J)/(X) for all ideals J of R[X ] with (X) ⊆ J,

is an expansion function of ideals of R as R[X ]/(X) ∼= R. According to these

expansions, we have the equivalent situations as follows:

Corollary 3. Let I be a proper ideal of R. Then the following statements are

equivalent:

(i) I is a (δq, 2)-primary ideal of R.

(ii) (I,X) is a (δ, 2)-primary ideal of R[X ].

P r o o f. From Corollary 2 we conclude that (I,X) is a (δ, 2)-primary ideal ofR[X ]

if and only if (I,X)/(X) is a (δq, 2)-primary ideal of R[X ]/(X). Since (I,X)/(X) ∼= I

and R[X ]/(X) ∼= R, the result is obtained. �

Let S be a multiplicatively closed subset of a ring R and δ an expansion function

of I(R). Note that δS is an expansion function of I(RS) such that δS(IS) = (δ(I))S .

In the next theorem we investigate (δS , 2)-primary ideals of the localization RS .

Theorem 4. Let δ be an expansion function of R and S a multiplicatively closed

subset of R. If a proper ideal I of R is a (δ, 2)-primary ideal with I ∩S = ∅, then IS
is a (δS , 2)-primary ideal of RS .

P r o o f. Let (x/s1)(y/s2) ∈ IS for some x, y ∈ R; s1, s2 ∈ S. Then there are

a ∈ I and s ∈ S with (x/s1)(y/s2) = a/s. Thus we have sxy ∈ I. Then (sx)2 ∈ I

or y2 ∈ δ(I). Hence (s2/s2)(x2/s21) ∈ IS or y
2/s22 ∈ δ(I)S . We have (x/s1)

2 ∈ IS or

(y/s2)
2 ∈ (δ(I))S = δS(IS). Consequently, IS is a (δS , 2)-primary ideal of RS . �

Theorem 5. Let δ be an expansion of ideals of R. Then the following statements

are equivalent:

(1) Every proper principal ideal is a (δ, 2)-primary ideal of R.

(2) Every proper ideal is a (δ, 2)-primary ideal of R.

P r o o f. Suppose that (1) holds. Let I be a proper ideal of R and a, b ∈ R with

ab ∈ I. Then ab ∈ (ab) and since (ab) is a (δ, 2)-primary ideal of R by our assumption,

we have either a2 ∈ (ab) ⊆ I or b2 ∈ δ(ab) ⊆ δ(I). Thus I is a (δ, 2)-primary ideal

of R. The converse part is obvious. �

Recall that a commutative ring R is called a von Neumann regular ring if for every

a ∈ R there exists x ∈ R such that a = axa. Note that a ring R is von Neumann

regular if and only if for any ideal I of R,
√
I = I. A commutative ring R is called

Boolean if a2 = a for each a ∈ R. It is clear that every Boolean ring is von Neumann
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ring. In the following theorems, we characterize von Neumann regular rings in terms

of 2-prime and (δ, 2)-primary ideals.

Theorem 6. A ring R is von Neumann regular if and only if every 2-prime ideal

of R is a prime ideal.

P r o o f. (⇒): Let x, y ∈ R with xy ∈ I and x /∈ I. Since R is a von Neumann

regular ring, we have a ∈ R with x = ax2. Indeed, if x2 ∈ I, then ax2 = x ∈ I,

a contradiction. Thus, x2 /∈ I. By assumption, we get y2 ∈ I. Therefore, y ∈
√
I = I

as R is a von Neumann regular ring.

(⇐): If a proper ideal I of a ring R is a 2-prime, then
√
I is prime in [6], Proposi-

tion 1.3, statement (1). Thus, we have
√
I = I for all ideals I of R. Therefore R is

von Neumann regular. �

Theorem 7. Let R be a von Neumann regular ring and δ an expansion function

of I(R). Then every (δ, 2)-primary ideal of R is a δ-primary ideal.

P r o o f. Suppose that I is a (δ, 2)-primary ideal, xy ∈ I and x /∈ I for some

x, y ∈ R. Then there is a ∈ R with x = ax2 as R is assumed to be von Neumann

regular. If x2 ∈ I, then ax2 = x ∈ I, a contradiction. Thus x2 /∈ I. Since I is

(δ, 2)-primary, we get y2 ∈ δ(I). Therefore, y ∈ δ(I) as R is a von Neumann regular

ring. Thus I is a δ-primary ideal of R. �

Note that Theorem 6 and Theorem 7 hold for Boolean rings. An integral domainR

is said to be a valuation ring if for every element a of its field of fractions K, at least

one of a or a−1 belongs to R.

Theorem 8. Let R be a valuation ring with the quotient field K and let δ be

an expansion function of I(R). For a proper ideal I of R, the following statements

hold:

(1) I is a (δ, 2)-primary ideal of R if and only if for every a, b ∈ K with ab ∈ I and

a2 /∈ I, we have b2 ∈ δ(I).

(2) I is a 2-prime ideal of R if and only if for every a, b ∈ K with ab ∈ I and a2 /∈ I,

we have b2 ∈ I.

P r o o f. (1) Suppose that I is a (δ, 2)-primary ideal of R and a, b ∈ K are such

that ab ∈ I with a2 /∈ I. If a /∈ R, then a−1 ∈ R as R is assumed to be a valuation.

Hence b = a−1ab ∈ I, and so b2 ∈ I ⊆ δ(I). Now assume that a ∈ R. If b is also an

element of R, then the result is clear since I is a (δ, 2)-primary ideal of R. So assume

b /∈ R. Then b−1 ∈ R and we conclude a = abb−1 ∈ I which contradicts a2 /∈ I.

Thus we are done. The converse part is obvious.

(2) It is similar to (1). �
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Let R1, R2, . . . , Rn be commutative rings with nonzero identity, let δi be an ex-

pansion function of I(Ri) for each i ∈ {1, 2, . . . , n} and R = R1 × . . . × Rn. For

a proper ideal I1 × . . . × In, the function δ× defined by δ×(I1 × I2 × . . . × In) =

δ1(I1) × δ2(I2) × . . . × δn(In) is an expansion function of I(R). In the next two

theorems, we characterize (δ, 2)-primary ideals of R1 × . . .×Rn.

Theorem 9. Let R1 and R2 be commutative rings with 1 6= 0 and R = R1 ×R2,

and let δ1, δ2 be expansion functions of I(R1) and I(R2), respectively. Then the

following statements are equivalent:

(1) I is a (δ×, 2)-primary ideal of R.

(2) Either I = I1 × R2, where I1 is a (δ1, 2)-primary ideal of R1 or I = R1 × I2,

where I2 is a (δ2, 2)-primary ideal of R2 or I = I1 × I2, where I1 and I2 are

proper ideals of R1, R2, respectively with δ1(I1) = R1 and δ2(I2) = R2.

P r o o f. (1) ⇒ (2): Let I be a (δ×, 2)-primary ideal of R. We know that an

ideal I of R is of the form I = I1 × I2 where I1 and I2 are ideals of R1 and R2,

respectively. Without loss of generality, we may assume that I = I1 × R2 for some

proper ideal I1 of R1. We show that I1 is a (δ1, 2)-primary ideal of R1. Assume

not. Then there are a, b ∈ R1 such that ab ∈ I1, a
2 /∈ I1 and b2 /∈ δ1(I1). We

get (a, 1)(b, 1) ∈ I1 × R2. It implies (a
2, 1) ∈ I1 × R2 or (b

2, 1) ∈ δ×(I1 × R2).

Thus a2 ∈ I1 or b
2 ∈ δ(I1), yielding a contradiction. Now suppose that both I1

and I2 are proper. Since (1, 0)(0, 1) ∈ I1 × I2 and (1, 0)2, (0, 1)2 /∈ I1 × I2, we

have (1, 0)2, (0, 1)2 ∈ δ×(I1 × I2) = δ1(I1) × δ2(I2). This yields δ1(I1) = R1 and

δ2(I2) = R2.

(2) ⇒ (1): This side is clear. �

Theorem 10. Let R1, R2, . . . , Rn be commutative rings with nonzero identity

and R = R1 × . . .×Rn, where n > 2. Let δi be an expansion function of I(Ri) for

each i = 1, . . . , n. Then the following statements are equivalent:

(1) I is a (δ×, 2)-primary ideal of R.

(2) I = I1 × . . . × In and either for some k ∈ {1, . . . , n} such that Ik is a (δk, 2)-

primary ideal of Rk and Ij = Rj for all j ∈ {1, . . . , n} \ {k} or Iαi
’s are proper

ideals of Rαi
for {α1, α2, . . . , αk} ⊆ {1, 2, . . . , n} and |{α1, α2, . . . , αk}| > 2 with

δαi
(Iαi

) = Rαi
and Ij = Rj for all j ∈ {1, . . . , n} \ {α1, α2, . . . , αk}.

P r o o f. It can be obtained by using mathematical induction on n. �

Let R be a commutative ring and M an R-module. The idealization R(+)M =

{(r,m) : r ∈ R, m ∈ M} is a commutative ring with addition and multiplication,
respectively: (r,m)(s,m′) = (r + s,m +m′) and (r,m)(s,m′) = (rs, rm′ + sm) for

each r, s ∈ R, m,m′ ∈ M . Additionally, I(+)N is an ideal of R(+)M , where I is

1087



an ideal of R and N is a submodule of M if and only if IM ⊆ N (see [2] and [9]).

In this circumstances, I(+)N is called a homogeneous ideal of R(+)M . Recall that

the radical of a homogeneous ideal is
√

I(+)N =
√
I(+)M , see [2]. Let δ be an

expansion function of R. Clearly, δ(+) is defined as δ(+)(I(+)N) = δ(I)(+)M for

every ideal I(+)N of R(+)M is an expansion function of R(+)M.

Theorem 11. Let δ be an expansion function of R and let I(+)N be a homoge-

nous ideal of R(+)M . Then the following statements hold:

(1) If I is a (δ, 2)-primary ideal of R and
√
IM ⊆ N , then I(+)N is a (δ(+), 2)-

primary ideal of R(+)M.

(2) If I(+)N is a (δ(+), 2)-primary ideal of R(+)M , then I is a (δ, 2)-primary

ideal of R.

P r o o f. (1) Let (r,m)(r′,m′) = (rr′, rm′ + r′m) ∈ I(+)N for some (r,m),

(r′,m′) ∈ R(+)M . Then rr′ ∈ I, and so r2 ∈ I or r′2 ∈ δ(I). Assume that r2 ∈ I.

Then r ∈
√
I and so 2rm ∈ N as

√
IM ⊆ N . Then (r,m)2 = (r2, 2rm) ∈ I(+)N .

Let r′2 ∈ δ(I). Then (r′,m′2 = (r′2, 2r′m′) ∈ δ(I)(+)M = δ(+)(I(+)N).

(2) Let rr′ ∈ I for some r, r′ ∈ R. Then (r, 0)(r′, 0) ∈ I(+)N . Hence (r, 0)2 =

(r2, 0) ∈ I(+)N or (r′, 0)2 = (r′2, 0) ∈ δ(+)(I(+)N). Therefore, we have r2 ∈ I or

r′2 ∈ δ(I), as needed. �

Corollary 4. Let I(+)N be a homogeneous ideal of R(+)M and (N : M) =
√

(N : M). Then I is a (δ, 2)-primary ideal of R if and only if I(+)N is a (δ(+), 2)-

primary ideal of R(+)M .

More general than the (δ, 2)-primary ideal of a commutative ring, the concept of

the (δ, n)-primary ideal of R, where n is a positive integer can be defined. We give

just the definition of this concept which may be inspiring for other work:

Definition 2. LetR be a commutative ring with nonzero identity, δ an expansion

function of I(R) and n a positive integer.We call a proper ideal I ofR a (δ, n)-primary

ideal if whenever a, b ∈ R with ab ∈ I, then either an ∈ I or bn ∈ δ(I). In particular,

for n = 1, 2, it is a δ-primary and a (δ, 2)-primary ideal, respectively.

3. Examples

Example 1. Let R be a valuation ring. Then every proper ideal is (δ, 2)-primary

by [6], Theorem 2.4.

By Proposition 1, statement (4), we obtain Figure 2. But the converse of the

relation in Figure 2 is not satisfied in general (see the next example).
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prime ideal (δ1, 2)-primary ideal=⇒

Figure 2. Relation between primary ideal and (δ1, 2)-primary ideal

Example 2. Let R be a subring of Z[X ] which consists of polynomials such that

the coefficients of X can be divided by 3. Consider the ideal Q = (9X2, 3X3, X4,

X5, X6) of R. One can see that Q is a (δ1, 2)-primary ideal of R, where δ1(Q) =

(3X,X2, X3) is a prime ideal of R. However Q is not a primary ideal of R since

3X3 ∈ Q and X3 /∈ Q but 3n /∈ √
Q = (3X,X2, X3) for all positive integers n.

The following example shows that the intersection of two (δ, 2)-primary ideals of

a commutative ring need not be (δ, 2)-primary in general:

Example 3. Consider the ring R = Z12 and the ideals I = 4Z12 and J = 3Z12

of R. Then clearly both I and J are (δi, 2)-primary for i = 0, 1. However, I∩J = (0)

is not: 3 · 4 ∈ (0) but neither 3 ∈ (0) nor 4 ∈ δi((0)) for i = 0, 1.

The next examples demonstrate that the converses of the relations between the

(δ, 2)-primary ideal and other classical ideals in Figure 1 do not hold in general. The

following example shows that the converse of Proposition 1 (5) is not satisfied in

general.

Example 4. Consider the ring R = F [X,Y ] where F is a field. Let I =

(X3, XY, Y 3). Then the radical of I, (X,Y ) ∈ Max(R), is the set of all maxi-

mal ideals of R. It is clear that I is a (δ1, 2)-primary ideal. But it is not a 2-prime

ideal.

The following two examples show that the converse of Proposition 1, statement (6)

is not always true.

Example 5. Consider the ring Z8 and let δ : Z8 → Z8 be an expansion of ideals

of Z8 defined by δ(J) = J + (4) for all ideals J of Z8. Then the zero ideal is

a (δ, 2)-primary ideal of Z8, but it is neither prime nor δ-primary. Indeed, (0) is not

a δ-primary ideal of Z8 as 4 · 2 ∈ (0) but 4 /∈ (0), 2 /∈ δ((0)) = (4).

Example 6. A proper ideal (4) of Z is a (δ0, 2)-primary ideal but it is not

a δ0-primary ideal of Z.
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